Final-state interactions in the CP asymmetries of charm-meson two-body decays

Eleftheria Solomonidi
In collaboration with Antonio Pich \& Luiz Vale Silva Based on Phys.Rev.D 108 (2023) 3, 036026 and upcoming publication

Introduction

Charm Physics in the limelight

- Complementary to down-type sector for CKM tests
- Experimental programme is growing (LHCb, Belle II, BESIII)
- Theoretical efforts have to keep up

Mixing
Rare decays

CP violation in decays

Compared to K, B Physics:

- Different masses \Rightarrow different loop effects
\& different mixing sizes \Rightarrow different phenomenology! $m_{d}, m_{s}, m_{b} \ll m_{W} \Rightarrow \lambda_{d} F\left(x_{d}\right)+\lambda_{s} F\left(x_{s}\right)+\lambda_{b} F\left(x_{b}\right) \approx 0$

A new anomaly or an incomplete theory prediction?

$$
\begin{aligned}
& \Delta A_{C P}^{\text {exp }} \equiv A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=[-1.54 \pm 0.29] \cdot 10^{-3} \\
& \Delta \alpha_{C P}^{\text {dir,exp }}=[-1.57 \pm 0.29] \cdot 10^{-3}[\text { LHCb 2019 }] \\
& A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)=[6.8 \pm 5.4(\text { stat }) \pm 1.6(\text { syst })] \cdot 10^{-4}[\mathrm{LHCb} \text { 2022] }] \\
& \quad \alpha_{C P}^{\operatorname{dir}}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=[23.2 \pm 6.1] \cdot 10^{-4}
\end{aligned}
$$

Is the SM theoretical prediction in agreement?
Is it NP? [see e.g. Hiller et al. 2023, Chala, Lenz, Rusov, Scholtz 2019]

- CP violation from the SM induced by only 1 phase; CKM controlled by 4 independent parameters
- Weak sector (CKM parameters) probed by nuclear, $\pi, K \& B$ physics

- Strong sector introduces uncertainties

Weak and strong, short and long distance

$$
\begin{array}{r}
\mathscr{A}\left(D^{0} \rightarrow f\right)=A(f)+\operatorname{ir}_{\text {CKM }} B(f) \\
\mathscr{A}\left(\overline{D^{0}} \rightarrow f\right)=A(f)-\operatorname{irCKM} B(f) \\
\alpha_{C P}^{\text {dir }} \approx 2 \underbrace{r C K M}_{\text {weak phases }} \frac{|B(f)|}{|A(f)|} \cdot \sin \underbrace{\arg \frac{A(f)}{B(f)}}_{\text {strong phases }}
\end{array}
$$

At $\mu \sim \mu_{c}$:

$$
\mathscr{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}}\left[\Sigma_{i=1}^{2} C_{i}(\mu)\left(\lambda_{d} Q_{i}^{d}(\mu)+\lambda_{s} Q_{i}^{s}(\mu)\right)-\lambda_{b}\left(\sum_{i=3}^{6} C_{i}(\mu) Q_{i}(\mu)+C_{8 g}(\mu) Q_{8 g}(\mu)\right)\right]
$$

$\lambda_{q}=V_{c q}^{*} V_{u q}, \quad q=d, s, b$.
$\left|\lambda_{d}\right| \approx\left|\lambda_{s}\right|=\mathscr{O}(\lambda)$

$$
r_{C K M}=\operatorname{Im} \frac{V_{c c}^{*} V_{u b}}{V_{c d}^{*} V_{u d}} \approx 6.2 \cdot 10^{-4}
$$

$$
\lambda_{d}+\lambda_{s}+\lambda_{b}=0
$$

Penguin operators

Current-current operators

$$
\begin{aligned}
& Q_{1}^{q}=(\bar{q} c)_{V-A}(\bar{u} q)_{V-A} \\
& Q_{2}^{d}=\left(\bar{q}_{j} c_{i}\right)_{V-A}\left(\bar{u}_{i} q_{j}\right)_{V-A} \\
& \quad(q=d, s)
\end{aligned}
$$

