Molecular hadrons (particularly pentaquarks) from the EFT perspective

Manuel Pavon Valderrama

Beihang University

Implications 2023, Geneva, Switzerland, October 2023

With FZ Peng, MJ Yan, ZY Yang, M Sánchez

Contents

- Exotic hadrons, including hadronic molecules
- Effective field theories: a crash course
- What is a molecule? Is molecularness well-defined?
 - The deuteron D-wave probability as an example
 - The $T_{cc}^+(3875)$ tetraquark as a molecule
 - Counterexample: $P_{\psi s}^{\Lambda}(4338)$
- Pentaquarks
 - Molecular interpretations
 - Relation between the P^Λ_{ψs}(4338) and P^Λ_{ψs}(4459) and the prediction of a P^Λ_{ψs}(4255) partner
 - The P_c(4457): is it a P^N_ψ or a P^Δ_ψ? : advantages of interpreting it as an I = 3/2 state

Summary and Conclusions

FZ Peng, MJ Yan, M Sánchez, MPV; EPJC 81 (2021) 7, 666

MJ Yan, FZ Peng, M Sánchez, MPV; EPJC 82 (2022) 6, 574; PRD 107 (2023) 7, 074025

ZY Yang, FZ Peng, MJ Yan, M Sánchez, MPV; arXiv:2211.08211

FZ Peng, MJ Yan, M Sánchez, MPV; PLB 846 (2023) 138207

Exotic hadrons

Exotic hadrons

Standard hadrons come in two varieties

But there are more types of possible hadrons...

Exotic hadrons: the X(3872)

Exotic hadrons became extremely popular thanks to a discovery by the Belle collaboration in $B^{\pm} \rightarrow K^{\pm} J/\Psi \pi \pi$ (03):

Looks molecular, but no wide consensus about its nature yet!

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Exotic hadrons: are you a fox or a hedgehog?

Phillip Tetlock: Expert political judgement, how good it is? (2005) (hint: as good as dart-throwing chimps... except for the foxes)

- Hedgehog: knows one big idea (intellectual economy) Resistance to update priors Convergence Fav word: Moreover
- Fox: knows many little ideas (intellectual scavenger) Bayesian operators Zigzagging Fav word: However

They form a "thought ecosystem".

Yet, hadron physics is also messy: better lean to the fox side.

Exotic hadrons: practicing your fox skills with the X(3872)

For X(3872): contradictory/ambiguous information to be balanced (i) Close to $D^*\bar{D}$ threshold: large coupling with it Tornqvist hep-ph/0308277; Voloshin PLB 579, 316; Braaten, Kusunoki PRD 69, 074005 (ii) $X \rightarrow \psi(nS)\gamma$, n = 1, 2: $c\bar{c}$ core Guo et al. PLB 742 (2015) 394-398 (iii) $X \rightarrow J/\psi 2\pi$ and $X \rightarrow J/\psi 3\pi$ pattern easier to explain in molecular picture Gamermann, Oset PRD 80 (2009) 014003 ...but compact state can also have this branching ratio Swanson PLB 588 (2004) 189-195 (iv) X(4014) by Belle (predicted mol partner, but poor statistics)

Often forgotten fact:

the wave function is not an observable

Though it seems to lean more to molecular than not...

But before dealing with the problem of molecularness:

EFT crash course in one slide

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Effective field theories: the way of the fox (a crash course)

► Generic low energy descriptions of physical phenomena <u>quarks & gluons</u> \iff <u>hadrons $(D^{(*)}, \Sigma_c^{(*)}, \pi)$ </u> high energy (EFT)

(equivalent by virtue of the renormalization group)

• Everything within EFT is an expansion:

$$T = LO + NLO + (mu) + ...$$

Calculations are amenable to error estimations (that is, the expected size of the next blob)

 Hadronic molecules: scarcity of data, that is, usually leading order (LO) is enough in most cases

What is a molecule?

Exotic hadrons: what is a molecule?

Chemistry textbook molecules (a.k.a. actual molecules):

Hadronic molecules: definitely not two clearly separated heavy quarks sharing a pair (or a few pairs) of light-quarks

(Exception: Born-Oppenheimer approx. with exotics)

But the name is catchy! \Rightarrow We adopted it ;)

Here: $|\text{molecule}\rangle = (1 - \delta)|H_1H_2\rangle + \delta|\text{other things}\rangle, \delta \text{ smallish}$

And... we obviate the evident lack of rigor with this, as usual. (After all, we are physicists...) Exotic hadrons: molecular or not? (the deuteron)

The deuteron D-wave probability (*P_D*): **not** an **observable**! (a) Deuteron wave function:

$$|d
angle = \cos heta_D|^3 S_1
angle + \sin heta_D|^3 D_1
angle$$

(b) Deuteron magnetic moment: μ_{exp} = 0.86 μ_N, but μ(³S₁) = 0.88 μ_N ⇒ ∃ non S-wave component
(c) D-wave probability P_D ~ (3 - 5)%, but with assumptions:
(c.1) No relativistic corrections included Gilman, Gross JPG 28, R37
(c.2) No two-body currents included D.R. Phillips, JPG 34, 365

That is: within EFT P_D still makes sense at lower orders.

