

Status of the NEWSdm experiment

T. Asada
On behalf of the NEWSdm Collaboration

NEWSdm collaboration

NEWSdm

Nuclear Emulsions for WIMP Search with Directional Measurement

Website:

news-dm.lngs.infn.it

Letter of intent:

https://arxiv.org/pdf/1604.04199.pdf

CDR is submitted to LNGS committee in 2023

ITALY

University and INFN Bari LNGS University and INFN Napoli INFN Roma

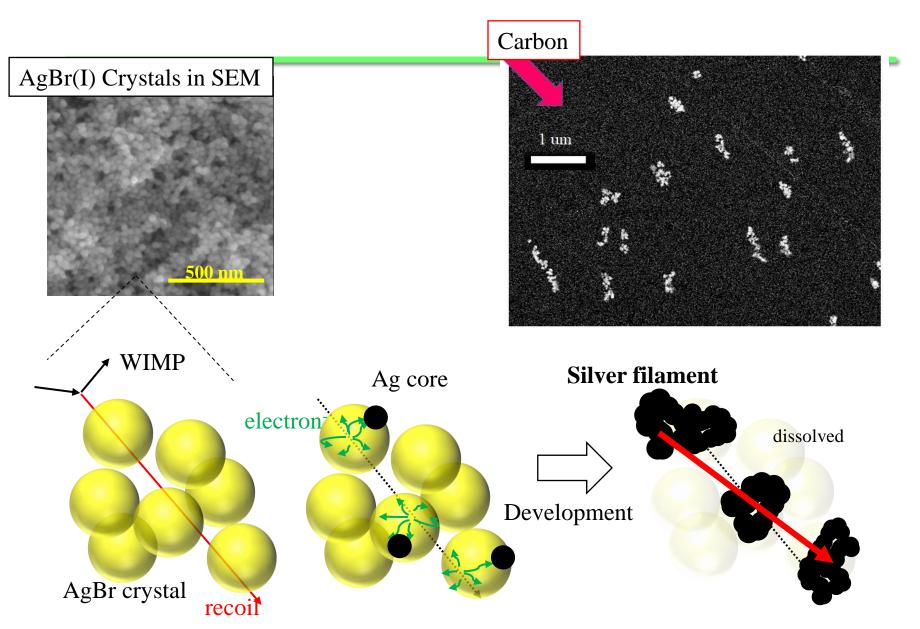
JAPAN

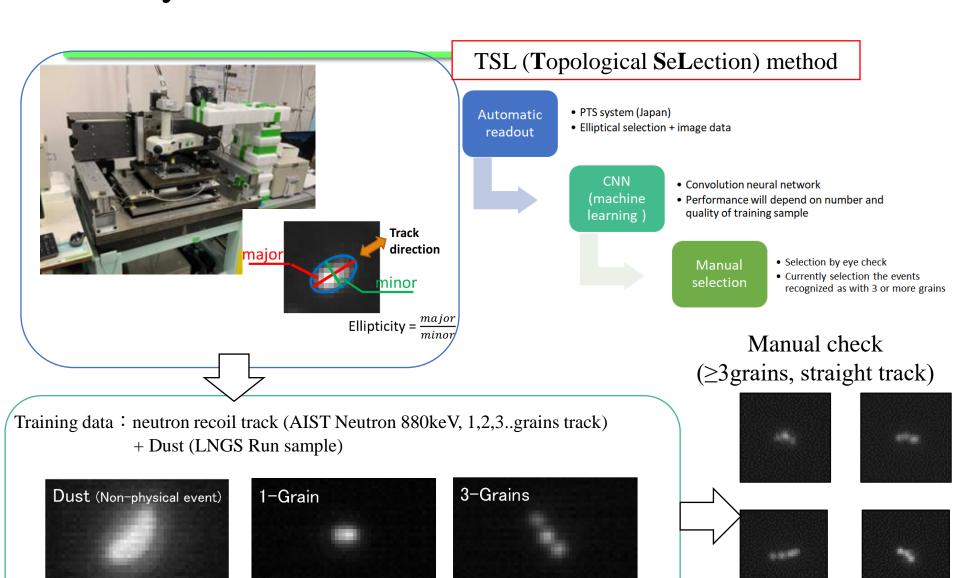
Chiba University Nagoya University Toho University Kanagawa University

RUSSIA

LPI RAS Moscow JINR Dubna SINP MSU Moscow INR Moscow Yandex School of Data Analysis

