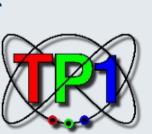
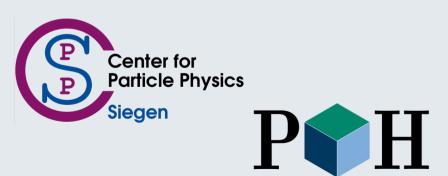
Theoretical challenges in the prediction of b \rightarrow sll observables

LHCb implication workshop – 27/10/2023

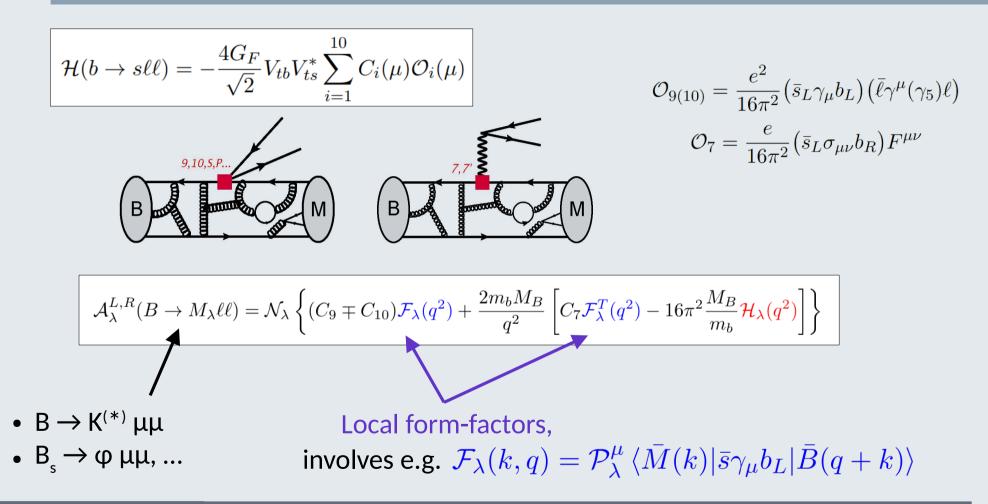
Méril Reboud

Based on work with N. Gubernari, D. van Dyk and J. Virto



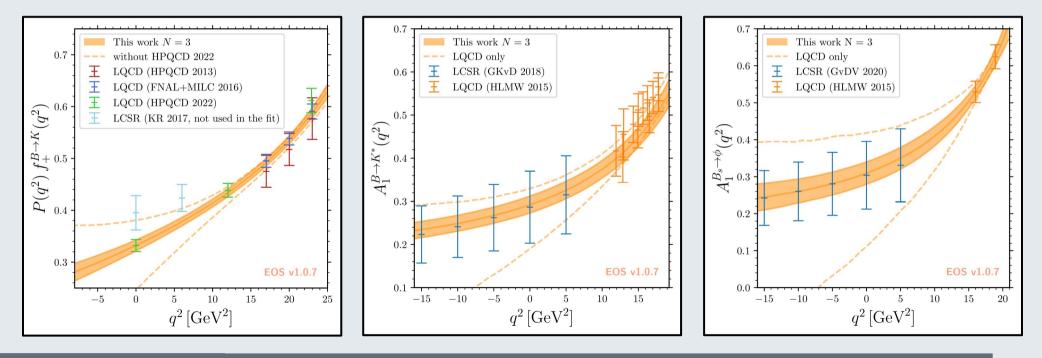


Form factors in $b \rightarrow s\ell\ell$



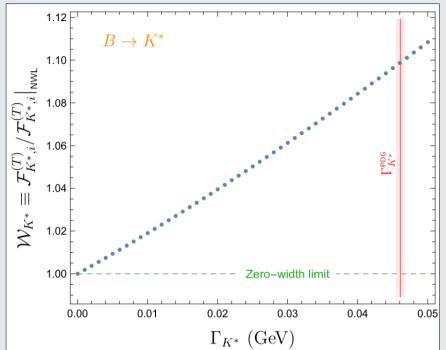
Status of the Local Form Factors

- Parametrization based on the analyticity properties provides excellent fits to both the Lattice QCD and the Light-cone Sum Rules estimates
- A combined fit of the b → s transitions can be constrained with dispersive bounds and ensure controlled theory uncertainties [Gubernari, MR et al '23]



