Symmetries and Asymmetries with $B \rightarrow D D$ Decays

Jonathan Davies, Martin Jung, Stefan Schacht October 25, 2023

Some questions

What?:

- Testing the SM with $B \rightarrow D D$ databranching ratios and CP asymmetries.
- Update of arxiv:1410.8396

Some questions

What?:

- Testing the SM with $B \rightarrow D D$ databranching ratios and CP asymmetries.
- Update of arxiv:1410.8396

Why?:

Any generic BSM theory would have $\mathcal{O}(1)$ weak-phases \Longrightarrow significant CPV expected.

Some questions

What?:

- Testing the SM with $B \rightarrow D D$ databranching ratios and CP asymmetries.
- Update of arxiv:1410.8396

Why?:

Any generic BSM theory would have $\mathcal{O}(1)$ weak-phases \Longrightarrow significant CPV expected.

Who?:
Myself, Martin Jung and Stefan Schacht

Some questions

What?:

- Testing the SM with $B \rightarrow D D$ databranching ratios and CP asymmetries.
- Update of arxiv:1410.8396

Why?:

Any generic BSM theory would have $\mathcal{O}(1)$ weak-phases \Longrightarrow significant CPV expected.

Who?:
Myself, Martin Jung and Stefan Schacht

How?:
Let's see...

Where is this data coming from?

Which Observables?

Examples include (not an exhaustive list):
$-\frac{f_{s}}{f_{d}} \frac{\mathrm{BR}\left(D_{s}^{+} \rightarrow K^{+} K^{-} \pi^{+}\right)}{\mathrm{BR}\left(D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}\right)} \frac{\operatorname{BR}\left(\bar{B}_{s} \rightarrow D_{s}^{+} D_{s}^{-}\right)}{\operatorname{BR}\left(\bar{B}^{0} \rightarrow D^{+} D_{s}^{-}\right)}$
$-2 f_{+-} \mathrm{BR}\left(B^{-} \rightarrow D^{0} D_{s}^{-}\right) \mathrm{BR}\left(D^{0} \rightarrow K^{-} \pi^{+}\right) \mathrm{BR}\left(D_{s}^{-} \rightarrow \phi \pi^{-}\right)$

- $\operatorname{BR}\left(B_{s}^{0} \rightarrow D_{s}^{+} D_{s}^{-}\right)$
- $\mathrm{BR}\left(D_{s}^{-} \rightarrow K^{+} K^{-} \pi^{+}\right)$
- $A_{C P}\left(B^{-} \rightarrow D_{s}^{-} D^{0}\right)$ including brand new LHCb input! (arxiv:2306.09945)
- $S_{C P}\left(\bar{B}^{0} \rightarrow D^{-} D^{+}\right)$

We take into account correlations and use updated charm BR's to rescale older results

Adding Theory Arguments to the Mix

Can make approximation

$$
m_{u} \approx m_{d} \approx m_{s} \ll \Lambda_{Q C D}
$$

u, d, and s represented by a triplet in an approximate $S U(3)_{F}$ symmetry

We could do this...

1. Express everything in terms of $S U(3)$ states:

$$
\begin{aligned}
& u=\left|\mathbf{3},\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{3}\right)\right\rangle, d=\left|\mathbf{3},\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{3}\right)\right\rangle, s=\left|\mathbf{3},\left(0,0,-\frac{2}{3}\right)\right\rangle, c=|\mathbf{0}\rangle, b=|\mathbf{0}\rangle \\
& \left|\mathbf{r}_{\mathbf{1}}, \alpha_{1}\right\rangle\left|\mathbf{r}_{\mathbf{2}}, \alpha_{2}\right\rangle=\sum_{i}\left(\mathbf{R}_{\mathbf{i}}, A_{i} \mid \mathbf{r}_{\mathbf{1}}, \alpha_{1}, \mathbf{r}_{\mathbf{2}}, \alpha_{2}\right)\left|\mathbf{R}_{\mathbf{i}}, A_{i}\right\rangle \\
& \mathcal{H}_{u}^{b \rightarrow d} \sim \sqrt{\frac{3}{8}}\left(\mathbf{3}, \frac{1}{2},-\frac{1}{2}, \frac{1}{3}\right)-\frac{1}{2}\left(\overline{\mathbf{6}}, \frac{1}{2},-\frac{1}{2}, \frac{1}{3}\right)+\sqrt{\frac{1}{24}}\left(\mathbf{1 5}, \frac{1}{2},-\frac{1}{2}, \frac{1}{3}\right)+\sqrt{\frac{1}{3}}\left(\mathbf{1 5}, \frac{3}{2},-\frac{1}{2}, \frac{1}{3}\right)
\end{aligned}
$$