SOUTH KOREA

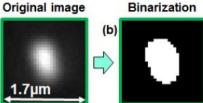

Gyeongsang University


TURKEY

METU Ankara

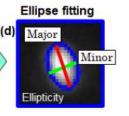
Nuclear emulsion

Analysis method



Scanning machine

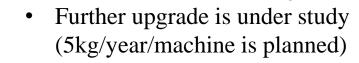
Binarization

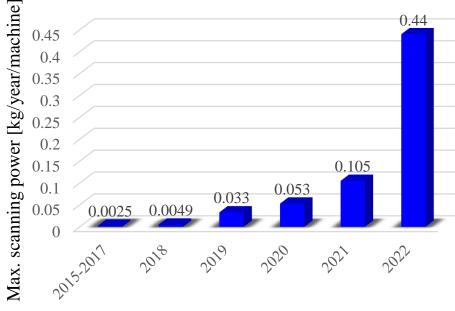


(a)

(c)

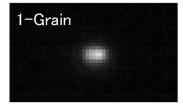
Contour extraction


PTS-3 @ Nagoya

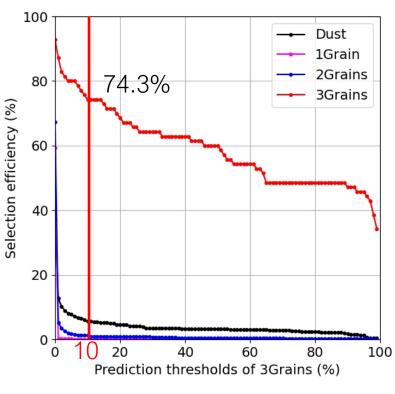

PTS-5 @ Toho

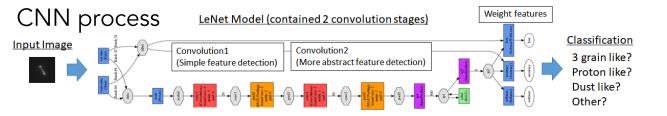
We have two machines and other two are under commissioning

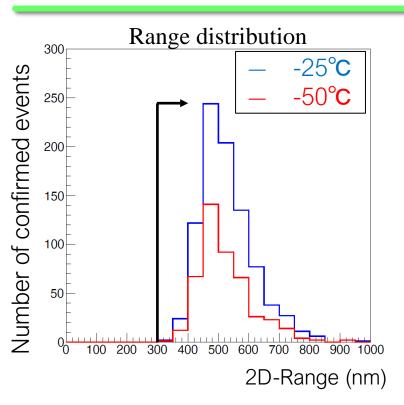
Scanning speed history (PTS3)

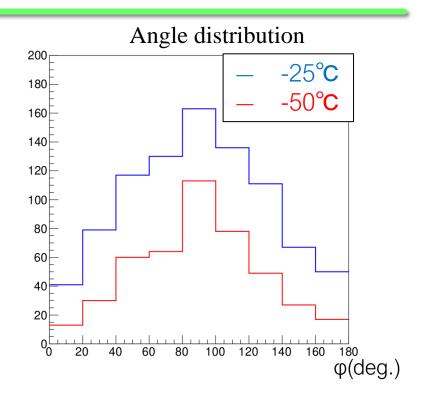

O(10-100) kg scale is realistic in near future!

Track like event selection (Topological SeLection;TSL)


process



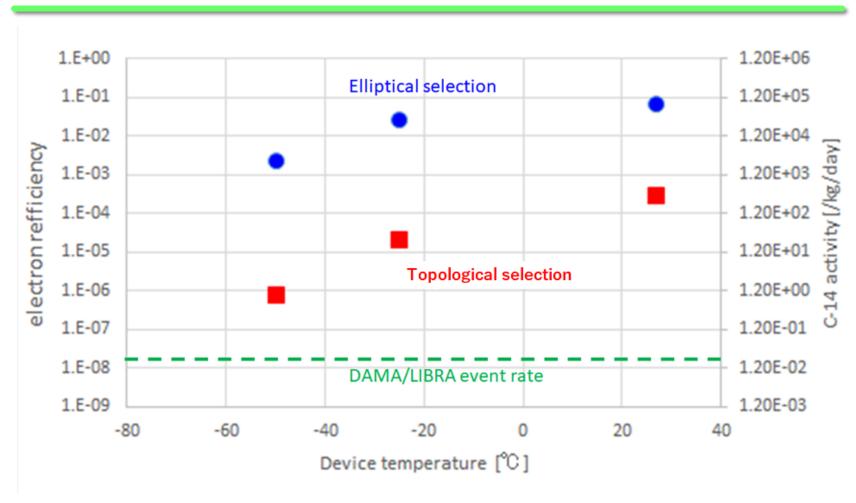



After elliptical screening of signals, manually classified data were collected

TSL results with neutron source

Number of detected events(/100 mg)

