

Final-state interactions in the CP asymmetries of charm-meson two-body decays

Eleftheria Solomonidi

In collaboration with Antonio Pich & Luiz Vale Silva Based on Phys.Rev.D 108 (2023) 3, 036026 and upcoming publication

> October 25, 2023 Implications of LHCb measurements and future prospect

Introduction

Charm Physics in the limelight

- Complementary to down-type sector for CKM tests
- Experimental programme is growing (LHCb, Belle II, BESIII)
- Theoretical efforts have to keep up

Compared to K, B Physics:

- Different masses \Rightarrow different loop effects
 - & different mixing sizes \Rightarrow different phenomenology!

$$m_d, m_s, m_b \ll m_W \Rightarrow \lambda_d F(x_d) + \lambda_s F(x_s) + \lambda_b F(x_b) \approx 0$$

A new anomaly or an incomplete theory prediction?

$$\Delta A_{CP}^{exp} \equiv A_{CP}(D^0 \to K^+ K^-) - A_{CP}(D^0 \to \pi^+ \pi^-) = [-1.54 \pm 0.29] \cdot 10^{-3}$$

$$\Delta \alpha_{CP}^{dir,exp} = [-1.57 \pm 0.29] \cdot 10^{-3} \quad \text{[LHCb 2019]}$$

$$A_{CP}(D^0 \to K^+ K^-) = [6.8 \pm 5.4(\text{stat}) \pm 1.6(\text{syst})] \cdot 10^{-4} \quad \text{[LHCb 2022]}$$

$$\alpha_{CP}^{dir}(D^0 \to \pi^+\pi^-) = [23.2 \pm 6.1] \cdot 10^{-4}$$

Is the SM theoretical prediction in agreement?

Is it NP? [see e.g. Hiller et al. 2023, Chala, Lenz, Rusov, Scholtz 2019]

- CP violation from the SM induced by only 1 phase; CKM controlled by 4 independent parameters
- Weak sector (CKM parameters) probed by nuclear, π, K & B physics

Strong sector introduces uncertainties

Weak and strong, short and long distance

$$\mathscr{A}(D^{0} \to f) = A(f) + ir_{CKM}B(f)$$

$$\mathscr{A}(\overline{D^{0}} \to f) = A(f) - ir_{CKM}B(f)$$

$$\alpha_{CP}^{dir} \approx 2 \underbrace{r_{CKM}}_{\text{weak phases}} \frac{|B(f)|}{|A(f)|} \cdot \sin \arg \frac{A(f)}{B(f)}$$

$$\underset{\text{strong phases}}{\overset{\circ}{\text{strong phases}}}$$

At $\mu \sim \mu_c$:

 λ_q

Current-current operators

$$\begin{aligned} Q_{1}^{q} &= (\bar{q}c)_{V-A}(\bar{u}q)_{V-A} \\ Q_{2}^{d} &= (\bar{q}_{j}c_{i})_{V-A}(\bar{u}_{i}q_{j})_{V-A} \\ &\qquad (q = d, s) \\ C_{4,6} < 0.1C_{2}, \ 0.03C_{1} \ (GIM \ mechanism \ at \ play) \end{aligned}$$

$$\begin{split} Q_3 &= (\bar{u}c)_{V-A}\Sigma_q(\bar{q}q)_{V-A}\\ \hline Q_4 &= (\bar{u}_jc_i)_{V-A}\Sigma_q(\bar{q}_iq_j)_{V-A}\\ Q_5 &= (\bar{u}c)_{V-A}\Sigma_q(\bar{q}q)_{V+A}\\ \hline Q_6 &= (\bar{u}_jc_i)_{V-A}\Sigma_q(\bar{q}_iq_j)_{V+A} \end{split}$$

