Cygnus Atratus

3D direction

Directional Recoil Detection

Head

Sven Vahsen University of Hawaii

8th CYGNUS Workshop on **Directional Recoil** Detection, University of Sydney, Australia

UNIVERSITY of HAWAI'I Mānoa

Tail

Outline

Physics Motivation / Applications

Directional Recoil Detection

A Combined Directional Dark Matter & Neutrino Observatory

Personal Outlook

Directional Recoil Detection

Which of the following doesn't belong in the group?

CYGNUS 2007

First Workshop on Directional Detection of Dark Matter

22-24 July 2007

Boulby Underground Laboratory, UK

ILIAS-N3 - advanced detectors meeting

CYGNUS2013

4th Workshop on Directional Detection of Dark Matter 10 June - 12 June 2013, Toyama, Japan

Massachusetts Institute of Technology June 11-13, 2009

gnus 2015

h workshop on directional detection of dark matter

CYGNUS 2017

Sixth International Workshop on Directional Detection of Dark Matter

Xichang, Sichuan, China June 13 ~ 16, 2017

Dip. di Fisica - Edificio G. Marcon he CYGNUS 2019 workshop on directional dark matter detection

CYGNUS 2019 Jul 10-12, 2019

Timetable

Book of Abstract

Call for Abstra directional dark matter detection workshops. The workshop will be campus of La Sapienza in Roma (Italy). The Scientific Program inc experimental results on Contribution Lis R&D detector progres

Jun 7-10, 2011

Europe/Paris timezone

Directional Data Analysis Directional Theory New Ideas on the directional detection Euture of Directional Detection

8th CYGNUS Workshop on Directional Recoil Detection

CYGNUS 2011 : 3rd Workshop on directional detection of

Dec 11-15, 2023 School of Physics

Dark Matter

CYGNUS 2023: the 8th CYGNUS workshop But first one on Directional Recoil Detection The scope has broadened!

12/10/23

Q

From the organizers

- The aim of CYGNUS 2023 is to bring together experimentalists and theorists interested in developing detectors with the capability of detecting the directions of recoiling particles, especially for low-energy applications.
- The scientific scope of the workshop is broad and will cover applications from across particle physics, astroparticle physics, and nuclear physics.

Dark Matter via Nuclear Recoils (<2019)

FIG. 34. Summary of the projected SI WIMP 90% CL exclusion limits as a function of the total fiducial volume of the network of detectors comprising the CYGNUS experiment. All experimental exposures are multiplied by a running time of 6 years such that the listed benchmarks are all approximately multiples of 1 ton year (1 ton year corresponds to 1000 m³). We shade in blue the currently excluded limits on the SI WIMP-nucleon cross section as of 2020. The thresholds are increased evenly between 0.25 and 8 keV_r and for each increasing volume to illustrate the range of possible thresholds envisaged for the final experiment. Below the final volume we also extend the reach by including the possibility of a "search mode" experiment which would have 1520 Torr of SF₆ (as opposed to 5 Torr), but would have no directional sensitivity.

https://arxiv.org/abs/2008.12587 (2020)

2021

A ANNUAL REVIEWS

Annual Review of Nuclear and Particle Science Directional Recoil Detection

Sven E. Vahsen,¹ Ciaran A.J. O'Hare,² and Dinesh Loomba³

¹Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA; email: sevahsen@hawaii.edu

²ARC Centre of Excellence for Dark Matter Particle Physics and School of Physics, University of Sydney, Camperdown, New South Wales 2006, Australia

³Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA

"Directional Recoil Detection": Expanded physics program for directional detectors (<u>link</u>)