Caveat: finite width effects in $B \rightarrow K^*$

- $\Gamma_{K^*} / M_{K^*} \sim 5\%$ is not very small
- Finite width effects have to be accounted for in the LQCD and LCSR calculations
 - Universal 20% correction to the observables [Descotes-Genon, Khodjamirian, Virto '19]
- B → Kπµµ decays also have a large S-wave component [LHCb '16]
 - LCSR inputs for the S-wave are now available [Descotes-Genon, Khodjamirian, Virto, Vos '23]
 - Not added to dispersive analyses due to a lack of generic $B \rightarrow K\pi$ form factor parametrization



Form factors in $b \rightarrow s\ell\ell$

$$\mathcal{H}(b \to s\ell\ell) = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu)$$

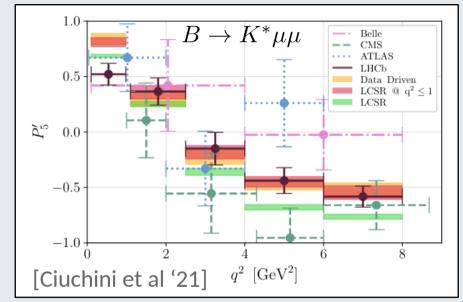
$$\overset{9,10.5.P.}{\blacksquare} \overset{9,10.5.P.}{\blacksquare} \overset{1}{\blacksquare} \overset{7.7}{\blacksquare} \overset{1}{\blacksquare} \overset{1$$

q² parametrization

• **Simple q² expansion** [Jäger, Camalich '12; Ciuchini et al. '15]

$$\mathcal{H}_{\lambda}(q^{2}) = \mathcal{H}_{\lambda}^{\text{QCDF}}(q^{2}) + \frac{h_{\lambda}(0)}{h_{\lambda}(0)} + \frac{q^{2}}{m_{B}^{2}}h_{\lambda}'(0) + \dots$$
Computed in [Beneke, Feldman, Seidel '01]

• The h_{λ} terms can be fitted or varied

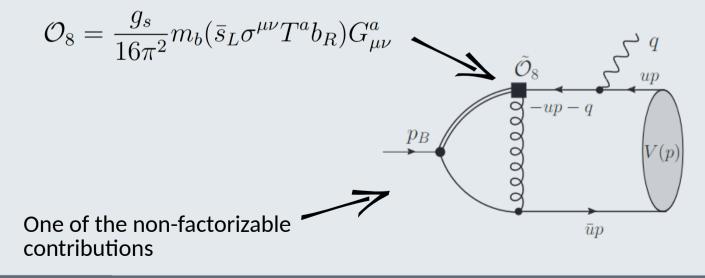


- Fitting the h_{λ} terms on data gives a satisfactory fit but lacks predictive power
- This parametrization cannot account for the analyticity properties of \mathcal{H}_{λ}

Anatomy of H_{μ} in the SM $^{\circ}$

$C_1(\mu_b)$	$C_2(\mu_b)$	$C_3(\mu_b)$	$C_4(\mu_b)$	$C_5(\mu_b)$	$C_6(\mu_b)$	$C_7(\mu_b)$	$C_8(\mu_b)$	$C_9(\mu_b)$	$C_{10}(\mu_b)$
-0.2906	1.010	-0.0062	-0.0873	0.0004	0.0011	-0.3373	-0.1829	4.2734	-4.1661

• The contribution of O₈ is **negligible** [Khodjamirian, Mannel, Wang, '12; Dimou, Lyon, Zwicky '12]



Anatomy of H_{μ} in the SM

$C_1(\mu_b)$	$C_2(\mu_b)$	$C_3(\mu_b)$	$C_4(\mu_b)$	$C_5(\mu_b)$	$C_6(\mu_b)$	$C_7(\mu_b)$	$C_8(\mu_b)$	$C_9(\mu_b)$	$C_{10}(\mu_b)$
-0.2906	1.010	-0.0062	-0.0873	0.0004	0.0011	-0.3373	-0.1829	4.2734	-4.1661

