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Collabora'on

• ~80 Members over 20 
Ins0tu0ons
• Formed to search for 

coherent elas0c neutrino-
nucleus sca<ering (CEvNS)
• Based at Oak Ridge Na0onal 

Laboratory’s Spalla0on 
Neutron Source
• Complementary searches for 

inelas0c neutrino-nucleus 
interac0ons (INCOHERENT)
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CEvNS Mo6va6ons
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CEvNS

• Weak neutral process
• Neutrino interacts with the 

nucleus as a whole via Z-boson 
exchange

• Wavefunc:ons of the recoiling 
nucleons are in phase with each 
other

• Hard to detect! (Like hi@ng a 
bowling ball Great Pyramid of 
Giza with a ping pong ball) 
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Mo'va'ons: Core-Collapse Supernovae

• Neutrinos carry 99% of the 
energy out of a core-collapse 
supernova
• CEvNS provides the pressure 

needed to accelerate the  outer 
iron layer to escape velocity
• J.R. Wilson, PRL 32 (74) 849

Irene Tabor, NuEclipse 2017
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Mo'va'ons: Neutron Skin Depth

• Neutrons in nuclei are pushed 
out past the radius of protons
• Loss of coherence places 

constraint on neutron 
distribution
• Implications for neutron star 

structure and equation of state

Chuck Horowitz, NuEclipse 2017
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Mo'va'ons: Weak Mixing Angle

�coh ⇠
G2

fE2

4⇡
(Z(4 sin2✓w � 1) + N)2• Few measurements at low 𝑄!

• Testing the standard model in 
a new kinematic region 
(around 50 MeV)

COHERENT. Phys. Rev. Lett. 129, 081801 (2022) 9



Mo'va'ons: Sterile Neutrinos

• Recoils ∼ 10 – 53 MeV
• Detectors 19.3 – 28m from 

target
• ∆𝑚"#

! = 0.4 – 3.4 eV2, near the 
global best fit of 1.7 eV2

• Can measure neutral-current 
disappearance with only 
COHERENT data with inclusion 
of INCOHERENT 𝜈$
measurements
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COHERENT. The COHERENT Experimental Program, 
Snowmass contribuEon arxiv:2204.04575 (2022)



Mo'va'ons: Neutrino Fog

• Understanding the CEvNS
cross-section is critical to 
breaking through the 
neutrino fog.

C. A. J. O’Hare Phys. Rev. Lett. 127, 251802 (2021)
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Mo'va'ons: Reactor Monitoring

• Plutonium breeding at a 
reactor emits a telltale 
neutrino spectrum
• Antineutrinos have a 

maximum energy of 1.26 
MeV (below IBD threshold)
• Important to understand 

CEvNS and low-energy 
recoils
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Nuclear recoil counts for core only (blue line) and core+blanket (red 
line) for a 10 kg silicon-28 CEvNS detector at 25 m standoff for 90 
days. Black lines indicate staFsFcal errors. 
B.K. Cogswell and P. Huber, Sci. Glob. Secur. 24, 114 (2016).



The Global CEvNS Research Program
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The Spallation Neutron Source &
Neutrino Alley
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The Spalla'on Neutron Source
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Pion Decay-at-Rest Neutrino Source
𝛎 flux: 4.3x107 𝛎 cm-2 s-1 at 20 m
Pulsed: 800 ns full-width at 60 Hz



Neutrino Alley

• Basement corridor beneath 
the SNS target
• Large reduc:on in neutron 

flux while s:ll high in 
neutrino flux
• Suite of 10 Detectors:
• 4 CEvNS Detectors
• 4 Inelas3c v-Nucleus 

Detector
• 2 Neutron Background 

Detectors
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Other Poten'al Loca'ons

• COHERENT is exploring taking 
more space around the SNS
• For example, Nube (neutrino 

cube) deployed to the water 
room
• Plenty of space for new 

experiments!
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First CsI Deployment

• 14.6 kg low-background CsI[Na] 
detector deployed neutrino alley 
in the summer of 2015
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The First Result

20COHERENT. Science 357, 1123 (2017). 

