Lepton flavour universality measurements with flavour-changing charged currents at LHCb LHCb Implications workshop 2023

Florian Reiss on behalf of the LHCb collaboration

26.10.2023

MANCHESTER 1824

The University of Manchester

Tests of lepton flavour universality

Standard Model of Elementary Particles

In the Standard Model (SM)

- leptons almost the same
 - same electroweak couplings
 - but different masses
- \rightarrow lepton flavour universality
 - accidental symmetry

Violation of LFU would hint at presence of new physics

26.10.2023

Tests of lepton flavour universality

LFU can be tested using tree-level semileptonic decays

- flavour-changing charged current
- large sample sizes
- theoretically clean

Semileptonic decays challenging at hadron colliders

- missing neutrino(s)
- many background sources
- signal yield needs to be extracted with template fits
- large and precisely calibrated simulated samples required

But profit from large sample sizes and production of various *b*-hadron species

Tests of LFU with complementary final states

Tests of lepton flavour universality

Test LFU at LHCb by measuring ratio of branching fractions

$$R(H_c) = \frac{\mathcal{B}(H_b \to H_c \tau \overline{\nu}_{\tau})}{\mathcal{B}(H_b \to H_c \mu \overline{\nu}_{\mu})}; \quad H_c = D^{*+}, D^0, D^+, D^+_s, \Lambda^+_c, J/\psi, \dots$$

Powerful test of LFU

- theoretical uncertainties cancel to large extent
- reduced systematic uncertainty in efficiency ratio

[PRD 108 012018 (2023)]

Test of lepton flavor universality using $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$ decays with hadronic τ channels [Phys. Rev. D 108 012018 (2023)]

$$\mathcal{R}(D^{*-}) = rac{\mathcal{B}(B^0 o D^{*-} au^+
u_ au)}{\mathcal{B}(B^0 o D^{*-} \mu^+
u_\mu)}$$

Measure $B^0 \rightarrow D^{*-}\tau^+(\rightarrow \pi^+\pi^+\pi^-(\pi^0)\overline{\nu}_{\tau})\nu_{\tau}$ w.r.t normalisation channel $B^0 \rightarrow D^{*-}\pi^+\pi^-\pi^+$

$$\mathcal{R}(D^{*-}) = \underbrace{\left[\frac{\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-}\pi^+\pi^-\pi^+)}\right]}_{\mathcal{K}(D^{*-}), \textit{measured}} \times \underbrace{\left[\frac{\mathcal{B}(B^0 \to D^{*-}\pi^+\pi^-\pi^+)}{\mathcal{B}(B^0 \to D^{*-}\mu^+\nu_{\mu})}\right]}_{external}$$

requires external BF input to get R(D^{*-})

Use partial Run 2 dataset (2015, 2016: $2 \, {
m fb}^{-1}$) at $\sqrt{s} = 13 \, {
m TeV}$

 40% more signal candidates than previous Run 1 measurement [PRD 97 072013 (2018)] [PRL 120 171802 (2018)]

Main backgrounds

• 'prompt' $B \rightarrow D^* 3\pi$

▶ suppressed by using displaced 3π vertex criterium

- double-charm $B \rightarrow D^{*-}D(X)$
 - $\blacktriangleright D = D_s^+, D^+, D^0$

suppressed by dedicated BDT (used as fit variable)

Extract signal using 3D template fit

- $q^2=m^2(au^+
 u_ au)$
- au^+ decay time $t_{ au^+}$
- output of BDT against $B^0 o D^{*-} D^+_s(X)$

[PRD 108 012018 (2023)]

Control dynamics of $D_s^+ \rightarrow 3\pi^\pm X$ resonant structure using data

- fit 3π kinematic variables
- correct branching fractions used in simulation

26.10.2023

Implications workshop

[PRD 108 012018 (2023)]

Control double-charm backgrounds $B \rightarrow D^{*-}D^+_s(X)$ using data

26.10.2023

Extraction of normalisation mode $B^0 \rightarrow D^{*-} \pi^+ \pi^- \pi^+$ yield

• fit $m(D^{*-}\pi^{+}\pi^{-}\pi^{+})$

• subtract contribution from $B^0
ightarrow D^{*-}D^+_s (
ightarrow 3\pi)$

[PRD 108 012018 (2023)]

Extract signal using 3D template fit

 $\mathcal{R}(D^{*-}) = 0.247 \pm 0.015 \,(\text{stat}) \pm 0.015 \,(\text{syst}) \pm 0.012 \,(\text{ext})$

in agreement with Standard Model and world average

26.10.2023

Combined with LHCb Run 1 result [PRD 97 072013 (2018)] [PRL 120 171802 (2018)]

 $\mathcal{R}(D^{*-})_{comb} = 0.257 \pm 0.012\,(ext{stat}) \pm 0.014\,(ext{syst}) \pm 0.012\,(ext{ext})$

[PRL 131 111802 (2023)]

Measurement of the Ratios of Branching Fractions $R(D^*)$ and $R(D^0)$ [Phys. Rev. Lett. 131 111802 (2023)]