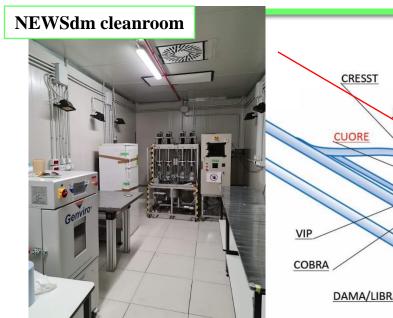
	-25°C	-50°C
1st trigger	49,759	40,605
CNN	1,998	1,152
Confirmed	785	451

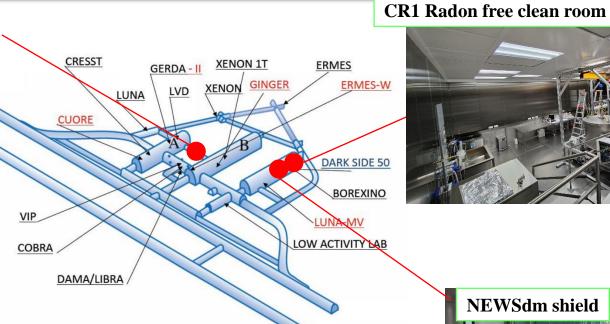

300–1000 nm range

H: 10-150 keV

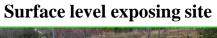
CNO: 50-250 keV

 $>1000 \text{ nm} \rightarrow \text{neutron measurement method}$

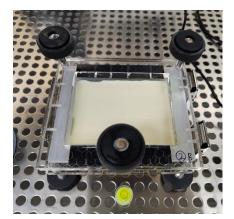

Gamma-electron BG with TSL



TSL detection ratio of neutron recoil for -50°C/-25°C: TSL detection ratio of gamma for -50°C/-25°C:


 ~ 0.5 $\sim 0.05 \rightarrow \text{better S/N!}$

NEWSdm activity at LNGS

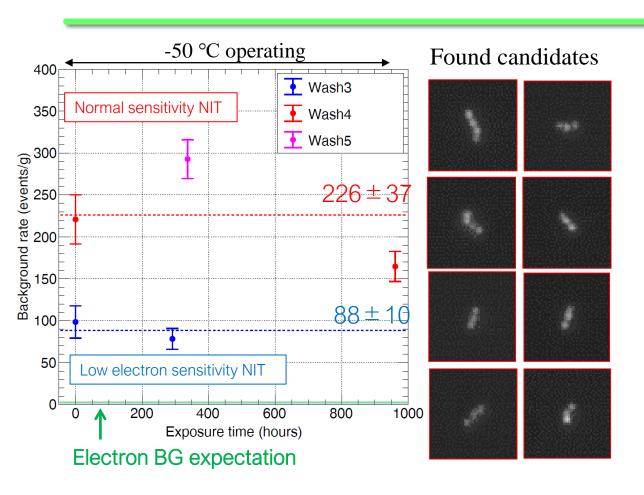


LNGS underground Run for BG understanding

- emulsion production
- desalting

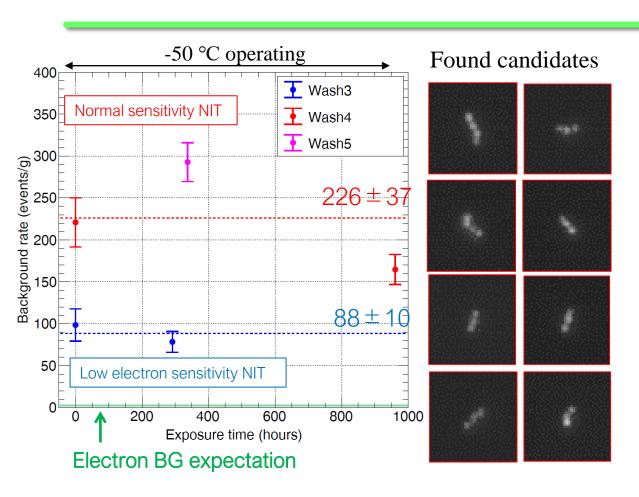
development

- Film pouring
- Packing @wet
- drying @shielded
- Exposure w/ cooler


Mainly aiming reduce / evaluate gamma effect

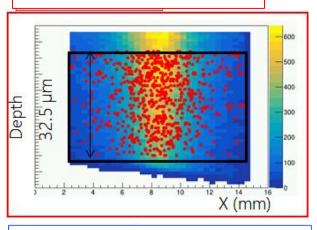
Recent Activity in LNGS

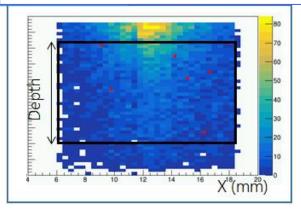
Run	starting date	pouring	purpose	scale
Run1	25-Apr-2021	hall F	First shield run with film insertion in wet conditions	4g·0day
Run2	28-Apr-2021	hall F	sequential Shield Run; 0-day exposure, optimization of operation	4g·0day
Run3	3-May-2021	hall F	sequential Shield Run; 2 weeks exposure	4g·12days
Run4	18-May-2021	hall F	sequential Shield Run; 0-day exposure, batch quality check	4g·0day
Run5	27-May-2021	hall F	sequential Shield Run; 40 days exposure	4g-40days
Run6	10-Aug-2021	hall F	sequential Shield Run; 2 weeks exposure	4g·13days
Run7	24-Nov-2021	hall F	sequential Shield Run with same batch; 0-day exposure	4g·0day
Run8	29-Nov-2021	hall F	sequential Shield Run with same batch; 2 weeks exposure	4g·13days
Run9	21-Dec-2021	hall F	sequential Shield Run with same batch; 5 weeks exposure	4g·35days
Run10	14-Feb-2022	hall F	check of drying step with shield	4g·5days
Run11	22-Feb-2022	hall F	check of development step with shield	4g·0day
Run12	25-May-2022	hall F	shortest drying test	2g·0day
Run13	16-Jun-2022	hall F	shortest drying test + N2 purging	4g·0day
Run14	18-Oct-2022	hall F	non-sensitized emulsion; BG investigation	4g·0day
Run15	16-Nov-2022	CR1	dry test at radon free room	8g·0day
Run16	13-Dec-2022	CR1	shielded dry test in radon free room	6g·0day
Run17	4-Apr-2023	CR1	shielded dry + sequential shield Run; Oday exposure	6g·0day
Run18	19-Apr-2023	CR1	shielded dry + sequential shield Run; 3 weeks exposure	6g·19days
Run19	15-May-2023	CR1	shielded dry + sequential shield Run; 1 week exposure	6g·7days
EMRun1	27-Jul-2023	hallF	Equatrial mount Run (CR1 was under maintenance)	8g·0-2months
CRDMRun1	21-Nov-2023	CR1	surface+equatrial mount with low sensitivity emulsion	3g·0-2weeks
n-Run1	22-Nov-2021	hall F	first neutron measurement test at the external laboratory	20g∙0–1months
n-Run2	23-May-2022	hall F	neutron measurement in the external laboratory with less Radon treatment	20g·0–2months
n-Run3	12-Oct-2022	hall F	neutron measurement in the underground laboratory with less Radon treatment	30g·0–4months
n-Run4	22-Nov-2023	CR1	neutron measurement in the underground laboratory in Radon Free condition	25g·0–4months


Many activity in LNGS after COVID!

First BG Run result (Run3-6)

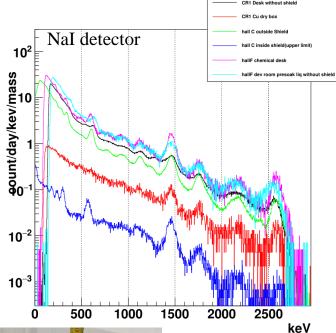
too much BG events (100-200/g) against expectation Long exposure is flat as expected, problem is offset part


First BG Run result (Run3-6)