C. A. J. O'Hare (Coordinator)^{1,2}, D. Loomba (Coordinator)³, K. Altenmüller⁴, H. Álvarez-Pol⁵,
F. D. Amaro⁶, H. M. Araújo⁷, D. Aristizabal Sierra^{8,9}, J. Asaadi¹⁰, D. Attić¹¹, S. Aune¹¹, C. Awe^{12,13},
Y. Ayyad⁵, E. Baracchini^{14a,14b,14c}, P. Barbeau^{12,13}, J. B. R. Battat¹⁴, N. F. Bell¹⁵, B. Biasuzzi¹¹,
L. J. Bignell¹⁶, C. Boehm^{1,2}, I. Bolognino¹⁷, F. M. Brunbauer¹⁸, M. Caamaño⁶, C. Cabo⁵, D. Caratelli¹⁹,
J. M. Carmona⁴, J. F. Castel⁴, S. Cebrián⁴, C. Cogollos²⁰, D. Collison¹, E. Costa²², T. Dafni⁴,

F. Dastgiri¹⁶, C. Deaconu²³, V. De Romeri²⁴, K. Desch²⁵, G. Dho^{26,27}, F. Di Giambattista^{26,27}, D. Díez-Ibáñez⁴, G. D'Imperio¹⁵, B. Dutta²⁸, C. Eldridge²⁹, S. R. Elliott³, A. C. Ezeribe³⁹, A. Fava¹⁹, T. Felkl³⁰, B. Fernández-Domínguez⁵, E. Ferrer Ribas¹¹, K. J. Flöthner^{18, 66}, M. Froehlich¹⁶, J. Galán⁴, J. Galindo⁴, F. García³¹, J. A. García Pascual⁴, B. P. Gelli³², M. Ghera³³, Y. Giomataris¹¹, K. Gnanwo³⁴, E. Gramellini¹⁹, G. Grilli Di Cortona¹⁴, R. Hall-Wilton³⁵, J. Harton³⁶, S. Hedges¹², S. Higashino³⁷,

G. Hill¹⁷, P. C. Holanda³², T. Ikeda³⁸, I. G. Irastorza⁴, P. Jackson¹⁷, D. Janssens^{18, 68}, B. Jones¹⁰,
J. Kaminski³⁹, I. Katsioulas⁵¹, K. Kelly¹⁹, N. Kemmerich⁴⁰, E. Kemp³², H. B. Korandla³³, H. Kraus⁴¹,
A. Lackne²⁰, G. J. Lane¹⁶, P. M. Lewis³⁹, M. Lisowska^{18, 67}, G. Luzón⁴, W. A. Lynch²⁹, G. Maccarrone¹⁴,
K. J. Mack^{42,43}, P. A. Majewski⁴⁴, R. D. P. Mano⁶, C. Margalejo⁴, D. Markoff^{5,46}, T. Marley^{7,44},
D. J. G. Marques^{26,27}, R. Massarczyk⁴⁷, G. Mazzitelli¹⁴, C. McCabe⁴⁶, L. J. McKie¹⁶, A. G. McLean²⁹,
P. C. McNamara¹⁵, Y. Mei⁷¹, A. Messina^{49,15}, A. F. Mills³, H. Mirallas⁴, K. Miuchi³⁷, C. M. B. Monteiro⁶,
M. R. Mosbech^{1,2}, H. Muller³⁰, K. D. Nakamura⁷⁰, H. Natal da Luz⁵⁰, A. Natochi³³, T. Neep⁵¹,
J. L. Newstead¹⁵, K. Nikolopoulos⁵¹, L. Obis⁴, E. Oliveri¹⁸, G. Orlandimi^{18, 69}, A. Ortiz de Solórzano⁴,
J. von Oy³⁰, T. Papavangelou¹¹, O. Pérez⁴, Y. F. Perez-Gonzalez³², D. Pieffer⁵³, N. S. Phan⁴⁷,