Exotic hadrons: molecular or not? (the $T_{cc}^+(3875)$)

The T_{cc}^+ decay width into $DD\pi$ and $DD\gamma$:

(a) T_{cc}^+ wave function:

$$|T_{cc}\rangle = \cos\theta_C |D^*D\rangle + \sin\theta_C |cc\bar{u}\bar{d}\rangle$$

(b) T⁺_{cc} width: Γ^(*)_{exp} = 48 ± 2⁺⁰₋₁₂ KeV, but if Γ^{mol}_{th} > Γ_{exp} ⇒ ∃ non molecular component (provided Γ^{tetra}_{th} ≪ Γ^{mol}_{th})
(c) Same caveats as in the deuteron (also ∃ T_{cc}'s D-wave)
What do we have? Well... (hint: molecularness can be determined)

 $\Gamma_{\rm th}^{\rm LO} = 49 \pm 3 \pm 16 \, {\rm KeV} \quad , \quad \Gamma_{\rm th}^{\rm NLO} = 58^{+5}_{-3} \pm 5 \, {\rm KeV}$

And this is with $\Lambda \to \infty$ (otherwise $\Gamma_{\text{th}}^{\text{LO}} > \Gamma_{\exp}^{(*)}$ already.) If T_{cc} not highly molecular \Rightarrow no T_{cc}^{*} (D^*D^*) partner From arguments analogous to those in Cincioglu et al. EPJC76, 576

(*): not the actual T_{cc} experimental width, includes theoretical assumptions.

Exotic hadrons: molecular or not? (the $P_{\psi s}^{\Lambda}(4338)$)

The $P_{\psi s}^{\Lambda}(4338)$ slightly above threshold: not describable with your usual single channel, energy- and momentum-independent contact.

How molecular is it then? Use $X_{
m mol} = \sqrt{rac{1}{1+2|rac{f_0}{a_0}|}}$ Matuschek et al. EPJA 57, 101

(a) Energy-dependent: $V_C = d_a + 2 d_{2a} k^2 \Rightarrow X_{\text{mol}} = 0.33$

(b) Momentum-dependent:

$$V_C = d_a + d_{2a} \left(p^2 + p'^2
ight) \Rightarrow X_{
m mol} = 0.95$$

(c) Coupled-channel:

$$V_{C} = \begin{pmatrix} \frac{1}{2}(d_{a} + \tilde{d}_{a}) & \frac{1}{\sqrt{2}}(d_{a} - \tilde{d}_{a}) \\ \frac{1}{\sqrt{2}}(d_{a} - \tilde{d}_{a}) & d_{a} \end{pmatrix} \Rightarrow X_{\text{mol}} = 0.77$$

(a) and (b) on-shell equivalent, but different X_{mol} (that is, a counterexample) \Rightarrow non-observability of the wave function

Pentaquarks

Pentaquarks: the discoveries of the LHCb

The most famous and the most recent, as found in the respective LHCb manuscripts

(日)、

э

Pentaquarks: current candidates

The pre- and post-pandemic pentaquark candidates as molecules:

Candidate	Molecule	JP
$P_{\psi}^{N}(4312)$	$\Sigma_c \bar{D}$	$\frac{1}{2}^{-}$
$P_{\psi}^{N}(4440)$	$\Sigma_c \bar{D}^*$	$\frac{1}{2}^{-}, \frac{3}{2}^{-}?$
$P_{\psi}^{N}(4457)$	$\Sigma_c \bar{D}^*, \Lambda_{c1} \bar{D}$	$\frac{3}{2}^{-}, \frac{1}{2}^{-}, \frac{1}{2}^{+}?$
$P_{\psi s}^{\Lambda}(4338)$	$\Xi_c \bar{D}$	$\frac{1}{2}^{-}$
$P^{\Lambda}_{\psi s}(4459)$	$\Xi_c \bar{D}^*$	$\frac{1}{2}^{-}, \frac{3}{2}^{-}?$

Caveat: they are nor necessarily molecules (or even states) Also a $P_{\psi}^{N}(4337)$, but difficult to interpret as a molecule

MJ Yan, FZ Peng, M Sánchez, MPV, EPJC 82, 6, 574; Nakamura, Hosaka, Yamaguchi, PRD 104, 9, L091503

 $P_{\psi s}^{\Lambda}(4338/4459)$ and their partners: a possible $P_{\psi s}(4255/4398)$?