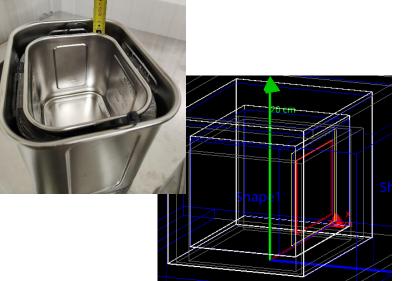

× 2.6 times difference for BG

→Not electron like

Am-γ test Standard emulsion



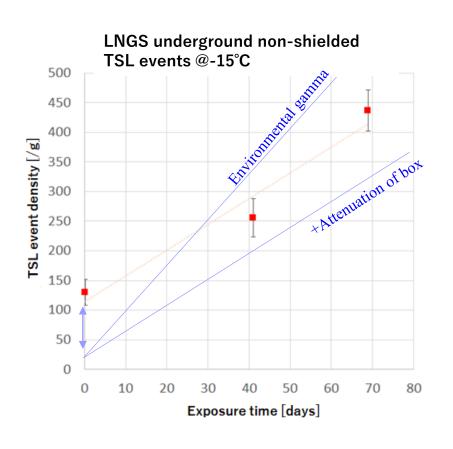
Low sensitivity emulsion


× 130 times difference for gamma

Simulation of gamma-electron background

Electron produced in emulsion (/d/plate(2g))	Hall F Film making	Hall F Development	Hall C transportation	Hall C shielding	CR1 Drying shielding
From Lead	-	3150	-	2400	<100
From environmental gamma	456360	60310	257140 (Hall C) 422650 (CR1)	13	10540

Counts (/d/plate(2g))	Drying shielding	Drying shielding	Drying shielding
Counts (/u/piate(2g))	(100% dry case)	(50% dry case)	(0% dry case)
Electrons produced in emulsion	10540	53800	106900
Gamma-rays entering emulsion	136500	138050	140100

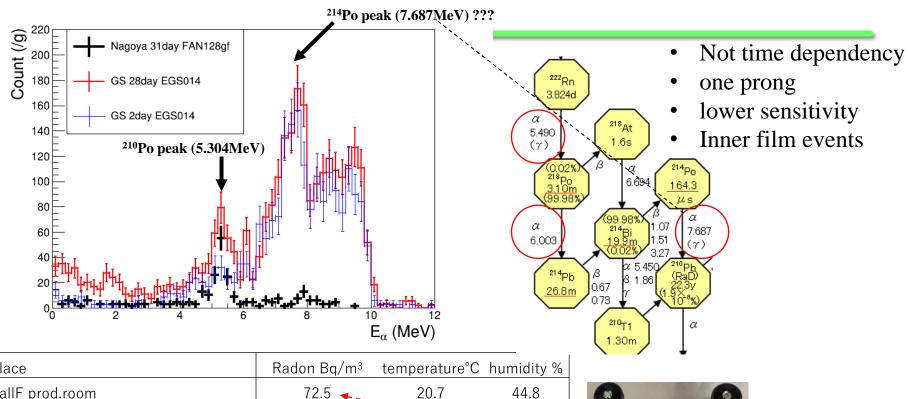


R١	ı	n

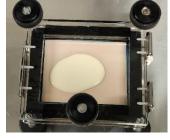
INUITS						
situation	time (h)	selection efficiency	Electron (/g/day)	wet factor	gamma TSL (/g)	¹⁴ C TSL (/g)
set	1.5	1.7×10^{-4}	2313745	0.003	0.072	5.7×10^{-5}
pre-dry	21.2	1.7×10^{-4}	1163718	0.010	1.745	2.7×10^{-3}
dry	19.38	1.7×10^{-4}	1207	1 (-0.01)	< 0.166	$< 2.5 \times 10^{-1}$
exposure	961.12	5.7×10^{-7}	1207	1	0.027	4.1×10^{-2}
extraction	0.3	5.7×10^{-7}	128570	1	0.001	1.4×10^{-5}
develop	0.20	1.7×10^{-4}	228180	1	0.323	2.6×10^{-3}
				total	< 2.17	< 0.30