- The contribution of O₈ is **negligible** [Khodjamirian, Mannel, Wang, '12]
- The contributions of $O_{3, 4, 5, 6}$ are suppressed by small Wilson coefficients

$$\mathcal{O}_{3} = (\bar{s}_{L}\gamma_{\mu}b_{L})\sum_{p}(\bar{p}\gamma^{\mu}p), \qquad \mathcal{O}_{4} = (\bar{s}_{L}\gamma_{\mu}T^{a}b_{L})\sum_{p}(\bar{p}\gamma^{\mu}T^{a}p), \\ \mathcal{O}_{5} = (\bar{s}_{L}\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}b_{L})\sum_{p}(\bar{p}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}p), \qquad \mathcal{O}_{6} = (\bar{s}_{L}\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}T^{a}b_{L})\sum_{p}(\bar{p}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}T^{a}p),$$

Anatomy of H_{μ} in the SM

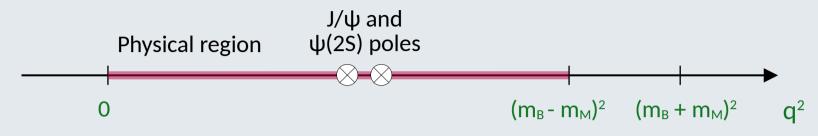
$$\mathcal{O}_1^q = (\bar{s}_L \gamma_\mu T^a q_L) (\bar{q}_L \gamma^\mu T^a b_L), \qquad \mathcal{O}_2^q = (\bar{s}_L \gamma_\mu q_L) (\bar{q}_L \gamma^\mu b_L)$$

 Light-quark loops are CKM suppressed → small contributions even at the resonances [Khodjamirian, Mannel, Wang, '12]

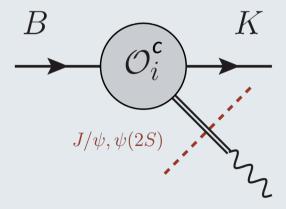
Vector meson	ρ	ω	ϕ	J/ψ	$\psi(2S)$
f_V	221^{+1}_{-1}	195^{+3}_{-4}	228^{+2}_{-2}	416^{+5}_{-6}	297^{+3}_{-2}
$ A_{ar{B}^0Var{K}^0} $	$1.3^{+0.1}_{-0.1}$	$1.4^{+0.1}_{-0.1}$	$1.8^{+0.1}_{-0.1}$	$33.9^{+0.7}_{-0.7}$	$44.4^{+2.2}_{-2.2}$
$ A_{B^-VK^-} $	$1.2^{+0.1}_{-0.1}$	$1.5^{+0.1}_{-0.1}$	$1.8^{+0.1}_{-0.1}$	$35.6^{+0.6}_{-0.6}$	$42.0^{+1.2}_{-1.2}$

 \rightarrow The main contribution comes from O_1^c and O_2^c : "charm loop"

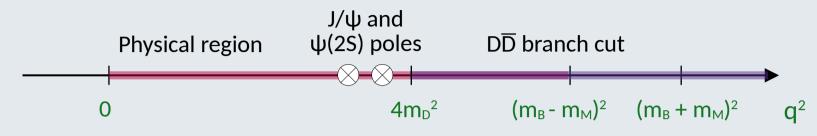
Analyticity properties of H_{μ}



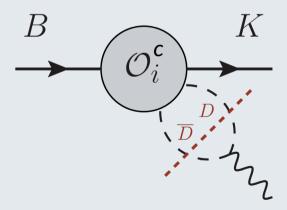
• Poles due to the narrow charmonium resonances



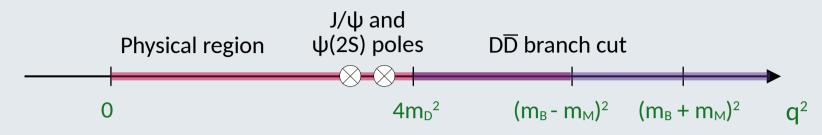
Analyticity properties of H_{μ}



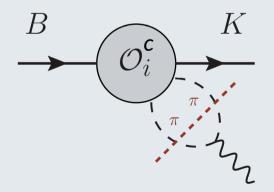
- Poles due to the narrow charmonium resonances
- Branch-cut starting at $4m_D^2$