Weak and strong, short and long distance

$$\begin{aligned} \mathscr{A}(D^{0} \to f) &= A(f) + ir_{CKM}B(f) \\ \mathscr{A}(\overline{D^{0}} \to f) &= A(f) - ir_{CKM}B(f) \\ \alpha_{CP}^{dir} &\approx 2 \underbrace{r_{CKM}}_{\text{weak phases}} \frac{|B(f)|}{|A(f)|} \cdot \sin \arg \frac{A(f)}{B(f)} \\ \text{At } \mu \sim \mu_{c}: \\ \mathscr{H}_{\text{eff}} &= \frac{G_{F}}{\sqrt{2}} \left[\sum_{i=1}^{2} C_{i}(\mu) \left(\lambda_{d} Q_{i}^{d}(\mu) + \lambda_{s} Q_{i}^{s}(\mu) \right) - \lambda_{b} (\sum_{i=3}^{6} C_{i}(\mu) Q_{i}(\mu) + C_{8g}(\mu) Q_{8g}(\mu)) \right] \\ \text{As } \mu \sim \mu_{c}: \\ \mathscr{H}_{\text{eff}} &= \frac{G_{F}}{\sqrt{2}} \left[\sum_{i=1}^{2} C_{i}(\mu) \left(\lambda_{d} Q_{i}^{d}(\mu) + \lambda_{s} Q_{i}^{s}(\mu) \right) - \lambda_{b} (\sum_{i=3}^{6} C_{i}(\mu) Q_{i}(\mu) + C_{8g}(\mu) Q_{8g}(\mu)) \right] \\ \text{As } \mu \sim \mu_{c}: \\ \mathcal{H}_{\text{eff}} &= V_{cq}^{*} V_{uq}, \quad q = d, s, b. \\ \lambda_{d} &= |\lambda_{s}| = \mathcal{O}(\lambda) \\ \lambda_{d} + \lambda_{s} + \lambda_{b} = 0 \end{aligned}$$

Problem: hadronic matrix elements $\langle hh|Q_i|D^0 \rangle$ Charm scale is special!

$$egin{aligned} & \Lambda_{\chi PT} pprox m_
ho < m_D = 1865 \; {
m MeV} \ & \Lambda_{QCD} \ & m_c & arnothing \ & arnothin$$

See also: Khodjamirian, Petrov Phys. Lett. B, 774:235–242, 2017, Brod, Kagan, Zupan Phys. Rev. D, 86:014023, 2012, Schacht, Soni Phys. Lett. B,

825:136855, 2022, Franco, Mishima, Silvestrini JHEP, 05:140, 2012, Buccella, Paul, Santorelli Phys. Rev. D, 99(11):113001, 2019, Hiller, Jung, Schacht

Phys. Rev. D, 87(1):014024, 2013

theria !			

Data-driven approach - principles

A way to look at the problem: rescattering

Idea: implement long-distance QCD effects through resummation of rescattering "bubbles"

- Strong process, blind to the weak dynamics
- Isospin (u↔d) is a good symmetry of strong interactions
- In I=0, two channels:

$$S_{strong} = \begin{pmatrix} \pi\pi \to \pi\pi & \pi\pi \to KK \\ KK \to \pi\pi & KK \to KK \end{pmatrix}$$

Rescattering & unitarity

- S matrix is **unitary**, as well as strong sub-matrix
- Optical theorem-like relation: Im $\langle hh|Q_i|D \rangle = \sum_n \langle hh|T|n \rangle \langle n|Q_i|D \rangle^*$

• For I=0:
$$\binom{A(D \to \pi\pi)}{A(D \to KK)} = \underbrace{\begin{pmatrix} \eta e^{i2\delta_1} & i\sqrt{1-\eta^2}e^{i(\delta_1+\delta_2)} \\ i\sqrt{1-\eta^2}e^{i(\delta_1+\delta_2)} & \eta e^{i2\delta_2} \end{pmatrix}}_{S_{strong}} \cdot \begin{pmatrix} A^*(D \to \pi\pi) \\ A^*(D \to KK) \end{pmatrix}$$

- The phases of the decay amplitudes are related to the rescattering phases for which data and data-driven parameterizations exist
- Watson's theorem (elastic rescattering limit): arg $A(D \rightarrow \pi\pi) = \arg A(\pi\pi \rightarrow \pi\pi) \mod \pi$
- With inelasticities: more complicated, phase-shifts dependent on magnitudes of the amplitudes too

Analyticity and unitarity consequences: Dispersion relations

- Analyticity: fundamental, model-independent property related to causality
- Amplitudes analytical except for a right-hand cut
- Cauchy's theorem:

$$egin{aligned} \mathcal{A}(s) &= rac{1}{2\pi i} \oint_C ds' rac{\mathcal{A}(s')}{s'-s} ext{ leads to} \ & ext{Re}\mathcal{A}(s) &= rac{1}{\pi} \int_{s_{thr}}^\infty ds' rac{ ext{Im}\mathcal{A}(s')}{s'-s} \end{aligned}$$

Implement unitarity of S-matrix :

 $\underbrace{\operatorname{Re}A_{I}(s)}_{\pi} = \frac{1}{\pi} PV \int_{-\infty}^{\infty} ds' \frac{\tan \delta_{I}(s')}{s'-s} \operatorname{Re}A_{I}(s')$

+ one subtraction \Rightarrow

integral of Re along the physical region

(Dispersion relation)