J. Von Gy, T. Papaevangeout, 'O. Fettez, J. F. Petez-Gonzaez, D. Flenter, J. S. Fuan, S. Fuan, S. Fuan, S. Piacettini^{10,15}, E. Picatoste Olloqui²⁰, D. Pinci¹⁵, S. Oposcu⁵⁴, A. Prajapati²⁰²⁷, F. S. Queiroz^{65,65,77}, J. L. Raaf¹⁹, F. Resnati¹⁸, L. Ropelewski¹⁸, R. C. Roque⁶, E. Ruiz-Choliz⁵⁸, A. Rusu⁵⁹, J. Ruz⁴, J. Samarat³⁵, E. M. Santos⁶⁹, J. M. F. dos Santos⁶, F. Sauli¹⁵, L. Scharenberg^{16,30}, T. Schiffer¹⁹, S. Schmidt³⁹, K. Scholberg^{12,13}, M. Schott⁵⁸, J. Schueler³³, I. Seguil¹¹, H. Sekiya⁶⁰, D. Sengupta¹⁷, Z. Slavkovska¹⁶, D. Snowden-Iffic⁴, P. Soffitta⁶², N. J. C. Spooner²⁹, M. van Stenis¹⁸, L. Strigar²⁸, A. E. Stuchbery¹⁶, X. Sun⁷², S. Torelli^{36,27}, E. G. Tilly³, A. W. Thomas¹⁷, T. N. Thorpe³³, P. Urquijo¹⁵, A. Utrobičić¹⁸, S. E. Vahsen³³, R. Veenhof^{18, 63}, J. K. Vogel⁶⁴, A. G. Williams¹⁷, M. H. Wood⁶⁵, and J. Zettlemover¹⁹

2022

2023

Jul

17

[physics.ins-det]

y14v3

K

ar

Recoil imaging for dark matter, neutrinos, and physics beyond the Standard Model

Snowmass 2021 inter-frontier white paper: IF5: Micro-pattern gas detectors CF1: Particle-like dark matter NF10: Neutrino detectors

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Abstract

Recoil imaging entails the detection of spatially resolved ionization tracks generated by particle interactions. This is a highly sought-after capability in many classes of detector, with broad applications across particle and astroparticle physics. However, at low energies, where ionization signatures are small in size, recoil imaging only seems to be a practical goal for micro-pattern gas detectors. This white paper outlines the physics case for recoil imaging, and puts forward a decadal plan to advance towards the directional detection of low-energy recoils with sensitivity and resolution close to fundamental performance limits. The science case covered includes: the discovery of dark matter into the neutrino fog, directional detection of sub-MeV solar neutrinos, the precision study of coherent-elastic neutrino-nucleus scattering, the detection of solar axions, the measurement of the Migdal effect, X-ray polarimetry, and several other applied physics goals. We also outline the R&D programs necessary to test concepts that are crucial to advance detector performance towards their fundamental limit: single primary electron sensitivity with full 3D spatial resolution at the ~ 100 micronscale. These advancements include: the use of negative ion drift, electron counting with high-definition electronic readout, time projection chambers with optical readout, and the possibility for nuclear recoil tracking in high-density gases such as argon. We also discuss the readout and electronics systems needed to scale-up detectors to the ton-scale and beyond.

arXiv:2203.05914

"Recoil imaging": Also expanded community (167 physicists)

Dark Matter via Nuclear Recoils

Neutrinos via nuclear and electronic recoils

Other applications

Opportunities for a 30+ year physics program arxiv:2102.04596 Approx. volume of gas TPC required.

Expect 10 m³ modules eventually

- Quenching factor and recoil physics (TUNL)
- Migdal Effect measurement
- Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) at ORNL (SNS) or Fermilab (NuMI and later LBNF)
- Competitive DM limits in SI and SD
- CEvNS and e-recoils from solar neutrinos
- Efficiently penetrating the LDM ν floor
- Observing galactic DM dipole
- Measuring DM particle properties and physics
- Geoneutrinos
- WIMP astronomy

- New physics opportunities for each factor of 10 increase in exposure
- Both guaranteed measurements (yellow text) and novel, exciting searches --- across frontiers!