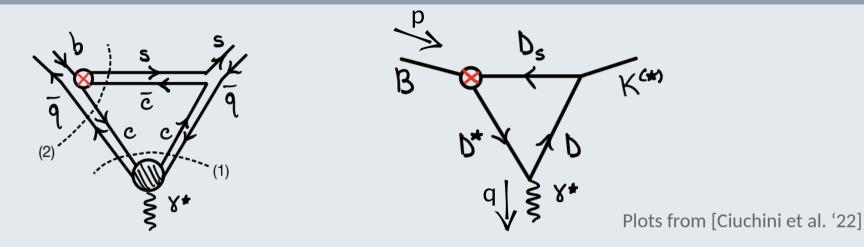
Analyticity properties of H_{μ}



- Poles due to the narrow charmonium resonances
- Branch-cut starting at $4m_D^2$
- Branch-cut starting at $4m_{\pi^2} \rightarrow \text{negligible}$ (OZI suppressed)



More involved analytic structure?

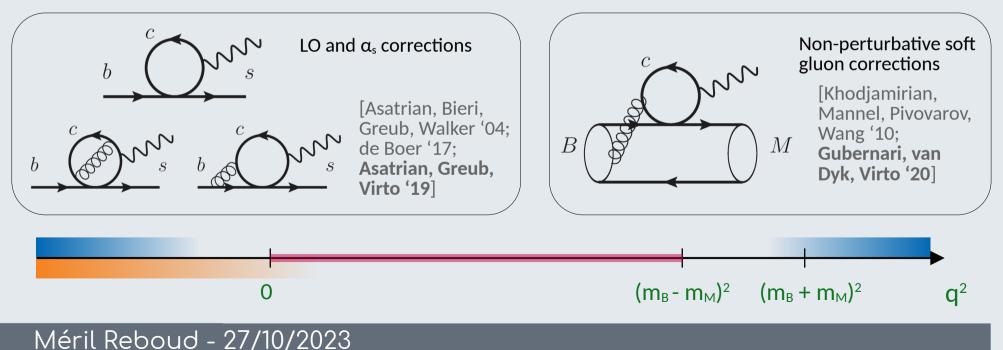


- $M_B > M_{D^*} + M_{Ds} \rightarrow$ The function $H_{\lambda}(p^2,q^2)$ has a branch cut in p^2 and the physical decay takes place on this branch cut: H_{λ} is complex-valued!
- Triangle diagrams are known to create anomalous branch cuts in q² [e.g. Lucha, Melikhov, Simula '06] → Does this also apply here? We have no Lagrangian nor power counting!
- The presence and the impact of such a branch cut in our approach is under investigation

Theory inputs

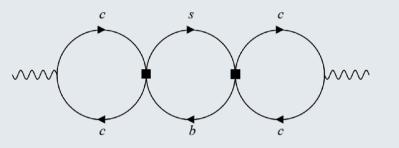
 \mathcal{H}_{λ} can be calculated in **two kinematics regions**:

- Local OPE $|q|^2 \gtrsim m_b^2$ [Grinstein, Piryol '04; Beylich, Buchalla, Feldmann '11]
- Light Cone OPE $q^2 \ll 4m_c^2$ [Khodjamirian, Mannel, Pivovarov, Wang '10]



Dispersive bound

• Main idea: Compute the charm-loop induced, inclusive $e^+e^- \rightarrow \bar{b}s$ cross-section and relate it to \mathcal{H}_{λ} [Gubernari, van Dyk, Virto '20]



+ other diagrams...

• The optical theorem gives a **shared bound** for **all the b** → **s processes**:

$$1 > 2 \int_{(m_B + m_K)^2}^{\infty} \left| \hat{\mathcal{H}}_0^{B \to K}(t) \right|^2 dt + \sum_{\lambda} \left[2 \int_{(m_B + m_K^*)^2}^{\infty} \left| \hat{\mathcal{H}}_{\lambda}^{B \to K^*}(t) \right|^2 dt + \int_{(m_{B_s} + m_{\phi})^2}^{\infty} \left| \hat{\mathcal{H}}_{\lambda}^{B_s \to \phi}(t) \right|^2 dt \right]$$

known functions $\times \mathcal{H}_0^{B \to K}(t)$ $+ \Lambda_b \to \Lambda^{(*)} \dots$