Re at a point

Matrix elements without rescattering

The no-rescattering limit coincides with the limit of $N_c \rightarrow \infty$ \Rightarrow we are left with the matrix elements from *factorization* - no strong phase induced

(Same for $D \to KK$)

- Decay constant and form factors come from lattice and data ($\pi\pi$ FF through $\chi\rm{PT})$
- Non-perturbative QCD information within each current naturally included

10 / 20

Data-driven approach: details

Summary of our method

- Factor out the eff. weak Hamiltonian (weak process & short-distance QCD)
- Implement final state interaction (FSI) dynamics in the isospin limit (no *SU*(3) assumption needed)
- Isospin blocks:
 - I=0, unitarity with 2 channels: $\pi\pi$ and KK
 - I=1 with KK elastic rescattering
 - I=2 with $\pi\pi$ elastic rescattering
- Isospin-zero amplitudes treated with dispersion relations (DRs) calculated numerically (based on Moussallam et al. [hep-ph/9909292])
- Use inelasticity and phase-shift parameterizations [Pelaez et al., 1907.13162],[Pelaez et al., 2010.11222] up to energies $\sim m_D$ extrapolate for higher & consider uncertainties
- For I=1 and 2, extract |Omnès factors| from Br's of $A(D^+ \to \pi^+ \pi^0) \sim A_{I=2}, A(D^+ \to K^+ \overline{K^0}) \sim A_{I=1}$; phases left unconstrained
- Decay-specific physical input (in the subtraction constant of DRs): large N_C limit of the eff. weak Hamiltonian

Choice of Omnès factors

For the isospin=0 channels we **calculate** numerically the Omnès matrix at $s = m_D^2$