events

Crosscheck of TSL method Non-shielded exposure

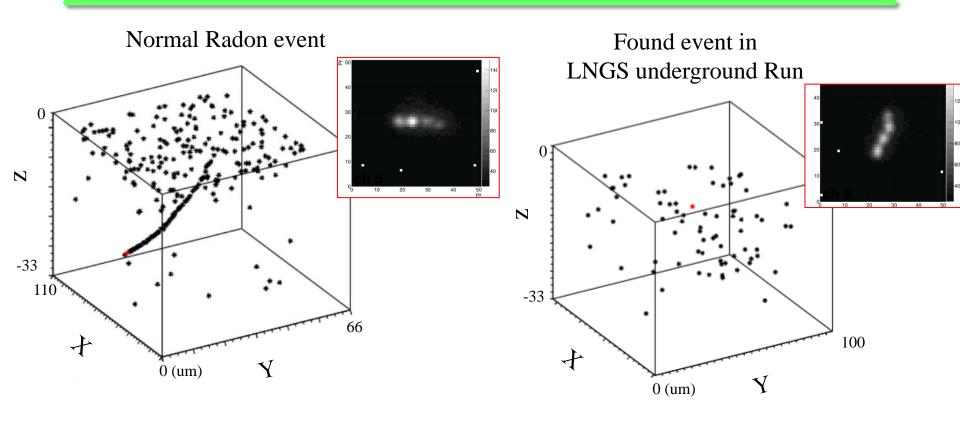


- Without shielding, time dependent signals appeared
- ~4.5/g/day
- Expectation of Simulation ~8/g/day
- Attenuation of freezer ~ × 0.6
- \rightarrow mostly consistent


Estimation of offset ~20 events

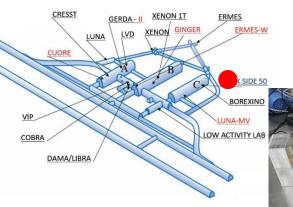
→ unknown source?

Radon (daughter) contamination at film production?


place	Radon Bq/m³	temperature°C	humidity %
hallF prod.room	72.5	20.7	44.8
hallF dev.room desk	87	17.2	53.5
hallF corridor air	73.8	17.1	46
hallC	46.9	14.5	45.3
hallC compressed air (drying in shield)	163.1	15.1	11
hallC N2 (exposure in shield)	2.3	15.1	7.8
hallB air (source of room air)	18.6	14.5	46
CR1 (druing Run19)	3.7	17.1	11.5

Radon rich environment...

TSL candidates and radon identification


If they are also Radon, it is not from outside, not at dried state

Radon daughter may be dynamically contaminated in film making process at non-negligible level

Move to Radon Free room

LNGS Activities

CR1 Dark-Side radon free clean room Use:

- DS-50 TPC components cleaning and packging + TPB deposition on TPC inside surface
- SABRE crystal assemblying
- + NEWS emulsions preparation (Nov 2022-)

→ Radon Free clean Dark room

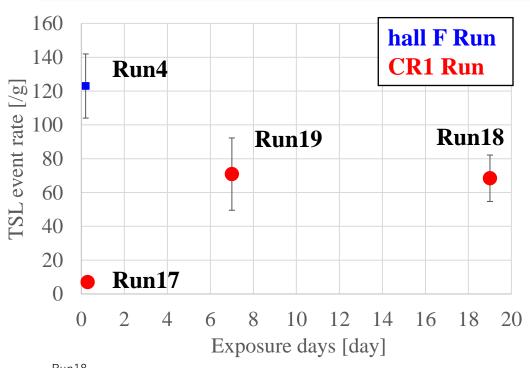
Rn abatement system: Ateko 220 m3/h

Rn level

outlet of Rn abatement $\sim 1 \text{ mBq/m}^3$

outlet of CR1 $\sim 400 \text{ mBq/m}^3$

NEWSdm Run: <10 Bq/m³ at portable detector


Emulsion production
Emulsion desalting
Film making
Film packing
Exposure
Development