$C_{4,6}<0.1 C_{2}, 0.03 C_{1}$ (GIM mechanism at play)

Weak and strong, short and long distance

$$
\begin{array}{r}
\mathscr{A}\left(D^{0} \rightarrow f\right)=A(f)+\operatorname{ir}_{C K M} B(f) \\
\mathscr{A}\left(\overline{D^{0}} \rightarrow f\right)=A(f)-\operatorname{ir}_{C K M} B(f) \\
\alpha_{C P}^{\text {dir }} \approx 2 \underbrace{r_{C K M}}_{\text {weak phases }} \frac{|B(f)|}{|A(f)|} \cdot \underbrace{\sin }_{\text {strong phases }} \underbrace{\arg \frac{A(f)}{B(f)}}
\end{array}
$$

At $\mu \sim \mu_{c}$:

$$
\begin{aligned}
& \mathscr{H}_{\text {eff }}=\frac{G_{F}}{\sqrt{2}}\left[\sum_{i=1}^{2} C_{i}(\mu)\left(\lambda_{d} Q_{i}^{d}(\mu)+\lambda_{s} Q_{i}^{s}(\mu)\right)-\lambda_{b}\left(\Sigma_{i=3}^{6} C_{i}(\mu) Q_{i}(\mu)+C_{8 g}(\mu) Q_{8 g}(\mu)\right)\right] \\
\lambda_{q}=V_{c q}^{*} V_{u q}, \quad q=d, s, b . & r_{C K M}=\operatorname{Im} \frac{V_{c b}^{*} V_{u b}}{V_{c d}^{*} V_{u d}} \approx 6.2 \cdot 10^{-4} \\
\left|\lambda_{d}\right| \approx\left|\lambda_{s}\right|=\mathscr{O}(\lambda) &
\end{aligned}
$$

$$
\lambda_{d}+\lambda_{s}+\lambda_{b}=0
$$

Charm scale is special!

$$
\begin{aligned}
& \Lambda_{\chi P T} \approx m_{\rho}<m_{D}=1865 \mathrm{MeV} \\
& \frac{\Lambda_{Q C D}}{m_{c}} \approx \mathscr{O}(1)
\end{aligned}
$$

See also: Khodjamirian, Petrov Phys. Lett. B, 774:235-242, 2017, Brod, Kagan, Zupan Phys. Rev. D, 86:014023, 2012, Schacht, Soni Phys. Lett. B, 825:136855, 2022, Franco, Mishima, Silvestrini JHEP, 05:140, 2012, Buccella, Paul, Santorelli Phys. Rev. D, 99(11):113001, 2019,Hiller, Jung, Schacht

Data-driven approach - principles

A way to look at the problem: rescattering

Idea: implement long-distance QCD effects through resummation of rescattering "bubbles"

- Strong process, blind to the weak dynamics
- Isospin ($u \leftrightarrow d$) is a good symmetry of strong interactions
$\mathcal{H}_{\text {eff }}$

- In $\mathrm{I}=0$, two channels:

$$
S_{\text {strong }}=\left(\begin{array}{ll}
\pi \pi \rightarrow \pi \pi & \pi \pi \rightarrow K K \\
K K \rightarrow \pi \pi & K K \rightarrow K K
\end{array}\right)
$$

Rescattering \& unitarity

- S matrix is unitary, as well as strong sub-matrix
- Optical theorem-like relation: $\operatorname{Im}\langle h h| Q_{i}|D\rangle=\sum_{n}\langle h h| T|n\rangle\langle n| Q_{i}|D\rangle^{*}$

- The phases of the decay amplitudes are related to the rescattering phases for which data and data-driven parameterizations exist
- Watson's theorem (elastic rescattering limit): $\arg A(D \rightarrow \pi \pi)=\arg A(\pi \pi \rightarrow \pi \pi) \bmod \pi$
- With inelasticities: more complicated, phase-shifts dependent on magnitudes of the amplitudes too