2. Parameterise our decays in terms of $S U(3)$ matrix elements:

$$
\left\langle D^{-} D^{0}\right| \mathcal{H}^{b \rightarrow d}\left|B^{-}\right\rangle \quad \rightarrow \quad \sqrt{\frac{3}{8}}\langle 8|(3)|\overline{3}\rangle_{u}-\sqrt{\frac{1}{20}}\langle 8|(\overline{6})|\overline{3}\rangle_{u}+\ldots
$$

... but diagrams are easier.

Linear combinations of $S U(3)$ matrix elements
... but diagrams are easier.

... but diagrams are easier.

Theoretical Parameterisation

Mode							
	$\lambda_{c D} T$	$\lambda_{c D} A^{c} \lambda_{u D} \tilde{P}_{1}$	$\lambda_{u D} \tilde{P}_{3}$	$\lambda_{u D} A_{1}^{u}$	$\lambda_{u D} A_{2}^{u}$		
	Spoilers						
1	$B^{-} \rightarrow D^{-} D^{0}$	1	0	-1	0	1	0
2	$B^{-} \rightarrow D_{s}^{-} D^{0}$	1	0	-1	0	1	0
3	$\bar{B}^{0} \rightarrow D_{s}^{-} D^{+}$	1	0	-1	0	0	0
4	$\bar{B}_{s} \rightarrow D^{-} D_{s}^{+}$	1	0	-1	0	0	0
5	$\bar{B}^{0} \rightarrow D^{-} D^{+}$	1	1	-1	-1	0	0
6	$\bar{B}_{s} \rightarrow D_{s}^{-} D_{s}^{+}$	1	1	-1	-1	0	0
7	$\bar{B}^{0} \rightarrow D_{s}^{-} D_{s}^{+}$	0	1	0	-1	0	0
8	$\bar{B}_{s} \rightarrow D^{-} D^{+}$	0	1	0	-1	0	0
9	$\bar{B}^{0} \rightarrow \bar{D}^{0} D^{0}$	0	-1	0	1	0	-1
10	$\bar{B}_{s} \rightarrow \bar{D}^{0} D^{0}$	0	-1	0	1	0	-1

Generate vector of parameterised observables $\underline{\mathrm{P}}(\underline{\mathbf{x}})$

Predictions

Construct $\chi^{2}(\underline{\mathbf{x}})$

Scan function

$$
\chi_{\lambda}^{2}(y)=\min \left(\left.\chi^{2}(\underline{\mathbf{x}})\right|_{x_{\lambda}=y}\right)
$$

Find y range where
$\Delta \chi_{\lambda}^{2}<1(4) \Longrightarrow 68(95) \% \mathrm{Cl}$

D branching ratios, fragmentation fractions and efficiencies also floated.

Our main goal is to perform these scans for our physical observables

Power Counting

A way of managing the relative sizes of the diagrams.