GRvDV parametrization

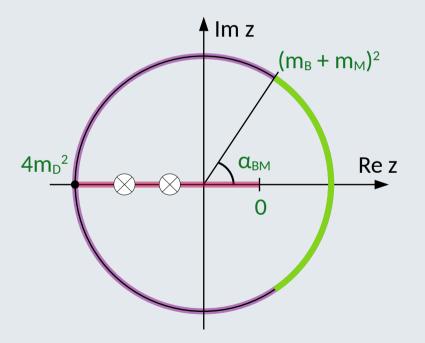
• The bound can be "diagonalized" with orthonormal polynomials of the arc of the unit circle [Gubernari, van Dyk, Virto '20]

$$\mathcal{H}_{\lambda}(z) = \frac{1}{\phi(z)\mathcal{P}(z)} \sum_{k=0}^{N} a_{\lambda,k} \, p_k(z)$$

• The coefficients respect the **simple bound**:

$$\sum_{n=0}^{\infty} \left\{ 2 \left| a_{0,n}^{B \to K} \right|^2 + \sum_{\lambda = \perp, \parallel, 0} \left[2 \left| a_{\lambda,n}^{B \to K^*} \right|^2 + \left| a_{\lambda,n}^{B_s \to \phi} \right|^2 \right] \right\} <$$

$$z(s) = \frac{\sqrt{4m_D^2 - s} - \sqrt{4m_D^2 - s_0}}{\sqrt{4m_D^2 - s} + \sqrt{4m_D^2 - s_0}}$$



Numerical analysis

• The parametrization is fitted to $B \rightarrow K, B \rightarrow K^*, B_s \rightarrow \phi$

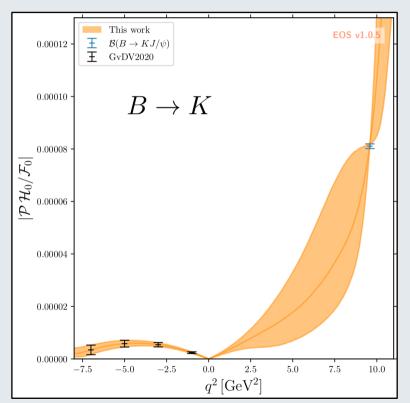
using:

- 4 theory point at negative q² from the light cone OPE
- Experimental results at the J/ψ
- Use an under-constrained fit and allow for saturation of the dispersive bound

→ The uncertainties are **truncation order**independent, i.e., increasing the expansion order does not change their size

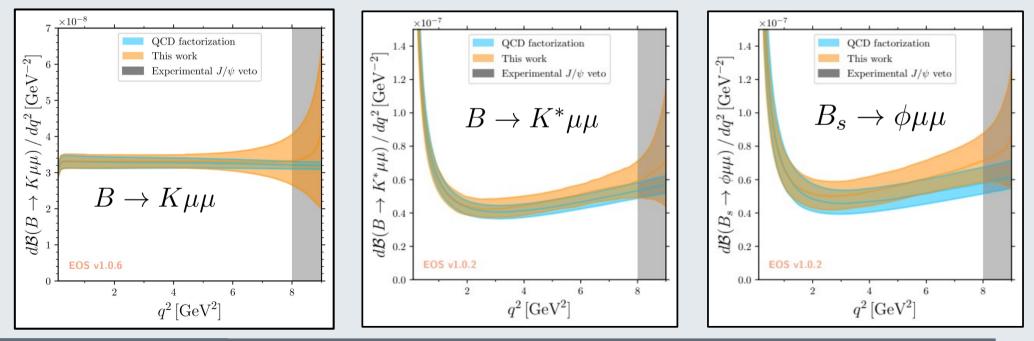
 \rightarrow All p-values are larger than 11%

[Gubernari, MR, van Dyk, Virto '22]



SM predictions

- Good overall agreement with previous theoretical approaches
 - Small deviation in the slope of $B_s
 ightarrow \phi \mu \mu$
- Larger but controlled uncertainties especially near the J/ψ
 - The approach is systematically improvable (new channels, ψ (2S) data...)