hall F

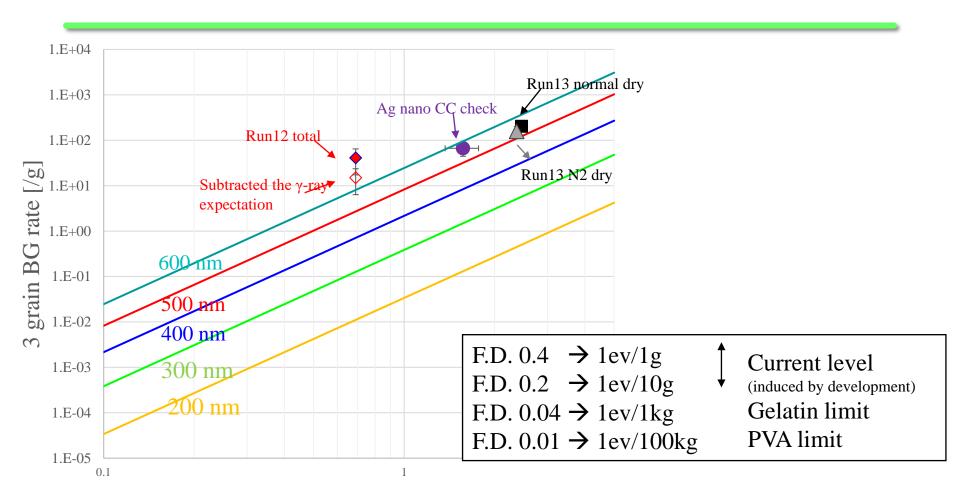
CR1

hall C shield hall F

Latest situation of BG study

0 day (non-exposed) events was greatly suppressed However, exposed events has some constant jump → Unexpected source in shield?

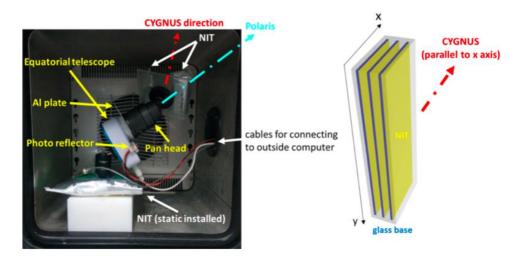
Still 0 day has O(1-10) events while gamma estimation is O(0.1)

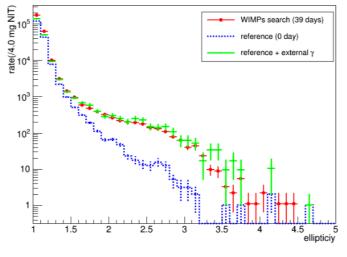

Run18

INGITED						
situation	time (h)	selection efficiency	Electron (/g/day)	wet factor	gamma TSL (/g)	¹⁴ C TSL (/g)
Set	0.5	1.0E-05	<2142836	0.003	< 0.0014	1.2E-06
Dry	21.6	1.0E-05	5270	1 (-0.01)	< 0.0473	0.0163
Exposure	454.0	3.3E-08	1207	1	0.0008	0.0011
Extraction	0.42	3.3E-08	128570	1	0.0001	1.0E-06
Develop	0.4	1.0E-05	31730	1	0.0056	3.2E-04
no shield	0.6	1.0E-05	128570	1	0.0296	4.2E-04

chance coincidence of single grain may be problem...

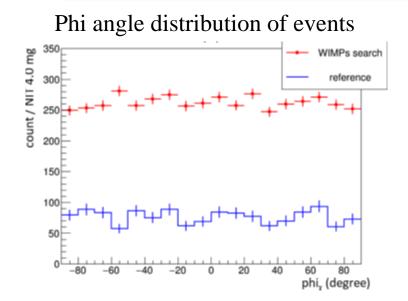
< 0.085 total events Total non-shielded time in operation is suppressed to ~30min!