We take $\epsilon \sim 0.3$ and consider the following contributions:

- $\operatorname{SU}(3)$ structure- $\mathcal{O}(\epsilon)$: For $\mathrm{SU}(3)$-breaking contributions
- CKM suppression- $\mathcal{O}(\epsilon)$: Where CKM factors cannot be separated from the hadronic matrix elements.
- Colour suppression: Relative counting in $1 /(\#$ colours $) \sim \mathcal{O}(\epsilon)$ for the topologies, based on [Buras, Gèrard, Rückl (1986)]
- Penguin suppression:
- Tree matrix elements of penguin operators- $\mathcal{O}\left(\epsilon^{2}\right)$
- Penguin matrix elements of tree operators- $\mathcal{O}\left(\epsilon^{1 / 2}\right)$
- Annihilation: $\mathcal{O}\left(\epsilon^{1 / 2}\right)$ for annihilation diagram $+\mathcal{O}(\epsilon)$ for $c \bar{c}$ creation.

Validation

Expected relative scaling from power counting for decay rates and $C P$ asymmetries can be checked with data.

Relative rate	$b \rightarrow s$	$b \rightarrow d$
Tree-dominated	1	λ^{2}
Annihilation-dominated	ϵ^{3}	$\bar{\lambda}^{2} \epsilon^{3}$

CP asymmetry	$b \rightarrow s$	$b \rightarrow d$
Tree-dominated	$\lambda^{2} \epsilon^{2.5}$	$\epsilon^{2.5}$
Annihilation-dominated	$\bar{\lambda}^{2} \epsilon^{2}$	ϵ^{2}

- Measured rates correspond to our scaling usually within 30%, as expected.
- Slightly larger deviations of $\sim 40 \%$ for $\bar{B}^{0} \rightarrow D^{+} D^{-}$and $\bar{B}_{s} \rightarrow D_{s}^{+} D_{s}^{-}$- first sign for negative interference of the sizable A_{c} [arxiv:1410.8396].
- New LHCb measurement for $A_{C P}\left(B^{-} \rightarrow D^{0} D^{-}\right) \sim 2 \%$ is on the lower side of $\epsilon^{2.5} \sim 5 \% \Longrightarrow$ our penguin amplitude scaling is conservative.

Theoretical Parameterisation

	Mode	$\lambda_{c D} T$	$\lambda_{c D} A^{c}$	$\lambda_{u D} \tilde{P}_{1}$	$\lambda_{u D} \tilde{P}_{3}$	$\lambda_{u D} A_{1}^{u}$	$\lambda_{u D} A_{2}^{u}$
	Counting	1	$\varepsilon^{1.5}$	$\varepsilon^{2.5}$	$\varepsilon^{3.5}$	$\varepsilon^{2.5}$	$\varepsilon^{3.5}$
1	$B^{-} \rightarrow D^{-} D^{0}$	1	0	-1	0	1	0
2	$B^{-} \rightarrow D_{s}^{-} D^{0}$	1	0	-1	0	1	0
3	$\bar{B}^{0} \rightarrow D_{s}^{-} D^{+}$	1	0	-1	0	0	0
4	$\bar{B}_{s} \rightarrow D^{-} D_{s}^{+}$	1	0	-1	0	0	0
5	$\bar{B}^{0} \rightarrow D^{-} D^{+}$	1	1	-1	-1	0	0
6	$\bar{B}_{s} \rightarrow D_{s}^{-} D_{s}^{+}$	1	1	-1	-1	0	0
7	$\bar{B}^{0} \rightarrow D_{s}^{-} D_{s}^{+}$	0	1	0	-1	0	0
8	$\bar{B}_{s} \rightarrow D^{-} D^{+}$	0	1	0	-1	0	0
9	$\bar{B}^{0} \rightarrow \bar{D}^{0} D^{0}$	0	-1	0	1	0	-1
10	$\bar{B}_{s} \rightarrow \bar{D}^{0} D^{0}$	0	-1	0	1	0	-1

Power counting enters as hard parameter constraints during χ^{2} minimisation.

SU(3) Breaking

But $m_{u} \neq m_{d} \neq m_{s}$!