Two $P_{\psi}^{\Lambda}(c\bar{c}sqq)$ molecular pentaquark candidates:

$$\begin{split} M_1 &= 4338.2 \pm 0.7 \, \mathrm{MeV} \,, \quad \Gamma_1 = 7.0 \pm 1.2 \, \mathrm{MeV} \,, \\ M_2 &= 4458.8 \pm 2.9^{+4.7}_{-1.1} \, \mathrm{MeV} \,, \quad \Gamma_2 = 17.3 \pm 6.5^{+8.0}_{-5.7} \, \mathrm{MeV} \,, \end{split}$$

Most straightforward molecular explanations:

$$P^{\Lambda}_{\psi s1} \sim \bar{D} \Xi_c \quad , \quad P^{\Lambda}_{\psi s2} \sim \bar{D}^* \Xi_c$$

with binding energies $B_1 = -2.5$ (resonance), $B_2 = 18.8$.

What are the implications of HQSS for these two pentaquarks?

Molecule	J ^P	Without HQSS	With HQSS
$\bar{D}\Xi_c$	$\frac{1}{2}^{-}$	$V = c_1$	$V = d_a$
$\bar{D}\Xi_c^*$	$\frac{1}{2}^{-},\frac{3}{2}^{-}$	$V = c_2$	$V = d_a$

If we use the $P_{\psi s}^{\Lambda}(4459)$ as input, this will predict $B_1 = 16.9 \ (M_1 = 4319.4)$ for the $P_{\psi s}^{\Lambda}(4338)$. But:

(i) Exp. error: $B_1 = 16.9^{+2.9}_{-4.7}$ ($M_1 = 4319.4^{+4.7}_{-2.9}$) (underestimation?) (ii) EFT truncation error: $B = 16.9^{+9.3}_{-8.5}$ ($M_1 = 4319.4^{+8.5}_{-9.3}$) (iii) HQSS error: $B_1 = 16.9^{+18.5}_{-13.3}$ ($M_1 = 4319.4^{+13.3}_{-18.5}$) Together: $B_1 = 17^{+21}_{-16}$ ($M = 4319^{+16}_{-21}$) vs $B_1 = -2.5 \pm 0.7$ ($M = 4338.2 \pm 0.7$)

Yet, there are more factors in play:

(iv) Breit-Wigner param not ideal for near-threshold poles: the $P_{\psi s}^{\Lambda}(4338)$ might be below threshold (bound/virtual) Albaladejo, Guo, Hidalgo-Duque, Nieves PLB755 (2016) 337-342; JPAC Coll. PRL 123 (2019) 9, 092001 (v) Nearby $\bar{D} \Xi_c^*$ CC dynamics for the $P_{\psi s}^{\Lambda}(4459)$ (if $J^P = \frac{3}{2}^-$):

$$V(\bar{D}^* \Xi_c - \bar{D} \Xi_c^*) = \begin{pmatrix} d_a & e_a \\ e_a & c_a \end{pmatrix}$$

This further reduces B_1 by a few MeV.

- (vi) The $P^{\Lambda}_{\psi s}(4459)$ might be two peaks / plus poorer statistics check the LHCb paper on the $P^{\Lambda}_{\psi s}(4459)$
- (vii) The $P_{\psi s}^{\Lambda}(4338)$ might be the $P_{\psi s}^{\Sigma^0}(4338)$

From our previous prediction in EPJC 82 (2022) 6, 574

$P_{\psi s}^{\Lambda}$ as meson-baryon molecules: EFT description

We will consider contact EFT with $\bar{D}_s^{(*)} \Lambda_c - \bar{D}^{(*)} \Xi_c$ dynamics

$$V_{\mathcal{C}}(P_{\psi s}^{\Lambda}) = \begin{pmatrix} \frac{1}{2}(d_{a} + \tilde{d}_{a}) & \frac{1}{\sqrt{2}}(d_{a} - \tilde{d}_{a}) \\ \frac{1}{\sqrt{2}}(d_{a} - \tilde{d}_{a}) & d_{a} \end{pmatrix}$$

Creates a width for $P_{\psi s}^{\Lambda}$ proportional to $\left(d_{a}-\tilde{d}_{a}\right)^{2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$P^{\Lambda}_{\psi s}$ as meson-baryon molecules: predictions

Predictions for the spectrum (from mass and width): Set B_1 : $P_{cs}(4338)$ as input; Set B_2 : $P_{cs}(4459)$ as input