6.7σ



How can we improve?
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Background Detectors

• Beam-Related Neutrons (BRNs): 
The neutrons produced by the 
accelerator
• Neutrino-Induced Neutrons 

(NINs): the neutrons produced by 
CC interac:ons on shielding (iron 
and lead)

SciBath

MARS
Timing Cart
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Lead Nube

• 900kg cast lead target
• 127 GWhr*liter exposure
• Looking for NINs on Lead
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Lead Nube

• 36 (+72, -36) events observed
• >4𝜎 lower than expectations
• Parts of the theoretical cross-

section not well understood: 
could be lower than expected
• Data analyzed from 2016 to 2021

24COHERENT. Phys. Rev. D 108, 072001 (2023)



Neutrino Flux: D2O

• Heavy water Cherenkov detector 
• Designed to measure neutrino flux 

in neutrino alley
• Charge-current cross-section on 

deuterium is well-understood
• Will measure the flux within 5% 

uncertainty in two years (down 
from 10%)
• Will reduce a dominant systematic 

uncertainty in cross-section 
measurements
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COHERENT. JINST 16 P08048 (2021)
 



Quenching Factors

• Photons and neutron/inos
produce different amounts of 
visible energy:
• Photons primarily interact with 

atomic electrons
• Neutrons/low energy neutrinos on 

the other hand primarily interact 
with the atomic nucleus.

• This results in different signals for 
the same energy deposition.

Where does this scale come from?
What is keVnr?
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COHERENT. Phys. Rev. LeT. 129, 081801 (2022)



Quenching Factors

S. Hedges, Low Energy Neutrino-Nucleus Interac5ons at the 
Spalla5on Neutron Source, PhD Thesis. (Duke University, Durham, 
2021).

27

COHERENT. JINST 17 P10034 (2022)

NaI

CsI



Quenching Factors
Facility at TUNL
• Neutron beam from 7Li(p,n)7Be 

or D(d,n)3He  reactions
• 2.5MHz pulsed beam
• Experience measuring many 

materials: CsI[Na], CsI, NaI[Tl], 
BGO, Ge, CeBr, Neon…
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Quenching Factors
Facility at TUNL
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Diagram of a typical nuclear recoil light yield measurement at TUNL.
S. Hedges, Low Energy Neutrino-Nucleus Interactions at the Spallation 
Neutron Source, PhD Thesis. (Duke University, Durham, 2021).



Quenching Factors
Facility at TUNL
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Quenching Factors
Second CsI[Na] Result
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COHERENT. JINST 17 P10034 (2022)

Reduced QF uncertainty to 3.8%!
COHERENT. Phys. Rev. Le1. 129, 081801 (2022)

5 measurements included in fit (filled circles)



Error Budget
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Second CsI[Na] Result
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COHERENT. Phys. Rev. Lett. 129, 081801 (2022)

11.6σ



Lighter Nuclei
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Lighter Nuclei: Liquid Argon
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• CENNS-10 detector consis:ng of 
24kg of atmospheric argon
• Pulse shape discrimina:on 

possible to differen:ate 
electronic and nuclear recoils
• First results in 2021

COHERENT. Phys. Rev. LeT. 126, 012002 (2021)



Lighter Nuclei: Liquid Argon
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COHERENT. Phys. Rev. LeT. 126, 012002 (2021)

3.5σ



Lighter Nuclei: Germanium
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• 8 high-purity germanium diodes 
~2.2kg each
• Low threshold, high resolu:on
• Gemini detector was 

commissioned from May 2022 –
June 2023
• Results analyzed from June –

August 2023
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Lighter Nuclei: Germanium

40

M. F. Albakry et al.
Phys. Rev. D 105, 122002 (2022)



Lighter Nuclei: Germanium
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L. Li, A Measurement of The 
Response of A High Purity 
Germanium Detector to Low-
Energy Nuclear Recoils, PhD 
Thesis. (Duke University, 
Durham, 2022).

