Anomaly aware machine learning for dark
matter direct detection at DARWIN

Andre Scaffidi and Roberto Trotta for the DARWIN
collaboration.
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Overview

e = New deep learning pipeline to improve upon traditional
likelihood approaches.

e Can improve sensitivity over standard approach.

e Methods directly applicable to any detector!
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RWIN collaboration: Proposal

DARWIN: 40 tonne( or XLZD: 60 tonne()

~ 200 Inember-s" .




DARWIN collaboration
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Direct detection: Traditional likelihood-based analysis
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Relies heavily on high-level
summary statistics ¢S1,c¢S2:
= E = g(cS1,cS2)
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Direct detection: Traditional likelihood-based analysis
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Simulation based inference
(SBI)
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Benefits of SBI

Bypass need for high level stats. Do inference directly from data.

e Can handle complex models with intractable likelihoods.

e Use deep neural nets to learn underlying features of simulated
data/summary stats.

e Once a simulator has been established, possible to include
arbitrarily complicated simulations into analysis: prompt
readouts — high level summary stats.

e Makes no assumptions regarding the analytical form of the
likelihood.

e Need no special treatment of nuisance parameters.

e Can in principle simulate/calibrate any detector effects and learn
them directly.



Simulation-Based Inference with Neural Nets

We have a variety of data/summary stats available to us.

Neural net ‘learns’
underlying likelihood
function directly from data.
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Analysis pipeline 1:
Classification of recoil events



Underground TPCs: Two types of events

Particle

4540 phe
100

s2 |
2 1 4540 phe f
S sk |
= 52 phe
2 At J
S o A

o 50 100 150 200

Time [us]

e First primary objective in an analysis is to veto the dominant ER =
Binary classification!

e Previous ML studies Sanz et. al, Herrero-Garcia et. al
arXiv:1911.09210, 2110.12248 for XENONnT.



Training data: Simulations

RAW event output S1, S2 PMT deposits (4-fold coincidence, 200 ns):

Yiem)

—> x = [S1WaveformTotal, S2WaveformTotal, S2Pattern ]



Training data: Simulations

RAW event output S1, S2 PMT deposits (4-fold coincidence, 200 ns):

—> x = [S1WaveformTotal, S2WaveformTotal, S2Pattern ]

Two distinct quanta: Electron Recoil (ER) and Nuclear Recoil (NR)



Classification: ER vs. NR Results

e Train on ~ 40000 ER/NR events with E € [0,100] keV.
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Classification: ER vs. NR Results

e Train on ~ 40000 ER/NR events with E € [0,100] keV.
e Check performance — confusion matrix:
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e Takeaway = 98.03% accuracy. (Recall = 98.07%, Precision =
96.39%)

e This works regardless WIMP properties: NR/ER are
what matter. (Originally thought not i.e Sanz 1911.0921) 10



Great! But...
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DARWIN pipeline, need to sacrifice NR acceptance!
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Great! But...

e Trained an effective event-by-event ER veto: In standard
DARWIN pipeline, need to sacrifice NR acceptance!

e Current DARWIN estimate 99.98% ER rejection. 30% NR
acceptance.
e No need with SBI NN classifier.

e However, no information regarding the energy of events: WIMPs
manifest through number of events + spectral distribution!

e Can we learn the spectral information?

11



Analysis pipeline 2:
Unsupervised approach



Generative Deep Learning: The Variational Auto-Encoder

e Variety of studies in HEP use these for anomaly detection tasks.
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Generative Deep Learning: The Variational Auto-Encoder

e Variety of studies in HEP use these for anomaly detection tasks.

e Goal: Learn low dimensional representation (encoding) of data

via dimensional reduction.
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Generative Deep Learning: The Variational Auto-Encoder

e Variety of studies in HEP use these for anomaly detection tasks.

e Goal: Learn low dimensional representation (encoding) of data

via dimensional reduction.