System	Potential	Set B_1	Set B_2	Туре
$\bar{D}\Lambda_c$	<i>d</i> _a	$(4111.3)^{V}$	$(4153.7)^{V}$	P_{ψ}^{N}
$\bar{D}^*\Lambda_c$	<i>Ĩ</i> a	$(4256.7)^{V}$	4295.0	P_ψ^N
$\bar{D}_s \Lambda_c$	$\left(\begin{array}{c} \frac{1}{2}(d_a + \tilde{d}_a) & \frac{1}{\sqrt{2}}(d_a - \tilde{d}_a) \end{array} \right)$	4254.8	4230.5	$P^{\Lambda}_{\psi s}$
$\bar{D}\Xi_c$	$\left(\frac{1}{\sqrt{2}} (d_a - \tilde{d}_a) d_a \right)$	Input	4316.7	$P_{\psi s}^{\Lambda}$
$\bar{D}_s^* \Lambda_c$	$\left(\begin{array}{c} \frac{1}{2}(d_a + \tilde{d}_a) & \frac{1}{\sqrt{2}}(d_a - \tilde{d}_a) \end{array} \right)$	4398.4	4375.2	$P^{\Lambda}_{\psi s}$
$\bar{D}^* \Xi_c$	$\left(\frac{1}{\sqrt{2}} (d_a - \tilde{d}_a) d_a \right)$	4479.2	Input	$P_{\psi s}^{\Lambda}$
$\bar{D}\Xi_c$	<i>d</i> _a	$(4297.4)^{V}$	4336.3	$P_{\psi s}^{\Sigma}$
$\bar{D}^* \Xi_c$	<i>Ĩ</i> a	(4442.7) ^V	4477.5	$P_{\psi s}^{\Sigma}$
$\bar{D}_s \Xi_c$	<i>d</i> _a	$(4401.4)^{V}$	4437.3	$P_{\psi ss}^{\Xi}$
$\bar{D}_s^* \Xi_c$	\widetilde{d}_{a}	(4548.3) ^V	4580.9	$P_{\psi ss}^{\Xi}$

We consistently predict a $P_{\psi s}^{\Lambda}(4255/4398)$ ($\bar{D}_{s}\Lambda_{c} / \bar{D}_{s}^{*}\Lambda_{c}$). But how solid is this? No clear consensus:

(i) LHCb manuscript: constraints on fit fractions
(i.a) P^Λ_{ψs}(4338), f = 0.125 ± 0.007 ± 0.019
(i.b) P^Λ_{ψs}(4255), f < 0.087 at 90% C.L.

Fit fraction of X in $A \rightarrow BCD$ $(X = P^{\Lambda}_{\psi s}, A = \Lambda_b, B = J/\psi, C = \Lambda, D = \bar{p})$

$$f(X|BC) = \frac{\Gamma(A \to XD \to BCD)}{\Gamma(A \to BCD)} \approx \frac{\mathcal{B}(A \to XD) \,\mathcal{B}(X \to BC)}{\mathcal{B}(A \to BCD)}$$

Problem: $\mathcal{B}(P_{\psi s}^{\Lambda}(4255) \rightarrow J/\Psi\Lambda) > \mathcal{B}(P_{\psi s}^{\Lambda}(4338) \rightarrow J/\Psi\Lambda)$ Solutions: production of $P_{\psi s}^{\Lambda}(4255)$ smaller (likely from couplings), $P_{\psi s}^{\Lambda}(4255)$ virtual, $P_{\psi s}^{\Lambda}(4338)$ virtual Reminder: fit fractions also problematic for P_{ψ}^{N} pentaquarks (P_{ψ}^{Λ} ?) Sakai, Jing, Guo, PRD 100 (2019) 7, 074007; Burns, Swanson, EPJA 58 (2022) 4, 68; FZ Peng, MJ Yan, M Sánchez, MPV arXiv: 2211.09154

We consistently predict a $P_{\psi s}^{\Lambda}(4255)$. But how solid is this? No clear consensus (cont'd): (ii) Analyses of the $J/\psi\Lambda$ spectrum: (ii.a) Burns & Swanson: $P_{\psi s}^{\Lambda}(4338)$ triangle singularity, no trace of a $P_{\psi s}^{\Lambda}(4255)$ Fit w/ condition $\tilde{d}_a > 0$: can't reproduce narrow $P_{\psi s}^{\Lambda}$ by design (results in $d_a - \tilde{d}_a$ too large for narrow state) (ii.b) Nakamura & Wu: $P_{\psi s}^{\Lambda}(4255)$ virtual Possible from small changes in our couplings

Both are possible solutions.

Or it might require better data ($P_{\psi s}^{\Lambda}(4255)$ ultra narrow).

And do not forget the Breit-Wigner issue!

 $P_{\psi s}^{\Lambda}$ as meson-baryon molecules: mini-summary

To summarize:

► $P_{\psi s}^{\Lambda}(4338)$ and $P_{\psi s}^{\Lambda}(4459)$ are probably compatible with each other in the molecular picture with HQSS

• If either of them are molecular, we predict a $P_{\psi s}^{\Lambda}(4255)$

However, these conclusions have a low degree of confidence.