E. van Nieuwenhuizen



Nu Bigger
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NaIvETe

• Mul:-tonne modular array
• Each module of 63 7.7kg crystals 

provides 485 kg of detector mass
• High and low gain channels for 

CEvNS and CC interac:ons 
respec:vely
• First data expected imminently
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COHERENT. The COHERENT Experimental Program, 
Snowmass contribution arxiv:2204.04575 (2022)
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CENNS-750
• 750kg volume, 610kg ac:ve 

volume
• 2×58 array of 3-inch Hamamatsu 

PMTs
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COHERENT. The COHERENT Experimental Program, 
Snowmass contribuEon arxiv:2204.04575 (2022)



INCOHERENT
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NuThor

• Hunting for neutrino-
induced fission 
(“NuFission”)
• Target: 52 kg of 232Th 

metal
𝜈$ +!%! 𝑇ℎ
→ 𝑒& +!%! 𝑃𝑎∗

• 232Th has the lowest 
spontaneous fission 
rate of any actinide

49Tyler Johnson



NuThor Find through neutron mul:plicity 
numbers
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Tyler Johnson

PRELIMINARY



NaIvE/NaIvETe
• NaIvE measured the inclusive 

electron-neutrino charged-
current cross-sec:on on 127I in  
2023

51COHERENT. Phys. Rev. Lett. 131, 221801 (2023)



Lead Glass
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• Cherenkov detector
• Deployed in Summer 2023
• Will inves:gate the CC cross-sec:on on lead
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What’s Next?
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STS Upgrade

• Future upgrade to the SNS, a new 
target station
• Will receive ¼ of the proton beam 

(15Hz)
• Better backgrounds
• Proposed dedicated space for a 

neutrino laboratory (more space for 
new experiments!)
• Second location provides opportunity 

for multi-baseline experiments
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Direc'onal Detec'on?

• Because of the point-source nature of the mercury target, the SNS 
provides an ideal source of isotropic neutrinos – perfect for 
direc:onal detec:on experiments
• The SNS is a prime facility for tes:ng neutrino and accelerator-

produced dark mawer interac:ons
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Cryogenic CsI
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• When cooled to cryogenic 
temperatures (40K-77K), 
undoped CsI offers unparalleled 
light yield
• 0.5 keVnr threshold (down from 

~8 keVnr from original 
experiment)
• Revisit the CsI experiment with 

higher sensi:vity, lower 
threshold



Cryogenic CsI Quenching Factors
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• Measured the cryogenic 
undoped CsI QF at TUNL in 
Summer 2022

Yongjin Yang

PRELIMINARY



BGO Quenching Factors
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Discussion
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Backup Slides
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Cryogenic CsI

• 6” x 6” crystal (approx. 12 kg)
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Weak Mixing Angle Future Sensi'vity
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COHERENT. The COHERENT Experimental Program, 
Snowmass contribution arxiv:2204.04575 (2022)



COHERENT Physics Reach

65Barbeau et al. Annual Review of Nuclear and ParEcle Science 73:1, 41-68 (2023)



CEvNS Differential Cross Section
For 𝑇 ≪ 𝐸(,
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Accelerator Produced DM

• Sub-GeV DM would be 
produced by accelerators.
• Light scalar DM can be 

observed via a vector 
mediator V which decays 
𝑉 → �̅�𝜒
• No evidence of DM with 

masses 1-220 MeV from 
COHERENT The expected DM distribu3on at the 90% 

limit is stacked on top of the SM background.
Best Fit: 0 events

67COHERENT. Phys. Rev. LeT. 130, 051803 (2023)



Dark Matter Exclusion Region

68COHERENT. Phys. Rev. LeT. 130, 051803 (2023)