Analyticity and unitarity consequences: Dispersion relations

- Analyticity: fundamental, model-independent property related to causality
- Amplitudes analytical except for a right-hand cut
- Cauchy's theorem:

$$
\begin{aligned}
& A(s)=\frac{1}{2 \pi i} \oint_{C} d s^{\prime} \frac{A\left(s^{\prime}\right)}{s^{\prime}-s} \text { leads to } \\
& \operatorname{Re} A(s)=\frac{1}{\pi} \int_{s_{\text {thr }}}^{\infty} d s^{\prime} \frac{\operatorname{lm} A\left(s^{\prime}\right)}{s^{\prime}-s}
\end{aligned}
$$

(Dispersion relation)
Single channel case:
Implement unitarity of S -matrix:
Solution:
$\underbrace{\operatorname{Re} A_{l}(s)}_{\operatorname{Re} \text { at a point }}=\frac{1}{\pi} \underbrace{P V \int_{s_{t h r}}^{\infty} d s^{\prime} \frac{\tan \delta_{l}\left(s^{\prime}\right)}{s^{\prime}-s} \operatorname{Re} A_{l}\left(s^{\prime}\right)}_{\text {integral of Re along the physical region }}$

+ one subtraction \Rightarrow

$$
\underbrace{\exp \left\{\frac{s-s_{0}}{\pi} P \vee \int_{4 M_{\pi}^{2}}^{\infty} d z \frac{\delta_{l}(z)}{\left(z-s_{0}\right)(z-s)}\right\}}_{\text {Omnès factor } \Omega}
$$

Matrix elements without rescattering

The no-rescattering limit coincides with the limit of $N_{c} \rightarrow \infty$ \Rightarrow we are left with the matrix elements from factorization - no strong phase induced

(Same for $D \rightarrow K K$)

- Decay constant and form factors come from lattice and data ($\pi \pi$ FF through χ PT)
- Non-perturbative QCD information within each current naturally included

Data-driven approach: details

Summary of our method

- Factor out the eff. weak Hamiltonian (weak process \& short-distance QCD)
- Implement final state interaction (FSI) dynamics in the isospin limit (no $S U(3)$ assumption needed)
- Isospin blocks:
- $\mathrm{I}=0$, unitarity with 2 channels: $\pi \pi$ and $K K$
- I $=1$ with $K K$ elastic rescattering
- $\mathrm{I}=2$ with $\pi \pi$ elastic rescattering
- Isospin-zero amplitudes treated with dispersion relations (DRs) calculated numerically (based on Moussallam et al. [hep-ph/9909292])
- Use inelasticity and phase-shift parameterizations [Pelaez et al., 1907.13162]|Pelaez et al., 2010.11222] up to energies $\sim m_{D}$ - extrapolate for higher \& consider uncertainties
- For $\mathrm{I}=1$ and 2 , extract \mid Omnès factors \mid from Br's of $A\left(D^{+} \rightarrow \pi^{+} \pi^{0}\right) \sim A_{l=2}, A\left(D^{+} \rightarrow K^{+} \overline{K^{0}}\right) \sim A_{l=1}$; phases left unconstrained
- Decay-specific physical input (in the subtraction constant of DRs): large N_{C} limit of the eff. weak Hamiltonian

Choice of Omnès factors

For the isospin $=0$ channels we calculate numerically the Omnès matrix at $s=m_{D}^{2}$

	solution I	solution II	solution III
成 $\mathrm{m}_{5}^{*}-1$			
	$\mathrm{S}^{(01)}=\left(\begin{array}{ll}2.01 c^{+1.382} & 2.47 e^{-1.51} \\ 0.37 e^{-033} & 0.54 e^{+\times 1001}\end{array}\right)$	$\mathrm{N}^{(0)}=\left(\begin{array}{lll}1.91 e^{+4.2311} & 2.78 r^{-2381} \\ 0.31 e^{-2351} & 0.45 c^{+3.30 \%}\end{array}\right)$	
			$0^{(i) 1}=\left(\begin{array}{lll}.0 .19 e^{+0.354} & 3.94 e^{-2724} \\ 0.32 e^{-0.31} & 0.81 e^{+384}\end{array}\right)$