Better data are required.

$P_{\psi}^{N}(4457)$ or $P_{\psi}^{\Delta}(4457)$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

P_{ψ}^{N} molecular interpretation

Three $c\bar{c}$ molecular pentaquark candidates:

$$\begin{array}{rcl} m_{P_{c1}} &=& 4311.9 \pm 0.7^{+6.8}_{-0.6}, & \Gamma_{P_{c1}} = 9.8 \pm 2.7^{+3.7}_{-4.5}, \\ m_{P_{c2}} &=& 4440.3 \pm 1.3^{+4.1}_{-4.7}, & \Gamma_{P_{c2}} = 20.6 \pm 4.9^{+8.7}_{-10.1}, \\ m_{P_{c3}} &=& 4457.3 \pm 0.6^{+4.1}_{-1.7}, & \Gamma_{P_{c3}} = 6.4 \pm 2.0^{+5.7}_{-1.9}, \end{array}$$

Most likely molecular explanations:

$$P_{c1} \sim \bar{D}\Sigma_c$$
 $P_{c2}, P_{c3} \sim \bar{D}^*\Sigma_c$ with isospin $I = 1/2!$

with binding energies $B_1 = 8.9$, $B_2 = 21.8$ and $B_3 = 4.8 \text{ MeV}$. Add HQSS \Rightarrow prediction of seven P_{ij}^N molecular pentaquarks

Reminder: HQSS for P_{ψ} molecular pentaquarks

What are the implications of HQSS for the pentaquark family?

Molecule	J^P	Without HQSS	With HQSS
$\bar{D}\Sigma_c$	$\frac{1}{2}^{-}$	<i>C</i> ₁	C _a
$\bar{D}\Sigma_c^*$	$\frac{3}{2}^{-}$	<i>C</i> ₂	C _a
$\bar{D}^*\Sigma_c$	$\frac{1}{2}^{-}$	<i>C</i> ₃	$C_a - \frac{4}{3} C_b$
$\bar{D}^*\Sigma_c$	$\frac{3}{2}^{-}$	<i>C</i> ₄	$C_a + \frac{2}{3} C_b$
$\bar{D}^*\Sigma_c^*$	$\frac{1}{2}^{-}$	<i>C</i> ₅	$C_a - \frac{5}{3}C_b$
$\bar{D}^*\Sigma_c^*$	$\frac{3}{2}^{-}$	<i>C</i> ₆	$C_a - \frac{2}{3}C_b$
$\bar{D}^*\Sigma_c^*$	$\frac{5}{2}^{-}$	C ₇	$C_a + C_b$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Liu, Peng, Sanchez, Valderrama (19)

P_{ψ}^{N} as molecules: where are the seven pentaquarks?

At most four are observed (instead of six).

Note: the $J = 5/2 \ \overline{D}^* \Sigma_c$ only decays into $J/\psi p$ in P-wave, thus less visible than the other six

<ロ> (四) (四) (三) (三) (三) (三)

P(4457) as P_{ψ}^{Δ} : "production fractions" and isospin (I)

But there is also a problem with this ratio:

(Sakai, Jing, Guo, PRD 100 (2019) 7, 074007; Burns, Swanson, EPJA 58 (2022) 4, 68, PRD 106 (2022) 5, 054029)

Production fractions:
$$\mathcal{F}(P_c) = \frac{\mathcal{B}(\Lambda_b^0 \to K^- P_c^+) \mathcal{B}(P_c^+ \to J/\psi p)}{\mathcal{B}(\Lambda_b^0 \to K^- J/\psi p)}$$

Experimentally:

•
$$\mathcal{F}_i = 0.30^{+0.35}_{-0.11}$$
, $1.11^{+0.40}_{-0.34}$, $0.53^{+0.22}_{-0.21}$ for $P_c(4312/4440/4457)$

• Or, in relative terms:
$$\mathcal{F}_i/\mathcal{F}_1\Big|_{\exp} = 1: 3.7^{+2.5}_{-2.3}: (1.8 \pm 1.2)$$

and we would like to now how well this compares with theory...