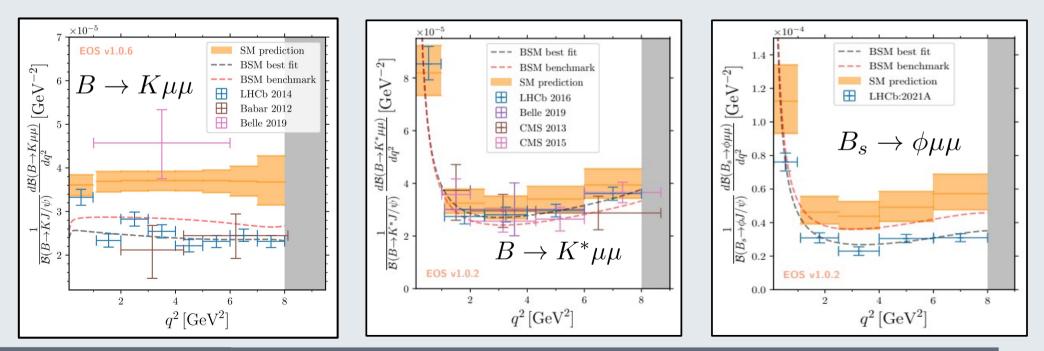


Confrontation with data

- This approach of the non-local form factors **does not solve the "B anomalies"**.
- In this approach, the greatest source of theoretical uncertainty now comes from **local form factors**.

Experimental results:

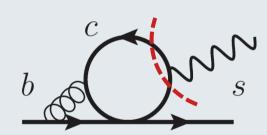
[Babar: 1204.3933; Belle: 1908.01848, 1904.02440; ATLAS: 1805.04000, CMS: 1308.3409, 1507.08126, 2010.13968, LHCb: 1403.8044, 2012.13241, 2003.04831, 1606.04731, 2107.13428]

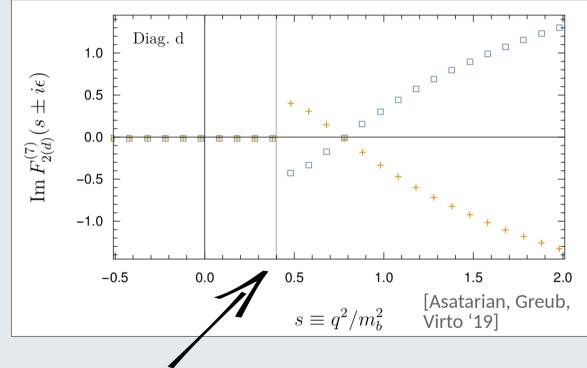


Méril Reboud - 27/10/2023

Additional plots can be found in the paper: 2206.03797

• Scrutinize the present results \rightarrow Non-trivial due to the complexity of the equations

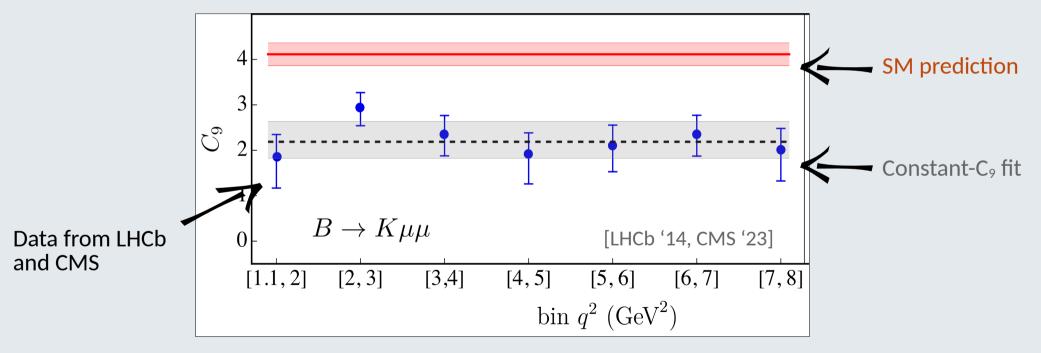




Expected branch-cut starting at 4m_c²

- Scrutinize the present results \rightarrow Non-trivial due to the complexity of the equations
- Lattice at the rescue?