Must fix our assumption that $d \equiv s$:

$$
\mathcal{H}_{S U(3)} \sim \frac{m_{s}-m_{d}}{\Lambda_{Q C D}}(s \bar{s})
$$

Fitting this into diagrammatic language [arxiv:9504326]:

Breaking table

	Mode	$\lambda_{c D} \delta T_{1}$	$\lambda_{c D} \delta T_{2}$	$\lambda_{c D} \delta A_{1}^{c}$	$\lambda_{c D} \delta A_{2}^{c}$
	Counting	$\varepsilon^{1(2)}$	$\varepsilon^{1(2)}$	$\varepsilon^{2.5}$	$\varepsilon^{2.5}$
1	$B^{-} \rightarrow D^{-} D^{0}$	0	$-\frac{1}{2}$	0	0
2	$B^{-} \rightarrow D_{s}^{-} D^{0}$	1	0	0	0
3	$\bar{B}^{0} \rightarrow D_{s}^{-} D^{+}$	1	0	0	0
4	$\bar{B}_{s} \rightarrow D^{-} D_{s}^{+}$	-1	$\frac{1}{2}$	0	0
5	$\bar{B}^{0} \rightarrow D^{-} D^{+}$	0	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$
6	$\bar{B}_{s} \rightarrow D_{s}^{-} D_{s}^{+}$	0	1	-1	1
7	$\bar{B}^{0} \rightarrow D_{s}^{-} D_{s}^{+}$	0	0	$\frac{1}{2}$	$\frac{1}{2}$
8	$\bar{B}_{s} \rightarrow D^{-} D^{+}$	0	0	-1	0
9	$\bar{B}^{0} \rightarrow \bar{D}^{0} D^{0}$	0	0	$-\frac{1}{2}$	$\frac{1}{2}$
10	$\bar{B}_{s} \rightarrow \bar{D}^{0} D^{0}$	0	0	1	0

Observables

From amplitudes, it is simple to go to experimental observables:

- Branching Ratios

$$
\mathcal{B}\left(\mathcal{D} \equiv B \rightarrow P_{1} P_{2}\right)=|\mathcal{A}(\mathcal{D})|^{2} \times \text { phase }- \text { space }
$$

- CP Asymmetries

$$
\begin{gathered}
A_{C P}(\mathcal{D})=-\frac{1-|\lambda(\mathcal{D})|^{2}}{1+|\lambda(\mathcal{D})|^{2}}=\frac{|\mathcal{A}(\mathcal{D})|^{2}-|\overline{\mathcal{A}}(\mathcal{D})|^{2}}{|\mathcal{A}(\mathcal{D})|^{2}+|\overline{\mathcal{A}}(\mathcal{D})|^{2}}, \quad S_{C P}(\mathcal{D})=\frac{2 \operatorname{Im}(\lambda(\mathcal{D}))}{1+|\lambda(\mathcal{D})|^{2}} \\
{\left[\lambda(\mathcal{D})=\eta_{C P}^{f} e^{-i \phi_{D}} \frac{\mathcal{A}(\mathcal{D})}{\overline{\mathcal{A}}(\mathcal{D})}\right]}
\end{gathered}
$$

SM prediction for CP Asymmetries

Predictions extracted both with and without experimental CP information.

SM prediction for CP Asymmetries

Predictions extracted both with and without experimental CP information.

We can do 2D scans too!

Blue contours represent 68% and $95 \% \mathrm{Cl}$ from global fit. Yellow shows experiment-only constraints. Non-trivial correlations, resulting from underlying theory parameterisation, can be seen.

To conclude...

- Our predictions for CP asymmetries can be used to probe for new physics with future measurements at LHCb
- By working from an assumption of approximate $\operatorname{SU}(3)$ symmetry we can obtain predictions for observables by fitting to experimental data
- Symmetry assumptions found to be valid
- No significant tension with Standard Model found but precision is improved
- We provide predictions for many as-yet unmeasured modes
- Stay tuned for publication soon!

Time for grilling!

Thanks for your attention.

Hiring?- Find my CV here or email me at jonathan.edward.davies@cern.ch