Choice of Omnès factors

For the isospin $=0$ channels we calculate numerically the Omnès matrix at $s=m_{D}^{2}$

	selution I	pelution II	,lutioen III
N1. m_{i}^{-1}			

[Pelaez et al. 1907.13162] $\sqrt{s}[\mathrm{GeV}]$

- We examine the branching fraction predictions for the decays $\pi^{+} \pi^{-}, \pi^{0} \pi^{0}, K^{+} K^{-}, K^{0} \overline{K^{0}}$ based on each Omnès matrix (\Leftrightarrow rescattering input) separately
- Only a few of them give simultaneously correct Br values for all channels:
(Br -prediction)/(Br-exp)

(Br -prediction)/(Br -exp)

Choice of Omnès factors

For the isospin $=0$ channels we calculate numerically the Omnès matrix at $s=m_{D}^{2}$

- We examine the branching fraction predictions for the decays $\pi^{+} \pi^{-}, \pi^{0} \pi^{0}, K^{+} K^{-}, K^{0} K^{0}$ based on each Omnès matrix (\Leftrightarrow rescattering input) separately
- Only a few of them give simultaneously correct Br values for all channels:
(Br -prediction)/(Br-exp)

(Br -prediction)/(Br -exp)

Results

Rescattering quantified

With the branching fractions correctly reproduced the Omnès matrix looks like:

$$
\Omega_{I=0}=\left(\begin{array}{cc}
0.58 e^{1.8 i} & 0.64 e^{-1.7 i} \\
0.58 e^{-1.4 i} & 0.61 e^{2.3 i}
\end{array}\right)
$$

The physical solution is

$$
\binom{\mathbf{A}\left(D \rightarrow \pi \pi_{I=0}\right)}{\mathbf{A}\left(D \rightarrow K K_{I=0}\right)}=\underbrace{\Omega_{I=0}}_{\text {rescattering }} \cdot \underbrace{\binom{\mathbf{A}_{\left(\text {large } N_{C}\right)}\left(D \rightarrow \pi \pi_{I=0}\right)}{\mathbf{A}_{\left(\text {large } N_{C}\right)}\left(D \rightarrow K K_{I=0}\right)}}_{\text {non-rescattering }}
$$

It turns out:

Significant rescattering between the two final states!

penguin insertions \approx tree insertions (of current-current operators, for $\mathrm{I}=0$ reduced matrix elements)

Equivalently:

$$
\begin{aligned}
& \left.|\langle\pi \pi|(\bar{d} c)(\bar{u} d)| D^{0}\right\rangle|\approx|\langle K K|(\bar{d} c)(\bar{u} d)\left|D^{0}\right\rangle \mid, \\
& \left.|\langle K K|(\bar{s} c)(\bar{u} s)| D^{0}\right\rangle|\approx|\langle\pi \pi|(\bar{s} c)(\bar{u} s)\left|D^{0}\right\rangle \mid
\end{aligned}
$$

Sources of $C P$ violation

Remember: Difference of weak phases AND strong phases needed
For $D \rightarrow \pi \pi$ we then have:
$((\bar{d} c)(\bar{u} d),(\bar{s} c)(\bar{u} s) \sim$ current-current operators $)$

- $\mathrm{I}=2: \lambda_{d} \times\left\langle\pi \pi_{I=2}\right|(\bar{d} c)(\bar{u} d)|D\rangle$
- $\mathrm{I}=0$:

$$
\lambda_{d} \times\left\langle\pi \pi_{I=0}\right|(\bar{d} c)(\bar{u} d)|D\rangle+\lambda_{s} \times\left\langle\pi \pi_{I=0}\right|(\bar{s} c)(\bar{u} s)|D\rangle-\lambda_{b} \times\left\langle\left.\pi \pi_{I=0}\right|_{\text {penguin operators }} \mid D\right\rangle
$$