- measure $R(D^*)$ and $R(D^0)$ simultaneously with muonic au decay
- uses Run 1 data (3 fb⁻¹) at $\sqrt{s} = 7,8$ TeV
- supersedes [PRL 115 111803 (2015)]
- signal and normalisation sample same final state
 - no need for external BFs
- backgrounds from $B
 ightarrow D^{**} \mu
 u_{\mu}$, B
 ightarrow DD(X)

Two independent samples

26.10

•
$$D^{0}\mu^{-}$$

• $B^{-} \rightarrow D^{0}(\rightarrow K^{-}\pi^{+})\tau^{-}\overline{\nu}_{\tau}$
• $B^{-} \rightarrow D^{*0}(\rightarrow D^{0}\pi^{0}/\gamma)\tau^{-}\overline{\nu}_{\tau}$
• $\overline{B}^{0} \rightarrow D^{*+}(\rightarrow D^{0}\pi^{+})\tau^{-}\overline{\nu}_{\tau}$
• $D^{*+}\mu^{-}$ (vetoed in $D^{0}\mu^{-}$ sample)
• $\overline{B}^{0} \rightarrow D^{*+}(\rightarrow D^{0}\pi^{+})\tau^{-}\overline{\nu}_{\tau}$

Control backgrounds using samples with additional pions and kaons

• enriched in B
ightarrow DDX and $B
ightarrow D^{**} \mu
u$

• fit simultaneously with signal sample

[PRL 131 111802 (2023)]

Extract signal yield using 3D template fit

• fit variables $q^2=m^2(au^+
u_ au)$, E^*_{μ} , m^2_{miss}

$$\begin{split} \mathcal{R}(D^*) &= 0.281 \pm 0.018 \, (\text{stat}) \pm 0.024 \, (\text{syst}) \\ \mathcal{R}(D^0) &= 0.441 \pm 0.060 \, (\text{stat}) \pm 0.066 \, (\text{syst}) \\ & \text{correlation } \rho = -0.43 \end{split}$$

• in agreement with Standard Model at 1.9σ

26.10.2023

Implications workshop

Global picture

Tension of about 3.3σ between average of measurements and SM predictions

Global picture

- precision on $R(D^*)$ reached by LHCb is similar to Belle
- main systematic uncertainties from simulated sample sizes and signal and background modelling

While semileptonic decays are very challenging at hadron colliders, LHCb is becoming major player

Implications workshop

More ratios

Other *b*-hadrons used as well

- uniquely at LHC!
- probe different new physics scenarios with baryons

• using hadronic au decay

$$B_c^- \rightarrow J/\psi \,\ell^- \overline{\nu}_\ell$$
 (Run 1, 3 fb⁻¹)

• using muonic τ decay

Much more data and final states to explore!

	Run 1 (3 fb $^{-1}$, 7/8 TeV)		Run 2 (6 fb $^{-1}$, 13 TeV)	
mode	muonic	hadronic	muonic	hadronic
$\mathcal{R}(D^+)$	×	×	×	×
$\mathcal{R}(D^0)$	~	×	×	×
$\mathcal{R}(D^*)$	~	v	×	 Image: A start of the start of
$\mathcal{R}(\Lambda_{c}^{+})$	×	 ✓ 	×	×
$\mathcal{R}(\Lambda_{c}^{+*})$	×	×	×	×
$\mathcal{R}(J/\psi)$	~	×	×	×
$\mathcal{R}(D_s^+)$	×	×	×	×
$\mathcal{R}(D_{\epsilon}^{*+})$	×	×	×	×

In addition, work ongoing on

- $b \rightarrow u \ell \nu_{\ell}$ transitions
- excited states $\mathcal{R}(D^{**})$
- including more *D* decay modes

Current Run 3 and beyond will further improve sensitivity

- many measurements statistically limited
- some systematic uncertainties can be reduced with more data
- large simulated samples required manageable with fast simulation techniques

26.10.2023

Also performing angular analyses

necessary to distinguish different NP models

- model-independent approach [JHEP11 133 (2019)]
- directly extract Wilson coefficients with HAMMER [EPJC 80, 883 (2020)]

[CERN-LHCC-2018-027]

New measurement of D^* longitudinal polarisation fraction, see talk by Davide

What about electrons? Is new physics hiding in angular observables?

Electrons more difficult to reconstruct due to Bremsstrahlung - ongoing analyses to establish feasibility

Summary

LHCb put two more points on the LFU table

- simultaneous measurement of $\mathcal{R}(D^0)$ and $\mathcal{R}(D^*)$ muonic
- $\mathcal{R}(D^{*-})$ hadronic
- global average of $\mathcal{R}(D) \mathcal{R}(D^*)$ measurements 3.3 σ from SM prediction

LHCb has unique samples to access various hadron species

• $\mathcal{R}(J\!/\psi)$, $\mathcal{R}(\Lambda_c^+)$

LHCb will further improve precision and add more final states and observables

- full Run 1+2, Upgrade I, Upgrade II
- angular analyses

Backup

The different D_s^+ decay components are broadly divided into four categories:

- $D^+_s
 ightarrow \eta \pi^+(\pi^0)$ decays where charged pions from the η meson are selected;
- $D_s^+ o \eta' \pi^+(\pi^0)$ decays where charged pions from the η' meson are selected;
- $D_s^+ \to \omega \pi^+(\pi^0)$ or $D_s^+ \to \phi \pi^+(\pi^0)$ decays where charged pions from the ω or ϕ meson are selected;
- D_s^+ decays where the pions originate either directly from the D_s^+ decay or from the a_1 resonance: $\eta 3\pi$, ηa_1 , $\eta' 3\pi$, $\eta' a_1$, $\omega 3\pi$, ωa_1 , $\phi 3\pi$, ϕa_1 , $K^0 3\pi$, $K^0 a_1$, $\tau^+ \nu_{\tau}$ and non-resonant 3π .

Control double-charm backgrounds $B \rightarrow D^{*-}D^0(X)$, $B \rightarrow D^{*-}D^+(X)$ using data

• correct simulated q^2 distribution

Systematic uncertainties

Source	systematic uncertainty (%)
PDF shapes uncertainty (size of simulation sample)	2.0
Fixing $B \to D^{*-}D^+_s(X)$ bkg model parameters	1.1
Fixing $B \rightarrow D^{*-}D^{0}(X)$ bkg model parameters	1.5
Fractions of signal τ^+ decays	0.3
Fixing the $\overline{D}^{**}\tau^+\nu_{\tau}$ and $D_s^{**+}\tau^+\nu_{\tau}$ fractions	+1.8
Knowledge of the $D_s^+ \rightarrow 3\pi X$ decay model	1.0
Specifically the $D_s^+ \rightarrow a_1 X$ fraction	1.5
Empty bins in templates	1.3
Signal decay template shape	1.8
Signal decay efficiency	0.9
Possible contributions from other τ^+ decays	1.0
$B \rightarrow D^{*-}D^+(X)$ template shapes	+2.2
$B \rightarrow D^{*-}D^0(X)$ template shapes	1.2
$B \rightarrow D^{*-}D^+_*(X)$ template shapes	0.3
$B \rightarrow D^{*-}3\pi X$ template shapes	1.2
Combinatorial background normalisation	+0.5
Preselection efficiency	2.0
Kinematic reweighting	0.7
Vertex error correction	0.9
PID efficiency	0.5
Signal efficiency (size of simulation sample)	1.1
Normalisation mode efficiency (modelling of $m(3\pi)$)	1.0
Normalisation efficiency (size of simulation sample)	1.1
Normalisation mode PDF choice	1.0
Total systematic uncertainty	+6.2 -5.9
Total statistical uncertainty	5.9

Extract signal yield using 3D template fit

Extract signal yield using 3D template fit

Extract signal yield using 3D template fit

Systematic uncertainties

Internal fit uncertainties	$\sigma_{R(D^*)}(\times 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}(\times 10^{-2})$	Correlation
Statistical uncertainty	1.8	6.0	-0.49
Simulated sample size	1.5	4.5	
$B \rightarrow D^{(*)}DX$ template shape	0.8	3.2	
$\overline{B} \rightarrow D^{(*)} \ell^- \overline{\nu}_{\ell}$ form-factors	0.7	2.1	
$\overline{B} \rightarrow D^{**} \mu^- \overline{\nu}_{\mu}$ form-factors	0.8	1.2	
$\mathcal{B}(\overline{B} \rightarrow D^* D^s (\rightarrow \tau^- \overline{\nu}_\tau)X)$	0.3	1.2	
MisID template	0.1	0.8	
$\mathcal{B} (\overline{B} \rightarrow D^{**}\tau^- \overline{\nu}_\tau)$	0.5	0.5	
Combinatorial	< 0.1	0.1	
Resolution	< 0.1	0.1	
Additional model uncertainty	$\sigma_{\mathcal{R}(D^*)}(\times 10^{-2})$	$\sigma_{R(D^0)}(\times 10^{-2})$	
$B \to D^{(*)}DX$ model uncertainty	0.6	0.7	
$\overline{B}{}^0_s \rightarrow D^{**}_s \mu^- \overline{\nu}_\mu$ model uncertainty	0.6	2.4	
Baryonic backgrounds	0.7	1.2	
Coulomb correction to $\mathcal{R}(D^{*+})/\mathcal{R}(D^{*0})$	0.2	0.3	
Data/simulation corrections	0.4	0.8	
MisID template unfolding	0.7	1.2	
Normalization uncertainties	$\sigma_{\mathcal{R}(D^*)}(\times 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}(\times 10^{-2})$	
Data/simulation corrections	$0.4 \times \mathcal{R}(D^*)$	$0.6 \times \mathcal{R}(D^0)$	
$\tau^- \rightarrow \mu^- \nu \overline{\nu}$ branching fraction	$0.2 \times \mathcal{R}(D^*)$	$0.2 \times \mathcal{R}(D^0)$	
Total systematic uncertainty	2.4	6.6	-0.39
Total uncertainty	3.0	8.9	-0.43

Global picture

