Directional dark matter searches with levitated optomechanics

Robert James
The University of Melbourne (formerly UCL)
CYGNUS 2023, Sydney

In collaboration with Fiona Alder, Peter Barker, Chamkaur Ghag, Jonathan Gosling

People

Fiona Alder

Jonathan Gosling

Peter Barker

Louis Hamaide

Chamkaur Ghag

Robert James

Summary

1. Optical tweezers

2. Directional dark nugget searches

3. Paul traps and wavelike dark matter

4. Other searches with levitated optomechanics

Laser beam gradient force

- A polarizable dielectric particle in a laser beam experiences a gradient force
- This allows one to create an optical tweezer to levitate dielectric nanoparticles in an isolated environment

$$<\vec{F}> =$$

 $\vec{P}=(\alpha'+i\alpha'')\vec{E}$

$$<\vec{F}> = \frac{\alpha'}{2}\vec{\nabla} < |\vec{E}|^2 >$$

Optical tweezer as a harmonic potential

$$\vec{E}|^2 = \frac{E_0^2}{1 + \frac{z^2}{z_0^2}} \cos^2\left(kz + \frac{kr^2}{2z(1 + \frac{z_0^2}{z^2})} - tan^{-1}(\frac{z}{z_0} - \omega t)\right) e^{-\frac{2r^2}{w^2(1 + \frac{z^2}{z_0^2})}}$$

$$<\vec{F}> = \frac{\alpha'}{2}\vec{\nabla} < |\vec{E}|^2 >$$

$$\langle F_r \rangle = \frac{-\alpha' E_0^2}{w^2} r = -\omega_r^2 r$$

 $\langle F_z \rangle = \frac{-\alpha' E_0^2}{2z_0^2} z = -\omega_z^2 z$

Sources of noise

$$m\ddot{q} = -\omega_q^2 q - \gamma_{tot}\dot{q} + \beta_{q,gas}(t) + \beta_{q,phot}(t)$$
$$\gamma_{tot} = \gamma_{gas} + \gamma_{phot}$$

Gas damping and collisions

Inelastic collisions of the surrounding gas molecules with the particle provide a damping and a stochastic force obeying a fluctuation dissipation theorem.

$$\gamma_{gas} = \frac{(1 + \frac{\pi}{8})\overline{v_{gas}}Pm_{gas}}{k_BTr\rho}$$

$$<\beta_{gas}(t)> = 0$$

$$<\beta_{gas}(t)\beta_{gas}(t') > = 2m\gamma_{gas}k_BT\delta(t - t')$$

Photon shot noise and Doppler cooling

Photons in the laser field impart a stochastic force to the particle, while their scattering gives rise to a damping term, so-called Doppler cooling. They obey a fluctuation dissipation theorem.

$$\gamma_{phot} = \frac{4P_{scatt}}{5mc^2}$$

$$<\beta_{phot}(t)>=0$$

$$<\beta_{phot}(t)\beta_{phot}(t')>=\frac{2\hbar\omega}{5c^2}\delta(t-t')$$

Simulation

frequency / Hz

500000

Simulation parameters:

36.9 nm radius SiO_2 particle 300 K gas temperature (600 K internal particle temperature) 1 mbar pressure 121, 144, 32 kHz trap frequencies (x, y, z) 1064 nm laser, 300 mW power at focus, 0.77 NA lens

Feedback cooling

- Without feedback cooling, laser shot noise would cause the CoM motion of the particle to heat to very high temperatures as the gas is reduced in pressure, limiting impulse detection
- We use velocity damping: a force opposite in direction and proportional in magnitude to the particle's instantaneous velocity is applied to cool the CoM motion
- This force is delivered via electrodes shown surrounding the trap

Experimental setup

- 1064 nm laser used for both trapping and detection
- Laser brought to a focus within a vacuum chamber
- z-position of the particle determined by the interference between the forward and scattered light using a balanced photodiode
- x- and y-positions of the particle determined in a similar fashion, but instead using a D-mirror to split the beam along these axes
- Additional rotation detector; motion inferred from this allows us to determine that we have trapped a single particle

Bound states of dark matter

$$\mathcal{L} = -g_{\chi}\phi\overline{\chi}\chi - g_n\phi\overline{n}n$$

- Fermionic or bosonic dark matter particle coupling to scalar mediator
- Mediator coupling to dark matter can lead to formation of bound states: dark 'nuggets'
- Mediator coupling to nucleons can give rise to detectable scattering signal
- Most astrophysical bounds can be evaded if this candidate is a fraction of the total DM relic abundance
- g_x bounded by unitarity, strong constraints on g_n from 5th force searches