If rescattering was elastic it would be

- $\left\langle\pi \pi_{I=0}\right|(\bar{s} c)(\bar{u} s)|D\rangle=0$ AND
- $\arg \left\langle\left.\pi \pi_{I=0}\right|_{\text {enguin operators }} \mid D\right\rangle=\arg \left\langle\pi \pi_{I=0}\right|(\bar{d} c)(\bar{u} d)|D\rangle$
\Rightarrow single source of CPV would be the interference between $I=0$ and $I=2$ Instead, multiple sources of CPV present in this process
$\alpha_{C P}(\pi \pi)(0-0), \alpha_{C P}(\pi \pi)(2-0)$ for $D^{0} \rightarrow \pi^{+} \pi^{-}, \pi^{0} \pi^{0}$
$\alpha_{C P}(K K)(0-0), \alpha_{C P}(K K)(1-0)$ for $D^{0} \rightarrow K^{+} K^{-}, K^{0} \overline{K^{0}}$

Some small cancellations present - do not affect the final result

CP asymmetries

charged meson channels neutral meson channels
NB: Short-distance penguins also not negligible for the CP asymmetries:
C_{6} small but annihilation insertion very large so that $C_{6}\left\langle Q_{6}\right\rangle_{\text {large }} N_{C} \sim C_{1}\left\langle Q_{1}\right\rangle_{\text {large }} N_{C}$
NB: $S U(3)$ breaking manifested through differences in the $\pi \pi$ and $K K$ rescattering parameters; similar level to breaking observed in decay constants, form factors

With fewer uncertain strong parameters (preliminary)

- $\pi \pi, K K$ inelasticity has large uncertainties
- Use only one low-energy strong phase for isospin 0 : $\pi \pi+K K$ phase

- Assumption: 2-channel unitarity \rightarrow CPT/unitarity theorem also applying

Sum rule for $\alpha_{C P}(\pi \pi)(0-0), \alpha_{C P}(K K)(0-0)$
$\Rightarrow \alpha_{C P}(\pi \pi)(0-0) \cdot \alpha_{C P}(K K)(0-0)<0$

- We manage to constrain:

$$
\begin{aligned}
0 & <\alpha_{C P}(\pi \pi)(0-0) \lesssim 5 \times 10^{-4} \\
-3 \times 10^{-4} & \lesssim \alpha_{C P}(K K)(0-0)<0
\end{aligned}
$$

- The CP asymmetry from $I=2 / 0$ interference is not constrained, but would require very large values of isospin-0 Omnès matrix elements \Rightarrow some dynamics not manifested in the data

Summary

- SM, data-driven approach that calculates the hadronic matrix elements deploying

Summary

- SM, data-driven approach that calculates the hadronic matrix elements deploying
(1) S-matrix unitarity and scattering amplitude analyticity

Summary

- SM, data-driven approach that calculates the hadronic matrix elements deploying
(1) S-matrix unitarity and scattering amplitude analyticity
(2) as much data as possible (rescattering, form factors and decay constants, Br's of D^{+}decays)
- Isospin-zero strong rescattering data involves uncertainties \rightarrow We keep the input that yields branching fractions in reasonable agreement with experiment

Summary

- SM, data-driven approach that calculates the hadronic matrix elements deploying
(1) S-matrix unitarity and scattering amplitude analyticity
(2) as much data as possible (rescattering, form factors and decay constants, Br's of D^{+}decays)
- Isospin-zero strong rescattering data involves uncertainties \rightarrow We keep the input that yields branching fractions in reasonable agreement with experiment
- We still estimate the CP asymmetry for the $\pi^{+} \pi^{-}$too small compared to the experimental value!

Summary

- SM, data-driven approach that calculates the hadronic matrix elements deploying
(1) S-matrix unitarity and scattering amplitude analyticity
(2) as much data as possible (rescattering, form factors and decay constants, Br's of D^{+}decays)
- Isospin-zero strong rescattering data involves uncertainties \rightarrow We keep the input that yields branching fractions in reasonable agreement with experiment
- We still estimate the CP asymmetry for the $\pi^{+} \pi^{-}$too small compared to the experimental value!
- CPV in $D^{0} \rightarrow \pi^{0} \pi^{0}$ predicted to be of similar magnitude (could some experiments look there?)