P(4457) as P_{ψ}^{Δ} : "production fractions" and isospin (II) Experiment: $\mathcal{F}_i/\mathcal{F}_1\Big|_{\exp} = 1: 3.7^{+2.5}_{-2.3}: (1.8 \pm 1.2)$ Let's assume the following:

$$|P_{c}(4457)^{+}
angle = \cos heta_{I} |ar{D}^{*0}\Sigma_{c}^{+}
angle + \sin heta_{I} |D^{*-}\Sigma_{c}^{++}
angle$$

(a) If $P_c(4457)$ is a $P_{\eta_l}^N(4457)$, i.e. I = 1/2 or $\theta_I = -54.7^{\circ}$ then $\mathcal{F}_i/\mathcal{F}_1\Big|_{_{LL}} = 1: (0.86^{+1.10}_{-0.53}) \mathcal{R}_2: (18^{+16}_{-13}) \mathcal{R}_3$ with \mathcal{R}_i the ratios of $\mathcal{B}(\Lambda_h^0 \to K^- P_{ci}^+)$. (b) If $P_c(4457)$ is a $P_{\mu\nu}^{\Delta}(4457)$, i.e. I = 3/2 or $\theta_I = 35.3^{\circ}$ then $\mathcal{F}_i/\mathcal{F}_1\Big|_{1} = 1: (0.86^{+1.10}_{-0.53}) \mathcal{R}_2: (0.054^{+0.049}_{-0.042}) \mathcal{R}_3$ (c) If $P_c(4457)$ is mostly a $P_{\psi}^{\Delta}(4457)$, i.e. $\theta_I = 20.1^{\circ}$ then $\mathcal{F}_i/\mathcal{F}_1\Big|_{_{+\mathrm{b}}} = 1: (0.86^{+1.10}_{-0.53}) \mathcal{R}_2: (1.5^{+1.4}_{-1.1}) \mathcal{R}_3$ If \mathcal{R}_2 , $\mathcal{R}_3 = \mathcal{O}(1)$, then option (c) is the preferred one.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ の ・

P(4457) as P_{ψ}^{Δ} : "production fractions" and isospin (III)

Now we predict 6 states that are I = 1/2 (-ish):

Molecule (J^{P})	M ($I = 1/2$)	M (<i>I</i> = 3/2)	
$\bar{D}\Sigma_c \left(\frac{1}{2}^-\right)$	Input	-	
$\bar{D}\Sigma_c^* (\frac{3}{2}^-)$	$4376.2^{+5.7}_{-11.2}$	-	
$ar{D}^{*0}\Sigma_{c}^{+}$ - $D^{*-}\Sigma_{c}^{++}$ $(rac{1}{2}^{-})$	$4464.4^{+2.1}_{-6.7} - (0.0^{+4.2}_{-0.0}) i$	Input	
$\bar{D}^*\Sigma_c \left(\frac{3}{2}^-\right)$	Input	-	
$\bar{D}^{*0}\Sigma_{c}^{*+}-D^{*-}\Sigma_{c}^{*++}$ $(\frac{1}{2}^{-})$	$4531.3^{+9.7}_{-2.6} - \left(2.7^{+10.2}_{-2.7}\right)i$	4514^{+10}_{-39}	
$ar{D}^{*0}\Sigma_{c}^{*+}$ - $D^{*-}\Sigma_{c}^{*++}$ $(rac{3}{2}^{-})$	$4523.8^{+0.5}_{-7.7}$	$4530.3^{+7.0}_{-4.6} - (1.9^{+10.2}_{-1.9}) i$	
$\bar{D}^*\Sigma_c^*(\frac{5}{2}^-)$	4498^{+10}_{-17}	-	

Four of them easily observable in $J/\psi p$, a fifth one $(\bar{D}^{*0}\Sigma_c^{*+}-D^{*-}\Sigma_c^{*++} (J^P = \frac{3}{2}^-))$ contingent on isospin angle \Rightarrow In general, more compatible with exp. "fit fractions"

Also: the $P_{\psi}^{\Delta^-}$'s can decay into $\Lambda_c^+ \pi^- D^-$: relation with the 2.35 σ structure in the previous talk (G. Robertson)?

P(4457) as P_{ψ}^{Δ} : mini-summary

Problem with the *production fractions* (or "fit fractions"):

- If $P_c(4457)$ is N-like, we should clearly see six peaks
- If $P_c(4457)$ is Δ -like, we should see four to five peaks

But, again, the degree of confidence is low:

The two missing peaks could appear once we have more data

 There might be reasons why the production rates are very different for the missing pentaquarks

More data of the $J/\psi p$ spectrum will be needed.

Conclusions (list)

- How molecular is a state? Fundamentally, this is not observable, but:
 - ► Molecularness might make sense within a certain set of assumptions (e.g. lowest orders within a given EFT), but not always! (*T_{cc}* vs *P[∧]_{vs}*(4338))
- Regarding the Λ-like pentaquarks:
 - ▶ P^A_{ψs}(4338), P^A_{ψs}(4449) are easy to explain and relate as baryon-meson molecular candidates
 - But nature of $P_{\psi s}^{\Lambda}(4338)$ still under debate
 - Predictions of a few partners, most notably $P_{\psi s}^{\Lambda}(4255)$
- Regarding the N- (or Δ -) like pentaquarks:
 - Three to four clear peaks in $J/\psi p$
 - Problem with the informal fit fractions for $P_c(4457)$
 - Both problems could be resolved by assuming P_c(4457) to be a Δ-like (instead of N-like) pentaquark

The End

Thanks For Your Attention!