Types of directionality

Has to match physics requirements

Statistical directionality

• Example

- Light yield from recoil depends on recoil angle w.r.t. crystal axis
- Assume only integrated light yield is measured, event-by-event
- One pro
 - Condensed medium → high target mass (event rate)
- One con
 - Recoil energy and direction measurements not independent
- Directional Performance metric
 - % variation in light yield versus angle and energy

Event level directionality

- Example: measure recoil ionization track
- Pro:
 - Independent energy and direction info
- Con:
 - Better directionality typically requires lower target density

He recoils in HeCO₂ gas, E > 200 keV

Event level directionality

- Directional Performance metrics:
 - 1. Head tail efficiency
 - 2. Average recoil-angle (axial) error

[both versus recoil energy]

red

https://arxiv.org/abs/2102.04596

Detector classes by directional information Demonstrated R&D Proposed					
Indi	rect —	Recoil imaging —			
Statistical	I	——— Event-level———]		
Modulation-based directionality	Indirect recoil event directionality I	Time-integrated recoil imaging	Time-resolved recoil imaging		
 Anisotropic scintillators No event-level directions Exploits modulation of DM with respect to crystal axes 	 Columnar recombination Event-level 1d directions No head/ tail Direction and energy are not independent 	 Nuclear emulsions 2d recoil tracks, without head/ tail No event times information recorded 	 Gas TPC Head/ tail measurable 1d, 2d or 3d Independent energy/ direction measurement 		
		 DNA detector 3d recoils without head/ tail No event times recorded 	 Crystal defects 3d track topology Head/ tail measurable 		

A Combined Dark Matter & Neutrino Observatory

Do we live in a WIMP halo?

• Dark Matter exists

- Overwhelming evidence at distance scales from Milky Way to visible universe
- All gravitational
- WIMPs are one hypothesis
- Direct DM Detection seeks to answer
 - Does the local Milky Way DM halo contain WIMP-like particles?
 - What are their properties?
 - What is their local density and velocity distribution ?

Challenges in Direct DM Detection

- Huge detectors
- Stringent requirements on
 - Shielding
 - Radiopurity
 - Background rejection

Challenges in Direct Detection

- G2 experiments will probe cross-sections within factor 10-100 of the neutrino floor for m > 1 GeV/c^2
- Challenges to further progress in this mass range
 - Irreducible neutrino background
 - Lack of particle ID in ionization-only experiments for E \sim < 10 keV
 - Calibrations at lowest recoil energies
 - Ever stricter requirements on radio purity and background rejection
 - Lingering controversial signals from DAMA
 - Lack of clear discovery signal / way to demonstrate DM signal is galactic

• Directional Recoil Detection can help address most these challenges!

Non-directional WIMP search

- Observable: excess count rate over predicted BG in signal region
- Requires ultra-clean detectors & precise understanding of remaining backgrounds
- Single-scattering neutrons produce identical events to WIMPs

The WIMP Wind

- ~220 km / s
- blows from CYGNUS
- provides two additional WIMP signatures...

Annual Rate Modulation

- due to motion of earth around sun
- %-level effect
- requires thousands of signal events, and %-level control of BGs and gain

Diurnal (Daily) Directional Oscillation

- oscillation of the mean recoil direction, due to rotation of earth
- order 1 effect
- oscillation period = sidereal day \neq solar day
- no known background with this signature

The Power of Directionality

- Diurnal directional oscillation
 dipole in galactic coordinates
- Can positively identify galactic origin of a potential dark matter signal w/ only 3-10 recoil events (~ 10²-10³ x stronger effect than annual oscillation)
- Distinguish dark matter and solar neutrinos → penetrate neutrino floor
- Neutrino physics
- Ideal case: 3D-vector-direction + energy measured for each event
 - Fewest events for DM discovery
 - Enables Neutrino spectroscopy

Directionality: highly beneficial... ...but experimentally challenging!