	solution 1	solution II	solution III		
$\eta_3^2,m_{\rm V}^2=1$	$\Omega^{(0)} = \begin{pmatrix} 0.80 e^{\pm 1.01 \epsilon} & 1.01 e^{-1.01 \epsilon} \\ 0.56 e^{\pm 1.01 \epsilon} & 0.50 e^{\pm 2.07 \epsilon} \end{pmatrix}$	$c_{010} = \begin{pmatrix} 0.39 e^{\pm 1.61t} & 0.59 e^{-3.33t} \end{pmatrix}$	$(0.71e^{i0.53t} - 1.35e^{-2.67t})$		
	$11^{-1} = \left(0.56 e^{-1.50 z} - 0.50 e^{\pm 2.87 z} \right)$	$11^{11} = \left(0.51 e^{-1.31 t} - 0.56 e^{+3.43 t} \right)$	$\int_{0.38 e^{-0.98t}}^{51^{-0.98t}} = 0.42 e^{\pm 2.65t}$		
	$\Omega^{(0)} = \begin{pmatrix} 0.56 \ e^{+1.84z} & 0.61 \ e^{-1.73z} \\ 0.57 \ e^{-1.41z} & 0.58 \ e^{+3.35z} \end{pmatrix}$	$O^{(0)} = \begin{pmatrix} 0.42 e^{\pm 1.75 t} & 0.54 e^{-3.65 t} \end{pmatrix}$	$\alpha^{(0)} = \begin{pmatrix} 0.35 e^{\pm 1.13 i} & 0.74 e^{-2.67 i} \\ 0.75 e^{\pm 1.13 i} & 0.74 e^{-2.67 i} \end{pmatrix}$		
$a_0 - a_{0_0}, m_q - 1$	$0.57 e^{-1.41 t} = 0.58 e^{+2.35 t}$	$\left(0.51 e^{-1.31 t} - 0.55 e^{+3.43 t}\right)$	$0.50 e^{-1.18i} = 0.55 e^{+2.48i}$		
$\eta_0^0 - \delta \eta_{e^*}^0 m_\eta^* = 2$	(a.re. +1894	$\Omega^{(0)} = \begin{pmatrix} 0.43 e^{\pm 1.64i} & 0.58 e^{-2.30i} \end{pmatrix}$	$\Omega^{(0)} = \begin{pmatrix} 0.40 e^{\pm 1.01 i} & 0.80 e^{-2.50 i} \\ 0.50 e^{-2.50 i} & 0.50 e^{-2.50 i} \end{pmatrix}$		
of role of -	$\left(0.58 e^{-1.57 i} - 0.61 e^{+2.35 i}\right)$	$0.52 e^{-1.25 i}$ $0.57 e^{+3.48 i}$	$0.50 e^{-1.11 i}$ $0.56 e^{+2.33 i}$		
$\eta_0^0 - \delta \eta_0^0, m_\eta^* = 3$	$\Omega^{(0)} = \begin{pmatrix} 0.60 \ e^{+1.76 \pm} & 0.60 \ e^{-1.74 \pm} \\ 0.60 \ e^{-1.33 \pm} & 0.63 \ e^{+2.26 \pm} \end{pmatrix}$	$\Omega^{(0)} = \begin{pmatrix} 0.44 e^{\pm 1.50 i} & 0.61 e^{-2.35 i} \\ 0.61 e^{-2.35 i} \end{pmatrix}$	$\Omega^{(0)} = \begin{pmatrix} 0.45 e^{+0.91 i} & 0.86 e^{-2.55 i} \\ 0.96 e^{-2.55 i} & 0.86 e^{-2.55 i} \end{pmatrix}$		
(4) ((4)) ((4) = 0	$= \left(0.60 e^{-1.31 i} - 0.63 e^{+2.05 i}\right)$	$0.52 e^{-1.17 i}$ $0.59 e^{+2.53 i}$	$0.50e^{-1.04i}$ $0.57e^{+2.58i}$		
sol. B': [g]]	$\Omega^{(0)} = \begin{pmatrix} 2.01 \ e^{+1.30 \ i} & 2.47 \ e^{-1.70 \ i} \\ 0.37 \ e^{-0.30 \ i} & 0.54 \ e^{+3.85 \ i} \end{pmatrix}$	$\alpha_{\rm III} = \begin{pmatrix} 1.91 e^{+0.01i} & 2.78 e^{-2.55i} \end{pmatrix}$	$\alpha_{i0} = \left(2.20 e^{+0.42 i} - 3.55 e^{-2.72 i}\right)$		
104 H - 100	$n^{} = \left[0.37 e^{-0.01 i} - 0.54 e^{+0.051} \right]$	$11^{-1} = \left(0.31 e^{-0.29 i} 0.45 e^{+0.30 i} \right)$	$a^{a,v} = \begin{pmatrix} 0.35 e^{+0.02i} & 0.57 e^{+0.40i} \\ 0.35 e^{+0.02i} & 0.57 e^{+0.40i} \end{pmatrix}$		
sol. C: [g]]	$\Omega^{(0)} = \begin{pmatrix} 1.83 \ e^{+1.06 \ i} & 2.65 \ e^{-1.70 \ i} \\ 0.34 \ e^{-3.06 \ i} & 0.57 \ e^{+3.00 \ i} \end{pmatrix}$	$O^{(0)} = \begin{pmatrix} 1.80 e^{+0.59i} & 3.11 e^{-2.50i} \end{pmatrix}$	$\Omega^{(0)} = \begin{pmatrix} 2.09 e^{+0.01i} & 3.94 e^{-2.72i} \\ \end{pmatrix}$		
101	0.34 e ^{-3.00 i} 0.57 e ^{+3.00 i}	0.29 e ^{-0.24 i} 0.49 e ^{+3.26 i}	0.32 e-0.02 i 0.61 e+3.34 i		

Choice of Omnès factors

For the isospin=0 channels we calculate numerically the Omnès matrix at $s = m_D^2$