Extra Slides

Isospin breaking: $P^{\Lambda}_{\psi s}$ or $P^{\Sigma^0}_{\psi s}$?

 $P_{cs}(4338)$ close to $D^- \Xi_c^+$ and $\bar{D}^0 \Xi_c^0 \Rightarrow$ Isospin breaking Potential in the $\bar{D}^0 \Xi_c^0$ and $D^- \Xi_c^+$ basis:

$$V_{C}(\bar{D}^{0}\Xi_{c}^{0}-D^{-}\Xi_{c}^{+})=\begin{pmatrix} \frac{1}{2}(d_{a}+\tilde{d}_{a}) & -\frac{1}{2}(d_{a}-\tilde{d}_{a})\\ -\frac{1}{2}(d_{a}-\tilde{d}_{a}) & \frac{1}{2}(d_{a}+\tilde{d}_{a}) \end{pmatrix},$$

Notice the dependence in $(d_a - \tilde{d}_a)!$

Ratio of the decay widths for a $P_{\psi s}$:

$$\frac{\Gamma(P_{\psi s} \to J/\psi \Lambda)}{\Gamma(P_{\psi s} \to J/\psi \Sigma^0)} = \frac{1}{3} \frac{p_\Lambda}{p_\Sigma} \left| \frac{\Psi_c(0) - \Psi_n(0)}{\Psi_c(0) + \Psi_n(0)} \right|^2$$

For $P_{\psi s} = P_{\psi s}^{\Sigma^0}$ from $(0.5 - 5.0)\% \Rightarrow$ small (i.e. we probably observed a $P_{\psi s}^{\Lambda}$)

Isospin breaking: $P_{\psi s}^{\Lambda}$ or $P_{\psi s}^{\Sigma^0}$? Wigner symmetry scenario

But if $d_a \approx \tilde{d}_a \Rightarrow$ decoupling of $\bar{D}^0 \Xi_c^0$ and $D^- \Xi_c^+$ d.o.f.

$$V_C(\bar{D}^0 \Xi_c^0 - D^- \Xi_c^+) = \begin{pmatrix} \frac{1}{2} (d_a + \tilde{d}_a) & -\frac{1}{2} (d_a - \tilde{d}_a) \\ -\frac{1}{2} (d_a - \tilde{d}_a) & \frac{1}{2} (d_a + \tilde{d}_a) \end{pmatrix} \approx \begin{pmatrix} d_a & 0 \\ 0 & d_a \end{pmatrix}$$

Reminiscent of Wigner SU(4) symmetry in NN!

Ratio of the decay widths for a $P_{\psi s}$ is now:

$$\frac{\Gamma(P_{\psi s} \to J/\psi \Lambda)}{\Gamma(P_{\psi s} \to J/\psi \Sigma^{0})} = \frac{1}{3} \frac{p_{\Lambda}}{p_{\Sigma}} \left| \frac{\Psi_{c}(0) - \Psi_{n}(0)}{\Psi_{c}(0) + \Psi_{n}(0)} \right|^{2} \approx \frac{1}{3} \frac{p_{\Lambda}}{p_{\Sigma}} = 0.53$$

If close to this scenario $\Rightarrow P_{cs}(4338)$ might be either $P_{\psi s}^{\Lambda}$ or $P_{\psi s}^{\Sigma^0}$!

・ロト ・団ト ・ヨト ・ヨー うへぐ

What about phenomenological models? Our model:

(i) Saturation model w/ scalar and vector meson exchanges. (ii) Calibrate model to reproduce $P_{\psi}^{N}(4312)$

First piece, saturation:

The σ , ρ , ω contributions collapse into a contact

Reason: $\sqrt{2\mu B} \ll m_{\rho}, m_{\omega}, m_{\sigma} \Rightarrow$ can't resolve interaction details

Saturation, how we do it:

(a) Scalar meson: the usual way

$$V_{S} = -\frac{g^{2}}{m_{S}^{2} + \vec{q}^{2}} \Rightarrow C_{S} \propto -\frac{g^{2}}{m_{S}^{2}}$$

(b) Vector meson (isospin and G-parity factors implicit) (b.1) Electric part: $C_V^{E0} \propto \frac{g_V^2}{m_V^2}$ (the usual way) (b.2) Magnetic part (spin-spin implicit): we remove the Dirac-delta

$$V_V^{M1} = -\frac{f_V^2}{6M^2} \frac{\vec{q}^2}{m_V^2 + \vec{q}^2} = -\frac{f_V^2}{6M^2} \left[1 - \frac{m_V^2}{m_V^2 + \vec{q}^2} \right] \Rightarrow C_V^{M1} \propto \frac{f_V^2}{6M^2}$$