arxiv:2102.04596

WIMP wind, approx. from CYGNUS

Neutrinos from the sun

Turning the Neutrino Fog into an Opportunity O'Hare, PRL 127 (2021) and

• Dark matter direct detection experiments approaching 'neutrino fog'

- Irreducible backgrounds from coherent elastic neutrino-nucleon scattering, a.k.a. CEvNS
- Solar neutrinos relevant first
- Neutrinos reduce DM sensitivity of detectors
 - index *n*, *which* quantifies sensitivity reduction
 - To reduce σ sensitivity by factor 10, need 10ⁿ larger exposure
- Directional detectors
 - can separate neutrino and DM signals!
 - n remains <2 even in the neutrino fog
 - fog becomes a positive: A source of guaranteed signal in DM experiment!

C. A. J. O'Hare et al., Snowmass White Paper on recoil imaging

Directional detectors can separate neutrino and WIMP signals, hence are more motivated now than ever before

Detector Performance Requirements

(if targeting solar neutrinos and m= ~10 GeV Dark Matter)

- Event-level recoil directionality
 - angular resolution ≤ 30 degrees
 - excellent head/tail sensitivity
- Rejection of internal electron backgrounds
 - by factor >= 10^5 for 1000 m^3 detector
- All of above down to E_{recoil} ~ 5 keV
- Energy resolution ~ 10% at 5.9 keV
- Timing resolution ~ 0.5 h

Recoil imaging in gas TPCs has performance approaching this, hence a main experimental approach being pursued

https://arxiv.org/abs/2102.04596

detected WIMP events required to exclude **v**-hypothesis at 90% CL Assumptions: m_{χ} = 10 GeV, He:SF₆ gas

Prototypes and Experiments: CYGNUS

Most gas TPC efforts now collaborating closely as CYGNUS (not all efforts shown here)

Long term CYGNUS Vision: Multi-site Galactic Recoil Observatory with directional sensitivity to WIMPs and neutrinos UNIVERSITY THE UNIVERSITY OF NEW MEXICO of HAWAI'I Mānoa https://arxiv.org/ WELLESLEY PERIMETER NSTITUTE **CYGNUS-KM CYGNUS-UK** Kamioka, Japan **Boulby, UK** CAK RIDGE $He:SF_6(CF_4)$ recerce He:SF₆ Strip readout National Laboratory **GEM+wire** BERKELEY LAB readout **LOS Alamos** NATIONAL LABORATORY University of Sheffield **CYGNUS-US** CYGNO/INITIUM SURF. USA Gran Sasso, Italy He:CF₄:X $HeCF_4(SF_6)$ Strip readout sCMOS+PMT readout CYGNUS-Oz **CYGNUS-ANDES** Stawell, Australia Australian New proposal THE UNIVERSITY National **R&D** leading THE UNIVERSITY OF THE UNIVERSITY OF t.b.d. University **ofADELAIDE** to 1-10 m³ MELBOURNE S G The ROMA TRE ENE University INFN UNIVERSIDADE D COIMBRA Of S Sheffield. UNIVERSIDADE CBPF FEDERAL DE LUIZ DE FORA UNICAMP

Sven Vahsen, CYGNUS 2023

12/10/23

Gas TPCs / CYGNUS: Experimental Approach

- Gas Time Projection Chamber
 - ~ 1-10 m³ unit cells
 - ~ 100-1000 such cells. Flexible form factor.
- Gas mixture 1:
 - SF₆:⁴He:X, p<=1 atm
 - Reduced diffusion via negative Ion drift (SF₆ gas)
- Gas mixture 2:
 - CF₄:⁴He:X, p<=1 atm
 - Trades diffusion for higher gain
- Fluorine: SD WIMP sensitivity
- Helium target
 - SI, low mass WIMP sensitivity
 - Longer recoil tracks, extending directionality to lower energies
- 3D fiducialization techniques
 - SF₆ minority carriers
 - charge cloud profile

Both electronic and optical charge readout being investigated. Larger detector would consist of ~1m³ unit-cell TPCs inside a single, large, gas vessel.