solution I		a solution II			solution III			
d at at	$\Omega^{(0)} = \begin{pmatrix} 0.80 e^{\pm 1.60 i} \\ 0.56 e^{-1.50 i} \end{pmatrix}$	$1.01e^{-1.09i}$	000-	(0.39 e+1.647	$0.59 e^{-2.33i}$	010 -	$(0.71 e^{+0.53t})$	$1.35e^{-2.67}$
$\eta_3^{\rm s}, ss_{\psi}^{\star}=1$	0.56 c ^{-1.58 z}	0.50 +2.871		$0.51e^{-1.31t}$	$0.56 e^{\pm 2.43 i}$		0.35 e-0.91	$0.42e^{\pm 2.65}$
$\theta = \delta r \theta \ m^* = 1$	$\begin{split} \Omega^{(0)} &= \begin{pmatrix} 0.56 \ e^{+1.84 i} & 0.61 \ e^{-1.27} \\ 0.57 \ e^{-1.41 i} & 0.58 \ e^{+3.43} \\ \Omega^{(0)} &= \begin{pmatrix} 0.58 \ e^{+1.84 i} & 0.64 \ e^{-1.21} \\ 0.58 \ e^{-1.37 i} & 0.61 \ e^{+3.47} \\ \Omega^{(0)} &= \begin{pmatrix} 0.60 \ e^{+1.74 i} & 0.06 \ e^{-1.24} \\ 0.60 \ e^{-1.24 i} & 0.06 \ e^{-1.24} \\ 0.60 \ e^{-1.24 i} & 0.63 \ e^{+2.94} \\ \end{split}$	$0.61 e^{-1.73i}$	089	$0.42 e^{\pm 1.73 e}$	$0.54e^{-0.05i}$	022 -	0.35 e+1.13 c	$0.74 e^{-2.47}$
a copied i	0.57 c ^{-1.41}	$0.58 e^{\pm 2.351}$		$0.51e^{-1.31t}$	$0.55 e^{+3.43i}$		0.50 e-1.194	$0.55e^{\pm2.48}$
$\theta = \delta \theta = m^* = 2$	$O(2) = (0.58 e^{\pm 1.807})$	$0.64 e^{-1.741}$	080 -	0.48 e+1.51	$0.58 e^{-0.30i}$	080 -	0.40 e+1.01 c	$0.80 e^{-2.50}$
the sector of th	0.58 c ^{-1.37 i}	$0.61 e^{\pm 2.351}$		$0.52e^{-1.25t}$	$0.57 e^{\pm 0.451}$		0.50 e-1.11 f	$0.56e^{\pm 2.55}$
$\theta = k\theta = m^* = 3$	$O(2) = \left(0.60 e^{\pm 1.75 i}\right)$	$0.06 e^{-1.74i}$	080 -	0.44 e+1.534	$0.61 e^{-2.36i}$	080 -	0.45 e+0.92 i	$0.86 e^{-2.52}$
the set of the set	0.60 c ^{-1.33 i}	$0.63 e^{\pm 2.051}$		$0.52e^{-1.17i}$	$0.59 e^{\pm 2.531}$		0.50 e-1.01	$0.57e^{+2.58}$
eol. B': [g]]	$\Omega^{(0)} = \begin{pmatrix} 2.01 \ e^{+1.00 \ i} \\ 0.37 \ e^{-0.01 \ i} \\ 0.34 \ e^{-1.00 \ i} \end{pmatrix}$	$2.47 e^{-1.70i}$	00-	$(1.91e^{+0.08i})$	$2.78 e^{-2.55i}$	010 -	2.20 e+0.01	$3.55e^{-2.72}$
No. 11 - 1901	0.37 e-0.01	0.54 e+3.851		0.31 e-0.21	0.45 e+3.301		0.35 e+0.031	$0.57 e^{\pm 0.40}$
sol. C': [g]	$com = (1.83 c^{+1.007})$	$2.65 e^{-1.9i}$	00	(1.80 c+0.58 i	3.11 e ^{-2.90}	010	2.09 e+0.021	$3.94 e^{-2.72}$
nur. e. : [62]	0.34 c -0.00 /	0.57 e+2.901	0.29 c-0.24	0.49 + + + + + + + + + + + + + + + + + + +		0.32 e-0.021	$0.61e^{+2.34}$	

- We examine the branching fraction predictions for the decays $\pi^+\pi^-$, $\pi^0\pi^0$, K^+K^- , $K^0\overline{K^0}$ based on each Omnès matrix (\Leftrightarrow rescattering input) separately
- Only a few of them give simultaneously correct Br values for all channels:

Choice of Omnès factors

For the isospin=0 channels we calculate numerically the Omnès matrix at $s = m_D^2$

- We examine the branching fraction predictions for the decays $\pi^+\pi^-$, $\pi^0\pi^0$, K^+K^- , $K^0\overline{K^0}$ based on each Omnès matrix (\Leftrightarrow rescattering input) separately
- Only a few of them give simultaneously correct Br values for all channels:

Results

Rescattering quantified

With the branching fractions correctly reproduced the Omnès matrix looks like:

$$\Omega_{I=0} = \begin{pmatrix} 0.58e^{1.8i} & 0.64e^{-1.7i} \\ 0.58e^{-1.4i} & 0.61e^{2.3i} \end{pmatrix}$$

The **physical solution** is
$$\begin{pmatrix} \mathbf{A}(D \to \pi\pi_{I=0}) \\ \mathbf{A}(D \to KK_{I=0}) \end{pmatrix} = \underbrace{\Omega_{I=0}}_{\text{rescattering}} \cdot \underbrace{\begin{pmatrix} \mathbf{A}_{(\text{large } N_C)}(D \to \pi\pi_{I=0}) \\ \mathbf{A}_{(\text{large } N_C)}(D \to KK_{I=0}) \end{pmatrix}}_{\text{non-rescattering}}$$

It turns out:

Significant rescattering between the two final states!