e Latent space (bottleneck) layer is a bunch of normal distributions
parameterized by some p and o.
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Generative Deep Learning: The Variational Auto-Encoder

e Variety of studies in HEP use these for anomaly detection tasks.

e Goal: Learn low dimensional representation (encoding) of data

via dimensional reduction.

e Latent space (bottleneck) layer is a bunch of normal distributions
parameterized by some p and o.

e Network should return accurate representations of the input.
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Variational-Auto-Encoder: Training

e Train by maximising evidence lower bound (ELBO):

p(w-,Z)}
logp(x) > ELBO = E (.2 |lo
gp(x) > q<|>{ g 4(o ] 2)

= Ellogp(z|z)] — BDkr(q(z|x)||p(2))
r = Input
z = Latent vector

B = Regularization parameter
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Variational-Auto-Encoder: Training

e Train by maximising evidence lower bound (ELBO):

p(w-,Z)}
logp(x) > ELBO = E (.2 |lo
gp(x) > q<|>{ g 4(o ] 2)

= Ellogp(z|z)] — BDkr(q(z|x)||p(2))
r = Input
z = Latent vector

B = Regularization parameter

e Loss = —ELBO

13



VAE: Training

e Train the network for 200 epochs.

Loss

Loss = —ELBO
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VAE trained on ER realisations: Spectral information
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e Auto-encoder can learn underlying spectral information of events
= Sensitivity to WIMP mass.

e Can we also just fully reconstruct the energy of an event straight
from the data? Yes! See later.
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Anomaly detection (Looking
for non background-like

events)




Anomaly detection

e Accept/Reject
Ho : T'S ~ P (x| No signal)

P: Conditional process generating some statistic 7S, under the
assumption that no WIMP signal is present.
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Anomaly detection

e Accept/Reject
Ho : T'S ~ P (x| No signal)

P: Conditional process generating some statistic 7S, under the
assumption that no WIMP signal is present.

e P intractable: Use neural networks to derive optimal T'S.

16



Anomaly detection

What is a suitable T'S?

e If VAE has learned the underlying properties of ER events, any
non-ER events will in general have higher loss (smaller ELBO).
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Anomaly detection

What is a suitable T'S?

e If VAE has learned the underlying properties of ER events, any
non-ER events will in general have higher loss (smaller ELBO).

e Furthermore, non trivial spectral info learned = ELBO
distribution shape can further inform about NR background.

e Loss distribution of anomalous data (new physics) will show as
an excess over background only loss distribution.

e Try distribution of = ELBO
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Anomaly detection

ER bkg only
NR bkg only
WIMP only

10000 11000 12000 1%( 00 14000 15000

-ELBO

e Background loss distributions + WIMP loss distribution.
e Any* anomalous signal will show up as statistical deviation in
(pseudo)data loss vs. (known) background loss.

18



Semi-unsupervised anomaly detection: New distance met-

ric

Cool. But...

e A bit rubbish: Can we get greater separation (anomaly
awareness) between these distributions?
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Semi-unsupervised anomaly detection: New distance met-

ric

Cool. But...

e A bit rubbish: Can we get greater separation (anomaly
awareness) between these distributions?

e New ‘anomaly score’ that utilizes pre-trained supervised NN
classifier:
TS=—-FLBO +RHp,
where

e Hp=—+ Zfio log (1 —p(x;)) (Binary cross-sentropy.)
e R scales the contribution of the cross-entropy term — makes it
more/less supervised.
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Semi-unsupervised anomaly detection: Full pipeline
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Semi-unsupervised anomaly detection: New distance met-

ric

TS = (—~ELBO) + RHp ,

= Semi-unsupervised. Much greater anomaly awareness!
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Pseudo-data sets

Re-weight anomaly score distributions 7S according to expected
ER+NR backgrounds and inject some WIMP signal

[ 1 Total background = fj
1 WIMP
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Pseudo-data sets

Re-weight anomaly score distributions 7S according to expected
ER+NR backgrounds and inject some WIMP signal: ER [2-10] keVee,

NR [5-35] keVur

[ 1 Total background = fj
1 WIMP

10000 15000 20000 25000 30000 35000 10000

TS 22



Dimensionally reduced two-sample test

e = 1D analysis in TS space: Accept/reject Hy.