For now, assume coupling only to neutrons

Dark nugget scattering

- At first order, scattering from a Yukawa potential
- Light mediators (m_{ϕ} < eV) lead to long-range, small-angle scattering

$$V(\vec{r}) = \frac{g_{\chi} N_{\chi} g_n N_n}{4\pi} \frac{1}{|\vec{r}|} e^{-m_{\phi}|\vec{r}|}$$

- For small couplings, less light mediators ($m_{\phi} \sim eV$) require us to consider spatial neutron density form factor of the target
- Small nuggets → coherence over the nugget, partial to full coherence over neutrons in the target

$$V(\vec{r}) = \frac{3g_{\chi}N_{\chi}g_{n}N_{n}}{16\pi^{2}R^{3}} \int d^{3}r' \frac{\Theta(R - |\vec{r'}|)}{|\vec{r} - \vec{r'}|} e^{-m_{\phi}|\vec{r} - \vec{r'}|}$$

• Goal: searches in (α_n, M_χ) parameter space, where M_χ is the nugget mass

$$\alpha_n = \frac{g_{\chi} N_{\chi} g_n}{4\pi}$$

Signal model

 Model the small-angle scattering as classical scattering of the localised dark nugget in the potential of the detector

$$\frac{d\sigma}{d|\vec{q}|} = \frac{4\pi sin(\frac{\theta}{2})}{|\vec{p}|}b(\theta) \left| \frac{db}{dcos(\theta)} \right|$$

- Need to account for the neutron distribution form factor, take care with impact parameter degeneracy
- Typical calculation convolving with velocity distribution leads to event rate

Search strategy

Calibration

Interference fringe measurement

Voltage to displacement calibration

Calibration kicks

Reconstruction, simulation tuning

Analysis

Signal filtering

Impulse identification and reconstruction

Observed impulse dataset

PLR analysis

Signal + background simulation

Impulse identification and reconstruction

Signal + background impulse templates

Displacement calibration

- 640 nm laser used to form interference fringes at the particle
- Can use linear region to get a calibration of voltage to displacement
- Fit to PSD in real space allows for determination of particle mass, removing density uncertainty
- Particle charged with xenon UV flash lamp, can determine relation between electrode voltage and electric field at the particle once mass known

Kick calibration

- Four electrode system allows for precise control of cooling and kick directions
- Applying kicks of known size allows for development of reconstruction algorithm and uncertainty evaluation
- Also allows for tuning of our simulation
- Kicks will be applied throughout to salt data

Signal filtering

- Uncorrelated detector noise can be removed via matched filtering
- Matched filtering takes in information from the oscillator response function and the thermal noise profile
- Filter constructed which should removed any additional noise uncorrelated with the motion

Impulse detection

$$A(t)e^{i\phi(t)} = f(t) + ig(t)$$

$$g(t) = \frac{1}{\pi} \text{P.V.} \int_{-\infty}^{\infty} \frac{f(\tau)}{t - \tau} d\tau$$

Impulse detection

$$\Delta = \left| \frac{d\phi}{dt} - \left\langle \frac{d\phi}{dt} \right\rangle \right| \times \begin{cases} 0, & A(t) \le \langle A(t) \rangle \\ 1, & A(t) > \langle A(t) \rangle \end{cases}$$

$$\delta_i = \begin{cases} 0, & \Delta_i \leq \tilde{\Delta}_i \\ 1, & \Delta_i > \tilde{\Delta}_i \end{cases}$$

$$\tilde{\delta} = \delta_x + \delta_y + \delta_z$$

500 keV kick → ~60% signal efficiency, no background leakage

Impulse detection

- Impulse detection efficiency for a 75 nm radius particle at 1x10⁻⁸ mbar, cooled to ~250 μK along each axis
- Determined via simulating applied kicks, counting number passing selection threshold
- Selection threshold chosen such that no background leakage
- PLR analysis will enable discrimination against background, directionality will reduce dominant background (photon kicks)

Projected sensitivity

- We project the sensitivity of our experiment under the conditions, assuming full relic fraction, for a 10 liveday run
- As the impulse-detection threshold has been chosen such that there is no leakage from the dominant backgrounds, used background-free Poisson 90% C.L. upper limit to define sensitivity
- For mediator masses above 1 eV, probing beneath fifth-force constraints

Parameters:

75 nm radius SiO_2 particle 300 K gas temperature (600 K internal particle temperature) 1x10⁻⁸ mbar pressure 128, 155, 32 kHz trap frequencies (x, y, z) 1064 nm laser, 300 mW power at focus, 0.77 NA lens Feedback cooling to ~250 μ K