penguin insertions \approx tree insertions

(of current-current operators, for I=0 reduced matrix elements)

Equivalently:

$$egin{aligned} &|\langle \pi\pi|(\overline{d}c)(\overline{u}d)|D^0
angle| pprox |\langle KK|(\overline{d}c)(\overline{u}d)|D^0
angle|, \ &|\langle KK|(\overline{s}c)(\overline{u}s)|D^0
angle| pprox |\langle \pi\pi|(\overline{s}c)(\overline{u}s)|D^0
angle| \end{aligned}$$

Sources of CP violation

Remember: Difference of weak phases AND strong phases needed

For $D \to \pi\pi$ we then have: $((\overline{d}c)(\overline{u}d), (\overline{s}c)(\overline{u}s) \sim \text{current-current operators})$

• I=2:
$$\lambda_d \times \langle \pi \pi_{I=2} | (\overline{d}c) (\overline{u}d) | D \rangle$$

• I=0: $\lambda_d \times \langle \pi \pi_{I=0} | (\overline{d}c)(\overline{u}d) | D \rangle + \lambda_s \times \langle \pi \pi_{I=0} | (\overline{s}c)(\overline{u}s) | D \rangle - \lambda_b \times \langle \pi \pi_{I=0} |_{\text{penguin operators}} | D \rangle$

If rescattering was elastic it would be

•
$$\langle \pi \pi_{I=0} | (\overline{s}c) (\overline{u}s) | D
angle = 0$$
 AND

•
$$\arg\langle \pi\pi_{I=0}|_{ ext{penguin operators}}|D
angle = \arg\langle \pi\pi_{I=0}|(\overline{d}c)(\overline{u}d)|D
angle$$

 \Rightarrow single source of CPV *would be* the interference between I = 0 and I = 2Instead, multiple sources of CPV present in this process

$$\alpha_{CP}(\pi\pi)(0-0), \ \alpha_{CP}(\pi\pi)(2-0) \text{ for } D^0 \to \pi^+\pi^-, \ \pi^0\pi^0 \\ \alpha_{CP}(KK)(0-0), \ \alpha_{CP}(KK)(1-0) \text{ for } D^0 \to K^+K^-, \ K^0\overline{K^0}$$

Some small cancellations present - do not affect the final result

CP asymmetries

$\Delta lpha_{CP}^{dir,exp} = (-1.57 \pm 0.29) \cdot 10^{-3}$
With $\delta(I=2,\pi\pi), \delta(I=1,KK)$
around the chosen values, we predict:
$\Delta lpha_{CP}^{dir,theo} \sim 5 \cdot 10^{-4} !!$
and $\overline{lpha_{CP}^{dir}(D^0 o \pi^+\pi^-)}pprox 3\cdot 10^{-4}$,
$lpha_{CP}^{dir}(D^0 o K^+ K^-) pprox -2 \cdot 10^{-4}$
$\alpha_{CP}^{dir} \approx 2 \underbrace{r_{CKM}}_{\sim \ 6 \cdot 10^{-4}} \underbrace{\frac{ B(f) }{ A(f) }}_{\sim \ 1/3} \cdot \underbrace{\sin \arg \frac{A(f)}{B(f)}}_{\sim 1}$

charged meson channels neutral meson channels

NB: Short-distance penguins also not negligible for the CP asymmetries: C_6 small but annihilation insertion very large so that $C_6 \langle Q_6 \rangle_{\text{large } N_C} \sim C_1 \langle Q_1 \rangle_{\text{large } N_C}$ **NB**: SU(3) breaking manifested through differences in the $\pi\pi$ and KKrescattering parameters; similar level to breaking observed in decay constants, form factors

With fewer uncertain strong parameters (preliminary)

- $\pi\pi, KK$ inelasticity has large uncertainties
- Use only one low-energy strong phase for isospin 0: $\pi\pi + KK$ phase

 \bullet Assumption: 2-channel unitarity \rightarrow CPT/unitarity theorem also applying

Sum rule for
$$\alpha_{CP}(\pi\pi)(0-0)$$
, $\alpha_{CP}(KK)(0-0)$
 $\Rightarrow \alpha_{CP}(\pi\pi)(0-0) \cdot \alpha_{CP}(KK)(0-0) < 0$

• We manage to constrain:

• The CP asymmetry from I = 2/0 interference is not constrained, but would require very large values of isospin-0 Omnès matrix elements \Rightarrow some dynamics not manifested in the data

• SM, data-driven approach that calculates the hadronic matrix elements deploying