P (x| No signal) = L(TS|Hg) x e P H Bfo (TS;))
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Dimensionally reduced two-sample test

e = 1D analysis in TS space: Accept/reject Hy.

P (x| No signal) = L(TS|Hg) x e P H Bfo (TS;))

e Unbinned.
e Parametrically independent on WIMP model.

e No auxiliary terms/nuisance parameters required assuming

simulations have suitably descriptive coverage.
e (Capability to conduct ER only searches with same machinery.

e In principal can propagate uncertainties on the bkg from

simulation (or even better, calibration).
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Median Sensitivity
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As a function of exposure

e Neural net
e Binned likelihood based: Median sensitivity [30% NR acceptance, 99%

ER rejection]

og = 4.5 x 107% ¢m 2, m, = 50 GeV

Probability

¢ — Median sensitivity Neural net
1061 ===" Median sensitivity Likelihood based

10773
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Full sensitivity (Preliminary)
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Energy reconstruction




Probability

Er

data or summary data
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1

Neural posterior density estimation: Estimate posterior on Er from data.
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Follow up work: E reconstruction

Neural posterior density estimation (Masked auto-regressive flows)
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On directional detection




On directional detection

e SBI methods directly applicable.
e Depending on data:
e 3D Structured: MLP, Unstructured Point clouds — PointNet,

)
GNN’s
. X Parameter estimation/anomal
2D/3D point cloud Graph neural network . Y
detection
Feed-forward Neural Networks 0;

Unfolded Network

@ - BEd

Encoded
network

Simulation Machine Learning Inference
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Thank you!
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Simulation-Based Inference (in a nutshell)

Simulation-based inference is a statistical technique that allows us to
make inferences about a population or process based on
simulated/calibrated data. It involves the following steps:
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Simulation-Based Inference (in a nutshell)

Simulation-based inference is a statistical technique that allows us to
make inferences about a population or process based on
simulated/calibrated data. It involves the following steps:

1. Generate simulated data.

2. Use deep neural nets to learn underlying features of simulated
data.

3. Use trained models to inference.

30



DARWIN: Simulation pipeline
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Backgrounds

i ] 10%4
T —— Solarv —— CEWNS, 8b
— wpp Y —— CEWNS, hep
— K85 n —— CEvNS, DSNB
22Rn i~ CEVNS, atm
—— Total = Total
Z
<
0 5 o 15 20 2 3

Energy [ keV |

e Intrinsic and extrinsic.

e Coherent neutrino scattering provides dominant background for
WIMP searches.
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Binned likelihood based approach

L(x) = ‘¢~ . ER veto (99.98%), fidiucilization etc.

M WIMP CEvNS (Solar v) M Neutron
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Effect of R

e Explore effect of the R parameter.

log(p)
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Effect of R

e Explore effect of the R parameter.
e Three mock data sets corresponding to 10, 500 and 1000 GeV at

fixed ¢ = 10~%5cm?, 5 t-yr exposure.
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Effect of R

e Explore effect of the R parameter.

e Three mock data sets corresponding to 10, 500 and 1000 GeV at
fixed ¢ = 10~%5cm?, 5 t-yr exposure.

e Best result for R ~ 170, but generally free to choose!

log(p)

— 10 GeV
500 GeV e
1071 1000 GeV

10! 10° 10! 107 1 10°
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Forecasting sensitivity




Median sensitivity

e Probability to accept/reject Hp after some exposure.
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Median sensitivity

e Probability to accept/reject Hp after some exposure.
e Model independent.

e Simulate ~ 10* realisations of —21In £L(TS|Ho) to ascertain the

asymptotic form of H.

pz/oo dg Ho(q) -

Gmed
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