- Scrutinize the present results \rightarrow Non-trivial due to the complexity of the equations
- Lattice at the rescue?
- Extract the q² behavior from data [Bordone, Isidori, Maechler, Tinari, to appear]

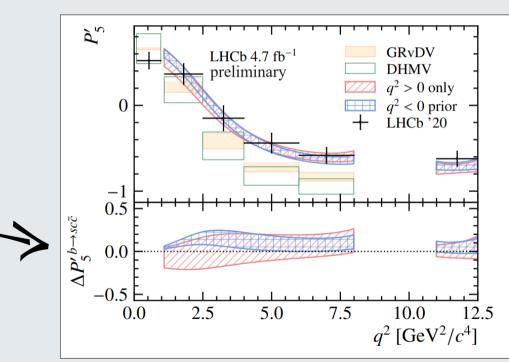


- Scrutinize the present results \rightarrow Non-trivial due to the complexity of the equations
- Lattice at the rescue?
- Extract the q² behavior from data [LHCb preliminary, see dedicated talk]

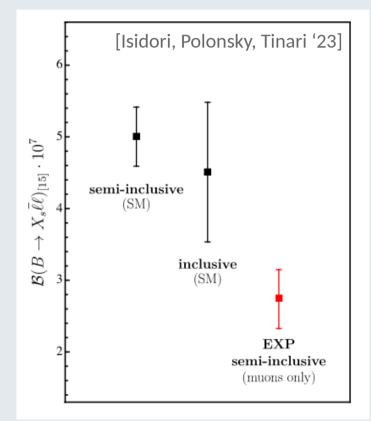
Contribution of H_{μ} to the optimized angular observable P_5 ':

- With data at q² < 0
- Without data at q² < 0

The GRvDV parametrization describes the data well!



- Scrutinize the present results \rightarrow Non-trivial due to the complexity of the equations
- Lattice at the rescue?
- Extract the q² behavior from data
- Continue exploring the high-q² region, with e.g.:
 - the inclusive $B \rightarrow X_s \ell \ell$ [Isidori, Polonsky, Tinari '23]
 - the radiative $B_s \rightarrow \mu\mu\gamma$ [Guadagnoli *et al* '16 '21 '23]



Conclusion

Interpreting the $b \rightarrow s\ell\ell$ observables requires a solid understanding of hadronic processes:

- Local form factors are obtained by fitting LQCD results and LCSR calculations;
- The description of the **non-local form factors** is far more involved. Assuming that analyticity properties are fully understood, they can also be constrained by theory calculation and experimental measurements
 - The uncertainties are still large, but controlled by **dispersive bounds**
 - The approach is **systematically improvable**

Back-up

Local form factors fit

- With this framework we perform a **combined fit** of $B \rightarrow K$, $B \rightarrow K^*$ and $B_s \rightarrow \phi$ LCSR and lattice QCD inputs:
 - $B \rightarrow K:$
 - [HPQCD '13 and '22; FNAL/MILC '17]
 - ([Khodjamiriam, Rusov '17]) \rightarrow large uncertainties, not used in the fit
 - $\quad B \to K^*:$
 - [Horgan, Liu, Meinel, Wingate '15]
 - [Gubernari, Kokulu, van Dyk '18] (B-meson LCSRs)
 - $B_{s} \rightarrow \phi:$
 - [Horgan, Liu, Meinel, Wingate '15]
 - [Gubernari, van Dyk, Virto '20] (B-meson LCSRs)
- Adding $\Lambda_b \to \Lambda^{(*)}$ form factors is possible and desirable

Details on the fit procedure

- The fit is performed in two steps...
 - Preliminary fits:
 - Local form factors:
 - BSZ parametrization (8 + 19 + 19 parameters)
 - Constrained on LCSR and LQCD calcultations
 - Non-local form factors:
 - order 5 GRvDV parametrization (12 + 36 + 36 parameters)
 - 4 points at negative $q^2 + B \rightarrow M J/\psi$ data
 - \rightarrow 130 nuisance parameters
 - 'Proof of concept' fit to the WET's Wilson coefficients
- ... using EOS: eos.github.io

BSM analysis

- A combined BSM analysis would be **very CPU expensive** (130 correlated, non-Gaussian, nuisance parameters!)
- Fit **separately** C₉ and C₁₀ for the three channels:
 - $B \rightarrow K\mu^{+}\mu^{-} + B_{s} \rightarrow \mu^{+}\mu^{-}$
 - $B \rightarrow K^* \mu^+ \mu^-$
 - $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$