Summary

- SM, data-driven approach that calculates the hadronic matrix elements deploying
(1) S-matrix unitarity and scattering amplitude analyticity
(2) as much data as possible (rescattering, form factors and decay constants, Br's of D^{+}decays)
- Isospin-zero strong rescattering data involves uncertainties \rightarrow We keep the input that yields branching fractions in reasonable agreement with experiment
- We still estimate the CP asymmetry for the $\pi^{+} \pi^{-}$too small compared to the experimental value!
- CPV in $D^{0} \rightarrow \pi^{0} \pi^{0}$ predicted to be of similar magnitude (could some experiments look there?)
- Future directions: diferent isospin-2 scenarios, more channels in isospin-0?
- But these are naively not expected to change the picture...
- Cross-checks in other channels are crucial

Thank you very much!

BACKUP

Isospin-2 and -1 fixing

$$
\begin{gathered}
\mathscr{A}\left(D^{+} \rightarrow \pi^{+} \pi^{0}\right)=\frac{3}{2 \sqrt{2}} A_{I 2}^{\pi} \\
\mathscr{A}\left(D^{+} \rightarrow K^{+} \overline{K^{0}}\right)=A_{I 1}^{K}
\end{gathered}
$$

We fix $\left|A_{12}^{\pi}\right|,\left|A_{11}^{K}\right|$ from the Br's and use them in e.g.

$$
\mathscr{A}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)=-\frac{1}{2 \sqrt{3}} A_{12}^{\pi}+\frac{1}{\sqrt{6}} A_{10}^{\pi}
$$

If $\mathrm{I}=2$ elastic then $A_{12}^{\pi}=\Omega_{I=2} A_{f a c, I=2}$
If inelastic $A_{l 2}^{\pi}=\Omega_{I=2} A_{\text {fac }, l=2}+$ (mixing) but we use directly $A_{12}^{\pi}=\left|A_{12}^{\pi}\right| \exp \left\{i \delta_{l=2}^{\pi \pi}\right\}$, phase left free

Naive estimate of final state interaction effects

$$
\binom{A_{\pi}^{I=0}}{A_{K K}^{l=0}}=S_{S}^{1 / 2} \cdot\binom{A_{\pi}^{l=0}=0, \text { bare }}{A_{K K, ~ b a r e ~}^{l=}}
$$

bare amplitudes: from factorisation (no strong phases) Reproduces correctly Watson's theorem What unitarity gives:

No direct solution for the amplitudes, just relates them to the rescattering phases:

$$
\begin{aligned}
& \arg A_{\pi \pi}^{l=0}=\delta_{1}+\arccos \sqrt{\left.\frac{(1+\eta)^{2}-\left(\left.\frac{\left|A^{\prime} A^{\prime}\right|=0}{\left|A_{A}\right|=\pi \mid} \right\rvert\,\right.}{4 \eta}\right)^{2}\left(1-\eta^{2}\right)} \\
& \arg A_{K K}^{\prime=0}=\delta_{2}+\arccos \sqrt{\frac{\left.(1+\eta)^{2}-\left(\frac{\left|A^{\prime}\right|=0}{\left|A_{k K}^{\prime \prime}\right|}\right)^{2}\right)^{2}\left(1-\eta^{2}\right)}{4 \eta}}
\end{aligned}
$$

Numerical solution of 2-channel case

$$
\binom{\operatorname{Re} A^{\pi}(s)}{\operatorname{Re} A^{K}(s)}=\frac{s-s_{0}}{\pi} P V \int_{s_{t h r}}^{\infty} d s^{\prime} \frac{(\operatorname{Re} T)^{-1}(I m T)\left(s^{\prime}\right)}{\left(s^{\prime}-s\right)\left(s^{\prime}-s_{0}\right)}\binom{\operatorname{Re} A^{\pi}\left(s^{\prime}\right)}{\operatorname{Re} A^{K}\left(s^{\prime}\right)}+\binom{\operatorname{Re} A_{0}^{\pi}\left(s_{0}\right)}{\operatorname{Re} A_{0}^{K}\left(s_{0}\right)}
$$