90% CL projected sensitivty, 10 livedays

Fully directional searches

- If the experiment were run over long periods, could search for an annual modulation signal
- Our detection scheme enables us to resolve the 3 cartesian components of impulses given to the nanoparticle
- Allows for full 3D momentum transfer reconstruction and a directional dark matter search
- Directionality can also be incorporated as a background discrimination technique, e.g. laser shot noise, isotropic impulse rejection

$$\frac{dR}{dq} = \frac{f_{\chi}\rho_0}{M_{\chi}} \int v(\vec{v} + \vec{v_e}) \frac{d\sigma}{dq} d^3v$$

Timedependence

Directionality

$$\sqrt{\frac{dR}{dEd\Omega_q}} = \frac{f_{\chi}\rho_0}{M_{\chi}} \int v(\vec{v} + \vec{v_e}) \frac{d\sigma}{dEd\Omega_q} d^3v$$

Directionality in action

Linear Paul traps

 Trapping of (potentially much heavier) charged particles in a quadrupole potential

$$V = \frac{\alpha_z^{dc} V_{dc}}{z_0^2} \left[z^2 - \frac{x^2 + y^2}{2} \right] + \left[\frac{\alpha_r^{ac} V_{ac}}{\rho_0^2} (x^2 - y^2) + \frac{\alpha_z^{ac} V_{ac}}{z_0^2} z^2 \right] \cos(\Omega t)$$

- Much lower power laser (used only for detection) drastically reduces laser shot noise
- At low pressure, dominant sources of noise are blackbody radiation and electronic shot noise
- Here, work in the gas-dominated regime to get conservative threshold

Dark nugget sensitivity

- Projected sensitivity for 0.1 eV mediator mass for particle in Paul trap
- Took 20 100 GeV momentum transfer analysis range, conservatively assume 60% efficiency across this range
- Potential to improve on this much further with better noise characterization and analysis
- Could further boost sensitivity by trapping arrays of particles

Parameters:

20 μ m radius SiO₂ particle 300 K gas temperature (600 K internal particle temperature) 5x10⁻⁷ mbar pressure 100 Hz trap frequencies Feedback cooling to ~10 mK

90% CL projected sensitivty, 10 livedays, $m_{\phi} = 10 \text{ eV}$

Existing work

- David Moore's group at Yale did a search of this kind using 5 μm SiO₂ particles in a gravito-optical trap
- Limits set for a variety of mediator masses with ~ 2 weeks of livetime
- Cooled in just one direction with one readout channel, so directional analysis not possible
- Saw an excess of events (3) above Gaussian background, but no way to determine their origin

Complementarity

90% CL projected sensitivty, $m_{\phi} = 0.1 \text{ eV}$

Ultralight (wavelike) DM sensitivity

- Paul traps offer the potential to trap much larger, O(50 μm) gold particles, giving a much higher target mass
- An ultralight vector dark matter field could couple to its B-L charge

$$\mathcal{L} \supset -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m_A^2 A_\mu A^\mu - g_{B-L} Y_{B-L} A_\mu \overline{\psi} \gamma^\mu \psi$$

• This would give, within the coherence time $\sim 10^6$ / m_A , a coherent sinusoidal drive of frequency m_A and force amplitude

$$g_{B-L}N_n\sqrt{2\rho}$$

- Would want to trap array of different sized particles to give broadband response
- We can estimate the 1σ sensitivity of this oscillator to this force by comparing it to the force noise PSD across relevant frequencies, for a given integration time (estimate we can reach 10⁻⁴⁹ N² / Hz)

Other searches with levitated optomechanics

Light WIMPs with small sensors

Sterile neutrino mass

Other avenues of exploration

- Ultralight millicharged dark matter: can charge particle in Paul trap, probe well below current astrophysical bounds
- Axion detection using boosted dark matter scenario (could lead to macroscopic coherence)
- Coherent enhancement of dark matter-electron scattering
- Axion annihilation to gravitational waves, GWs from primordial black holes (optically trap particles in optical cavities)

Conclusions

- Our optical trap experiment at UCL will probe composite states of dark matter into unexplored parameter space
- Paul trap setup being commissioned will allow for probing of heavier dark nuggets as well as wavelike dark matter coupling to a B-L charge
- Trapping arrays of particles in a Paul trap allows for a broadband resonance for wavelike searches and can increase target mass for nugget searches
- Potential for WIMP detection and beyond demonstrated with achievable experimental advances