Reason: the Dirac-delta gives saturation at a shorter distance scale (hadron size instead of vector meson range)

Saturation, a few comments:

(i) Why a σ ?: vector meson alone not always qualitatively correct Example: the two-nucleon system

$$C_V^{E0}({}^1S_0) \propto + 10 rac{g_v^2}{m_V^2} ~,~ C_V^{E0}({}^3S_1) \propto + 6 rac{g_v^2}{m_V^2} ~,$$

ρ and *ω* imply both repulsive, but not what we observe in NN Reminder: ∃ suspected molecular state in NN (the deuteron)
(ii) Combining mesons with different range: RG equation

$$rac{d}{d\Lambda}\langle\Psi|V_C|\Psi
angle=0 \Rightarrow C^{
m sat}(\Lambda\sim m_V)\propto (rac{m_V}{m_S})^{lpha} C_S(m_S)+C_V(m_V)$$

(iii) Regularize, determine proportionality constant from a given molecular candidate and then predict spectrum

Results: $P_{\psi}^{N}(4312)$ as input, $\Lambda = 1 \, {\rm GeV}$, Gaussian regulator

System	$I(J^P)$	$B_{ m mol}$	$M_{ m mol}$	Candidate	$M_{ m candidate}$
$\Lambda_c \bar{D}$	$\frac{1}{2}(\frac{1}{2}^{-})$	$(0.1)^{V}$	$(4153.4)^{V}$	-	-
$\Lambda_c \bar{D}^*$	$\frac{\overline{1}}{2}$ $(\overline{\frac{1}{2}}^{-})$	$(0.0)^{V}$	$(4295.0)^{V}$	-	-
$\Lambda_c \bar{D}_s$	$0(\frac{1}{2}^{-})$	2.4	4252.4	-	-
$\Lambda_c \bar{D}_s^*$	$0(\bar{\frac{1}{2}}^{-})$	3.4	4395.2	-	-
$\Xi_c \bar{D}$	$0(\frac{1}{2}^{-})$	8.9	4327.4	$P^{\Lambda}_{\psi s}(4338)$	4338.2
$\Xi_c \bar{D}^*$	$0(\frac{1}{2}^{-})$	11.0	4466.7	$P_{\psi s}^{\Lambda}(4459)$	4458.9
$\Xi_c \bar{D}$	$1(\frac{1}{2}^{-})$	$(0.0)^{V}$	$(4336.3)^{V}$	-	-
$\Xi_c \bar{D}^*$	$1(\bar{\frac{1}{2}}^{-})$	0.1	4477.6	-	-
$\Xi_c \bar{D}_s$	$\frac{1}{2} (\overline{\frac{1}{2}}^{-})$	1.2	4436.3	-	-
$\Xi_c \bar{D}_s^*$	$\frac{1}{2}(\bar{\frac{1}{2}}^{-})$	2.0	4579.2	-	-

Comparison of RG-saturation with EFTs B_1 and B_2 Set B_1 : $P_{cs}(4338)$ as input; Set B_2 : $P_{cs}(4459)$ as input

System	RG-Saturation	Set B_1	Set B_2	Туре
$\bar{D}\Lambda_c$	$(4153.4)^{V}$	$(4111.3)^{V}$	$(4153.7)^V$	P_{ψ}^{N}
$\bar{D}^*\Lambda_c$	$(4295.0)^{V}$	$(4256.7)^{V}$	4295.0	P_ψ^N
$\bar{D}_s \Lambda_c$	4252.4	4254.8	4230.5	$P^{\Lambda}_{\psi s}$
$\bar{D}_s^*\Lambda_c$	4395.2	4398.4	4375.2	$P_{\psi s}^{ar{h}}$
$\bar{D}\Xi_c$	4327.4	Input	4316.7	$P^{\Lambda}_{\psi s}$
$\bar{D}^* \Xi_c$	4466.7	4479.2	Input	$P_{\psi s}^{ar{h}}$
$\bar{D}\Xi_c$	$(4336.3)^V$	$(4297.4)^{V}$	4336.3	$P_{\psi s}^{\Sigma}$
$\bar{D}^* \Xi_c$	4477.6	$(4442.7)^{V}$	4477.5	$P_{\psi s}^{\Sigma}$
$\bar{D}_s \Xi_c$	4436.3	$(4401.4)^{V}$	4437.3	$P_{\psi ss}^{\Xi}$
$\bar{D}_s^* \Xi_c$	4579.2	$(4548.3)^{V}$	4580.9	$P_{\psi ss}^{\pm}$