- We discretise following the method from [Moussallam et al. hep-ph/9909292] into

$$
\binom{\operatorname{Re} A^{\pi}\left(s_{i}\right)}{\operatorname{Re} A^{K}\left(s_{i}\right)}=\frac{s_{i}-s_{0}}{\pi} \sum_{j} \hat{w}_{j} \frac{(\operatorname{Re} T)^{-1}(\operatorname{Im} T)\left(s_{j}\right)}{\left(s_{j}-s_{i}\right)\left(s_{j}-s_{0}\right)}\binom{\operatorname{Re} A^{\pi}\left(s_{j}\right)}{\operatorname{Re} A^{K}\left(s_{j}\right)}+\binom{\operatorname{Re} A_{0}^{\pi}\left(s_{0}\right)}{\operatorname{Re} A_{0}^{K}\left(s_{0}\right)}
$$

- This creates an invertible matrix which gives a (discrete) solution
- Subtleties taken care of as in [Moussallam et al. hep-ph/9909292]
- To pick the fundamental solutions, we fix the vector at an unphysical point $s<0$ and
- check they behave as $\frac{1}{s}$ for large s
- make sure the numerical determinant behaves as the (known) analytical determinant

Isospin decomposition

- $\pi \pi$ states can have isospin $=0,2$. $K K$ can have isospin $=0,1$.

$$
\left(\begin{array}{c}
A\left(\pi^{+} \pi^{-}\right) \\
A\left(\pi^{0} \pi^{0}\right) \\
A\left(K^{+} K^{-}\right) \\
A\left(K^{0} \bar{K}^{0}\right)
\end{array}\right)=\left(\begin{array}{cccc}
-\frac{1}{2 \sqrt{3}} & -\frac{1}{\sqrt{6}} & 0 & 0 \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & 0 & 0 \\
0 & 0 & \frac{1}{2} & -\frac{1}{2} \\
0 & 0 & -\frac{1}{2} & -\frac{1}{2}
\end{array}\right)\left(\begin{array}{c}
A_{\pi}^{2} \\
A_{\pi}^{0} \\
A^{1} \\
A_{K}^{K}
\end{array}\right)
$$

CPV in $\mathrm{I}=0$

$$
\begin{gathered}
\binom{A^{\pi}}{A^{K}}=\left(\begin{array}{ll}
\Omega_{11} & \Omega_{12} \\
\Omega_{21} & \Omega_{22}
\end{array}\right)\binom{\operatorname{Re} \lambda_{d} T^{\pi}+\ldots}{\operatorname{Re} \lambda_{s} T^{K}+\ldots} \\
\binom{B^{\pi}}{B^{K}}=\left(\begin{array}{ll}
\Omega_{11} & \Omega_{12} \\
\Omega_{21} & \Omega_{22}
\end{array}\right)\binom{\operatorname{Im} \lambda_{d} T^{\pi}+\sum_{i} \operatorname{Im} \lambda_{d_{i}} P_{i}^{\pi}}{\operatorname{Im} \lambda_{s} T^{K}+\sum_{i} \operatorname{Im} \lambda_{d_{i}} P_{i}^{K}}
\end{gathered}
$$

Can consider either $\operatorname{Im} \lambda_{d}=0$ or $\operatorname{Im} \lambda_{s}=0$, not both simultaneously $\Rightarrow \ln \alpha_{C P}^{\text {dir }}$ there always exists a term $\sim T^{\pi} T^{K}$, both for $\pi \pi$ and for $K K$

Some numerical inputs

- $C_{1}=1.18, C_{2}=-0.32, C_{3}=0.011, C_{4}=-0.031, C_{5}=0.0068, C_{6}=-0.032$ ($\mu=2 \mathrm{GeV}$)
- $\lambda_{d}=V_{c d}^{*} V_{u d} \approx 0.22$
- $\overline{m_{c}}(2 \mathrm{GeV})=1.097 \mathrm{GeV}$
- Compare $m_{D}=1865 \mathrm{MeV}$ to $\Lambda_{\chi P T} \approx m_{\rho}=775 \mathrm{MeV}$