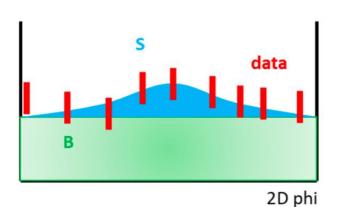

rough estimation of Fog Chance Coincidence

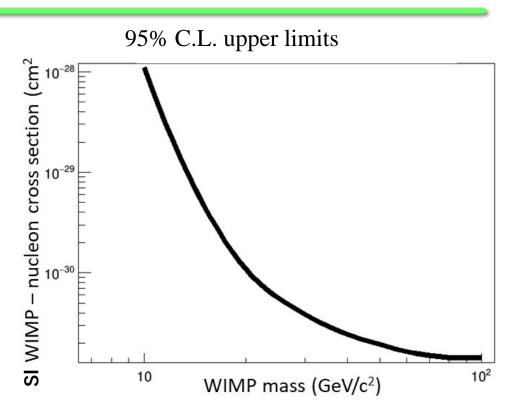


Fog density $[/(10\mu m)^3]$

First direction sensitive Run with equatorial mount

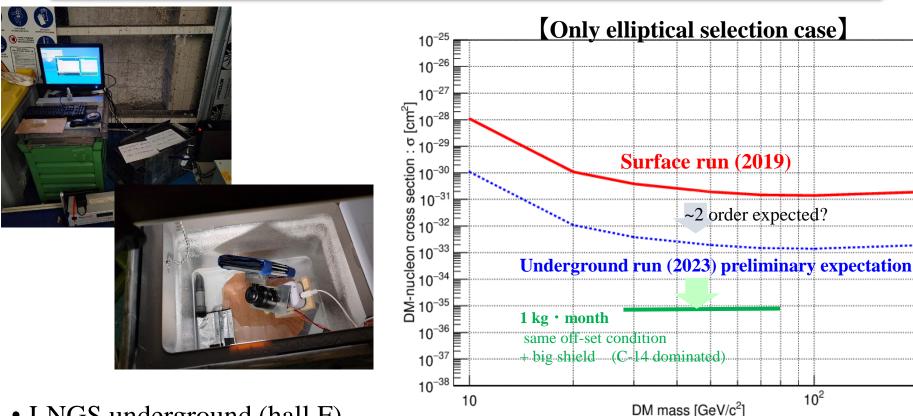


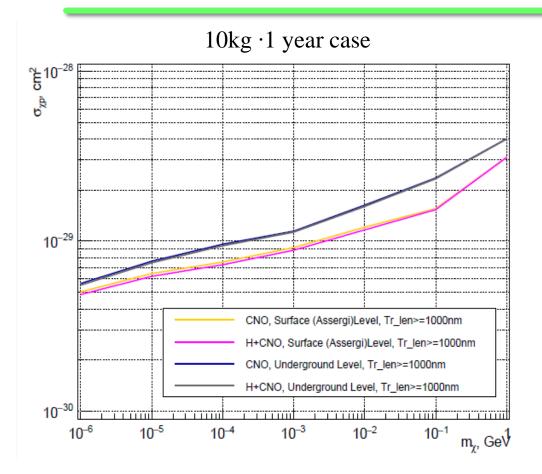



Small scale Run with equatorial mount @ Japan, 2019

- 0.59 g·days (15.1 mg \times 39 days)
- No shielded → dominated by environmental gamma
- Analyzed by elliptical shape (not TSL)

First direction sensitive Run with equatorial mount



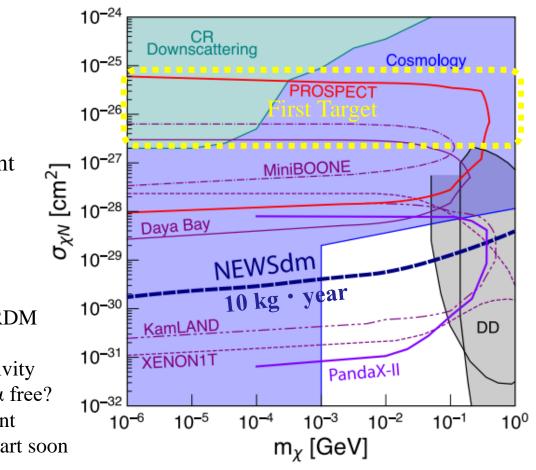

Under review arXive: 2310.06265

Equatorial Mount Run in LNGS underground (2023)

- LNGS underground (hall F)
- 1cm Pb shielding / -15°C at portable treezer
- \sim 2 g \times 4 films (0, 0.2, 1, 2 months)
- Under analysis now

Cosmic-Ray Boosted DM search

- Higher cross section region is also important in CRDM
- Scattering in the rock can disturb directional search
- Surface exposure has higher background, especially cosmicray induced background such as neutron, proton and muon.
- In emulsion case, targeting only long CNO recoil may be a good strategy for CRDM
 - >1um CNO: 400keV/um or more
 - alpha Bragg peak: <300keV/um
 - proton Bragg peak: <100keV/um
 - <u>Alpha insensitive emulsion is</u> <u>already verified</u>


First Run targeting CRDM search

Same site as surface neutron measurement

- Nov-Dec 2023
- First trial of CRDM search
- very low sensitivity emulsion \rightarrow p, α free?
- Equatorial mount
- Analysis will start soon

N.Y. Agafonova et al JCAP07(2023)067

summary

- NEWSdm started cleanroom operation in LNGS
- Radon problem was found, and we got help further clean environment
- Gamma BG is correctly measured and suppressed with new analysis method TSL
- Unknown BG effect is reminded correlated with shield insertion. Radon is still suspect
- Next barrier to reach larger scale is chance coincidence of chemically induced noises
- First DM search with equatorial mount was performed at surface, and we are repeating updated Run in LNGS underground
- Another type of Run targeting CRDM is also operated