30

Comparison of TPC charge readout technologies

Helium recoils in 755:5 He:SF₆

https://arxiv.org/abs/2008.12587

Pixel readout extracts the entire directional information left after diffusion (red and yellow curves overlap fully) Strip readout has almost same performance as pixel readout, but at approx. one order of magnitude lower cost

Caveats: Quantitative performance depends strongly on gas pressure (density) and analysis algorithm

Result of cost vs performance analysis

2D Optical Readout and Negative Ion Drift R&D at UNM

- NID-gas doping key to cost-effective scaleup
 - Lower diffusion → longer driftlength
 - 3D Fiducialization → background reduction
- UNM pioneered use of SF₆
 - Safe
 - Spin-dependent target
- Key challenge with NID is reduced gain
 - Solved here with glass-GEMs

Negative-ion OTPC

Hamamatsu ORCA-Quest

Photon Resolving Power:

Radiment Glass-GEMs

• 270 micron pitch

~45 Torr CF ₄ + x Torr CS ₂				
	CS ₂ (Torr)	σ(μm)		
	0	~500		
	4	~150-200		

Low diffusion, high spatial resolution enables detailed reconstruction of particle's trajectory:

- Head/tail of track
- Initial direction
- Range
- **dE/dx** (Bragg curve):

D. Loomba, UNM

Directional detection of 5.9 keV electron recoils!

- In high-gain mode, even single electrons of ionization easily detected
- Energy threshold is ~30 eVee, w/ virtually zero noise-occupancy

Event-level head/tail via Machine Vision: low gain

Helium recoil tracks detected in a pixel-readout time projection chamber at low gain (900). Color of voxels indicates ionization density.

First experimental demonstration of significant *event-level* head/tail sensitivity below 20 keV (still at low detector gain!) See talk today by Jeff Schueler.

Sven Vahsen, CYGNUS 2023

Jeff Schueler

High gain operation: keV scale directionality In progress and highly preliminary!

3D single electron efficiency ~1.0

Want: 3D single electron *counting*

Directionality at 3 keVee for p=1 atm might be achievable in current detectors at higher gain. In future detectors, planning three improvements, aiming for 1keV recoil directionality.

Personal Outlook

Vision or madness? DUNE-scale gas TPC w/ 30 eV threshold α - particle Δ - par

- Already near the fundamental performance limit single electron counting in 3d w/ 100 μm spatial resolution
 - in small detectors using MPGD amplification and pixel ASIC readout
- A DUNE scale experiment with 30 eV energy threshold would be game changing
 - multi-mesh strip micromegas, negative ion drift, and extreme trigger multiplexed readout schemes for cost reduction

CYGNUS: US Program Vision

- 3 years of R&D to establish electron counting & 1-keV recoil directionality
- Directional BSM search in 1 m³ v-scattering experiment, aboveground
- Radio-pure 10 m³ experiment, underground (DM)
- Large-scale, underground observatory (solar neutrinos + DM below neutrino floor)

time

Final remarks

- CYGNUS workshop has much widened scope this year
 - I only scratched the surface on what can be done with directional reccoil detection
 - I look forward to hearing your latest developments and new, exciting ideas
- We should get more organized
 - R&D collaborations: DRDs (Europe), RDCs (US) now forming. May be an opportunity for more blue sky R&D funding for our field
 - Even so, it may help us formalize the CYGNUS collaboration further
- To make the case for scale-up
 - We need to report clear, practical performance metrics
 - The ultimate performance metric is cost/unit-sensitivity
- Shoot for the stars!
 - Demonstrate 3d electron counting
 - Develop detailed plans for scaling up to DUNE scale: starting with >= 10 m³ designs

BACKUP