- SM, data-driven approach that calculates the hadronic matrix elements deploying
 - S-matrix unitarity and scattering amplitude analyticity

- SM, data-driven approach that calculates the hadronic matrix elements deploying
 - S-matrix unitarity and scattering amplitude analyticity
 - **②** as much data as possible (rescattering, form factors and decay constants, Br's of D^+ decays)
- Isospin-zero strong rescattering data involves uncertainties \rightarrow We keep the input that yields branching fractions in reasonable agreement with experiment

- SM, data-driven approach that calculates the hadronic matrix elements deploying
 - S-matrix unitarity and scattering amplitude analyticity
 - **②** as much data as possible (rescattering, form factors and decay constants, Br's of D^+ decays)
- Isospin-zero strong rescattering data involves uncertainties \rightarrow We keep the input that yields branching fractions in reasonable agreement with experiment
- We still estimate the CP asymmetry for the $\pi^+\pi^-$ too small compared to the experimental value!

- SM, data-driven approach that calculates the hadronic matrix elements deploying
 - S-matrix unitarity and scattering amplitude analyticity
 - (a) as much data as possible (rescattering, form factors and decay constants, Br's of D^+ decays)
- Isospin-zero strong rescattering data involves uncertainties \rightarrow We keep the input that yields branching fractions in reasonable agreement with experiment
- We still estimate the CP asymmetry for the $\pi^+\pi^-$ too small compared to the experimental value!
- CPV in $D^0 \rightarrow \pi^0 \pi^0$ predicted to be of similar magnitude (could some experiments look there?)

- SM, data-driven approach that calculates the hadronic matrix elements deploying
 - S-matrix unitarity and scattering amplitude analyticity
 - (a) as much data as possible (rescattering, form factors and decay constants, Br's of D^+ decays)
- Isospin-zero strong rescattering data involves uncertainties \rightarrow We keep the input that yields branching fractions in reasonable agreement with experiment
- We still estimate the CP asymmetry for the $\pi^+\pi^-$ too small compared to the experimental value!
- CPV in $D^0 \rightarrow \pi^0 \pi^0$ predicted to be of similar magnitude (could some experiments look there?)
- Future directions: diferent isospin-2 scenarios, more channels in isospin-0?
- But these are naively not expected to change the picture...
- Cross-checks in other channels are crucial

Thank you very much!

Isospin-2 and -1 fixing

$$\begin{split} \mathscr{A}(D^+ &
ightarrow \pi^+ \pi^0) = rac{3}{2\sqrt{2}} A^{\pi}_{l2} \ \mathscr{A}(D^+ &
ightarrow K^+ \overline{K^0}) = A^K_{l1} \end{split}$$

We fix $|A_{I2}^{\pi}|$, $|A_{I1}^{\kappa}|$ from the Br's and use them in e.g.

$$\mathscr{A}(D^0 \to \pi^+\pi^-) = -\frac{1}{2\sqrt{3}}A^{\pi}_{I2} + \frac{1}{\sqrt{6}}A^{\pi}_{I0}$$

If I=2 elastic then $A_{I2}^{\pi} = \Omega_{I=2}A_{fac,I=2}$ If inelastic $A_{I2}^{\pi} = \Omega_{I=2}A_{fac,I=2} + (\text{mixing})$ but we use directly $A_{I2}^{\pi} = |A_{I2}^{\pi}| \exp\{i\delta_{I=2}^{\pi\pi}\}$, phase left free

Naive estimate of final state interaction effects

$$\begin{pmatrix} A_{\pi\pi}^{I=0} \\ A_{KK}^{I=0} \end{pmatrix} = S_{S}^{1/2} \cdot \begin{pmatrix} A_{\pi\pi,\text{bare}}^{I=0} \\ A_{KK,\text{bare}}^{I=0} \end{pmatrix}$$

bare amplitudes: from factorisation (no strong phases) Reproduces correctly Watson's theorem What unitarity gives:

$$\begin{pmatrix} A_{\pi\pi}^{I=0} \\ A_{KK}^{I=0} \end{pmatrix} = S_{S} \cdot \begin{pmatrix} (A_{\pi\pi}^{I=0})^{*} \\ (A_{KK}^{I=0})^{*} \end{pmatrix}$$

No direct solution for the amplitudes, just relates them to the rescattering phases:

$$argA_{\pi\pi}^{I=0} = \delta_{1} + \arccos \sqrt{\frac{(1+\eta)^{2} - \left(\frac{|A_{K\pi}^{I=0}|}{|A_{\pi\pi}^{I=0}|}\right)^{2}(1-\eta^{2})}{4\eta}} argA_{KK}^{I=0} = \delta_{2} + \arccos \sqrt{\frac{(1+\eta)^{2} - \left(\frac{|A_{\pi\pi}^{I=0}|}{|A_{KK}^{I=0}|}\right)^{2}(1-\eta^{2})}{4\eta}}$$

Numerical solution of 2-channel case

$$\binom{\operatorname{ReA}^{\pi}(s)}{\operatorname{ReA}^{\kappa}(s)} = \frac{s - s_0}{\pi} \operatorname{PV} \int_{s_{thr}}^{\infty} ds' \frac{(\operatorname{ReT})^{-1}(\operatorname{ImT})(s')}{(s' - s)(s' - s_0)} \binom{\operatorname{ReA}^{\pi}(s')}{\operatorname{ReA}^{\kappa}(s')} + \binom{\operatorname{ReA}^{\pi}_0(s_0)}{\operatorname{ReA}^{\kappa}_0(s_0)}$$

• We discretise following the method from [Moussallam et al. hep-ph/9909292] into

$$\binom{\operatorname{ReA}^{\pi}(s_i)}{\operatorname{ReA}^{\kappa}(s_i)} = \frac{s_i - s_0}{\pi} \sum_j \hat{w}_j \frac{(\operatorname{ReT})^{-1}(\operatorname{ImT})(s_j)}{(s_j - s_i)(s_j - s_0)} \binom{\operatorname{ReA}^{\pi}(s_j)}{\operatorname{ReA}^{\kappa}(s_j)} + \binom{\operatorname{ReA}^{\pi}_0(s_0)}{\operatorname{ReA}^{\kappa}_0(s_0)}$$

- This creates an invertible matrix which gives a (discrete) solution
- Subtleties taken care of as in [Moussallam et al. hep-ph/9909292]
- To pick the fundamental solutions, we fix the vector at an unphysical point s < 0 and</p>
 - check they behave as $\frac{1}{s}$ for large s
 - make sure the numerical determinant behaves as the (known) analytical determinant

• $\pi\pi$ states can have isospin=0,2. *KK* can have isospin=0,1.

$$\begin{pmatrix} A(\pi^{+}\pi^{-})\\ A(\pi^{0}\pi^{0})\\ A(K^{+}K^{-})\\ A(K^{0}\overline{K}^{0}) \end{pmatrix} = \begin{pmatrix} -\frac{1}{2\sqrt{3}} & -\frac{1}{\sqrt{6}} & 0 & 0\\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & 0 & 0\\ 0 & 0 & \frac{1}{2} & -\frac{1}{2}\\ 0 & 0 & -\frac{1}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} A_{\pi}^{2}\\ A_{\pi}^{0}\\ A_{K}^{1} \end{pmatrix}$$

$$\begin{pmatrix} A^{\pi} \\ A^{\kappa} \end{pmatrix} = \begin{pmatrix} \Omega_{11} & \Omega_{12} \\ \Omega_{21} & \Omega_{22} \end{pmatrix} \begin{pmatrix} \operatorname{Re}\lambda_d T^{\pi} + \dots \\ \operatorname{Re}\lambda_s T^{\kappa} + \dots \end{pmatrix}$$
$$\begin{pmatrix} B^{\pi} \\ B^{\kappa} \end{pmatrix} = \begin{pmatrix} \Omega_{11} & \Omega_{12} \\ \Omega_{21} & \Omega_{22} \end{pmatrix} \begin{pmatrix} \operatorname{Im}\lambda_d T^{\pi} + \sum_i \operatorname{Im}\lambda_{d_i} P^{\pi}_i \\ \operatorname{Im}\lambda_s T^{\kappa} + \sum_i \operatorname{Im}\lambda_{d_i} P^{\kappa}_i \end{pmatrix}$$

Can consider either $Im\lambda_d = 0$ or $Im\lambda_s = 0$, not both simultaneously $\Rightarrow \ln \alpha_{CP}^{dir}$ there always exists a term $\sim T^{\pi}T^{\kappa}$, both for $\pi\pi$ and for KK

Some numerical inputs

- $C_1 = 1.18, C_2 = -0.32, C_3 = 0.011, C_4 = -0.031, C_5 = 0.0068, C_6 = -0.032$ ($\mu = 2 \text{ GeV}$)
- $\lambda_d = V_{cd}^* V_{ud} \approx 0.22$
- $\overline{m_c}(2GeV) = 1.097GeV$
- Compare $m_D = 1865$ MeV to $\Lambda_{\chi PT} pprox m_
 ho = 775$ MeV