Maximising the physics potential of $B^\pm o \pi^\pm \mu^+ \mu^-$ decays

Alex Marshall¹, Michael McCann², Mitesh Patel², Konstantinos Petridis¹, Méril Reboud³, Danny van Dyk³ October 26, 2023

Implications of LHCb measurements and future prospects - 2023

¹University of Bristol, ²Imperial College London, ³Durham University,

Imperial College London

Introduction

▷ New physics effects could be more pronounced.

- $\Box \ B^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-} \text{ is a key piece in a complete picture}$ of the flavour structure of these tensions.
- □ There is an existing binned (in q^2) measurement of $\mathcal{B}(B^{\pm} \to \pi^{\pm}\mu^{+}\mu^{-})$ and $A_{CP}(B^{\pm} \to \pi^{\pm}\mu^{+}\mu^{-})$ (Run 1 of LHCb) [1].

How do we maximise the experimental sensitivity to new physics effects?

- □ Recent developments in both theory and experiment now allow for the possibility of unbinned measurements of channels such as $B^{\pm} \rightarrow K^{\pm}\mu^{+}\mu^{-}$.
- □ An unbinned approach exploits the full q² shape, modelling non-local contributions and any interference.
- The low event yields of this channel motivate incorporating constraints from theory.
- \Box We extract C_9 (+ phase) and C_{10} with an unbinned maximum likelihood fit.

 $B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ 3 / 24

Differences with respect to $B^{\pm} \rightarrow K^{\pm} \mu^{+} \mu^{-}$

 $\Box~|V_{ts}/V_{td}|^2 \approx 22$ - reduced decay rate across the board.

▷ Is this the case for any NP? Is NP minimal flavour violating?

- \Box The ρ and ω resonances are more pronounced (relative to EW penguin mode).
- □ Relevant contributions from weak annihilation and light quark loops (the light quark continuum).
- □ Fitting B^+ and B^- events separately is essential due to *CP*-asymmetries in $B^\pm \rightarrow \pi^\pm \mu^+ \mu^-$ even in the SM.

$$B^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$$
 4 / 24

Describing the decay rate

- □ The matrix elements arising from these effective operators can be classified as either local form factors or non-local form factors.
- □ Relevant non-local contributions include four-quark operators.
- \Box Relevant local contributions: C_9 , C_{10} , C_7

Alex Marshall $B^{\pm}
ightarrow \pi^{\pm} \mu^{+} \mu^{-}$ 5 / 24

Describing the decay rate

- □ The kinematics of each $B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ decay can be fully described with two variables, q^{2} and $cos(\theta_{\ell})$.
- \Box We integrate over $cos(\theta_{\ell})$.

The differential decay rate (over q^2) is then as follows¹ [5]:

$$\begin{split} \frac{d\Gamma(B^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-})}{dq^{2}} &= \frac{G_{F}^{2} \alpha^{2} |V_{tb} V_{td}^{*}|^{2}}{2^{7} \pi^{5}} |k| \Big\{ \frac{2}{3} |k|^{2} \beta_{+}^{2} |C_{10} f_{+}(q^{2})|^{2} \\ &\quad + \frac{m_{\ell}^{2} (M_{B}^{2} - M_{\pi}^{2})^{2}}{q^{2} M_{B}^{2}} |C_{10} f_{0}(q^{2})|^{2} \\ &\quad + |k|^{2} \Big[1 - \frac{1}{3} \beta_{+}^{2} \Big] \Big| C_{9}^{\text{eff}, B^{\pm}}(q^{2}) f_{+}(q^{2}) + 2C_{7} \frac{m_{b} + m_{d}}{M_{B} + M_{\pi}} f_{T}(q^{2}) \Big|^{2} \Big\}, \end{split}$$
where the non-local contribution $(\Delta C_{9}^{B^{\pm}}(q^{2}))$ is baked into $C_{9}^{eff, B^{\pm}}$,
 $C_{9}^{\text{eff}, B^{\pm}}(q^{2}) = |C_{9}| e^{\pm i\delta C_{9}} + \Delta C_{9}^{B^{\pm}}(q^{2}).$

 $^1{\rm This}$ requires an assumption of no (pseudo-)scalar and (pseudo-)tensor new physics.

$$B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$$
 6 / 24

Non-local contributions in the $q^2 < 0$ region

- □ The non-local contributions to $B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ have been computed in the $q^{2} < 0$ region by Hambrock et al. as in Ref [6].
- This computation employs operator-product expansion, QCD factorization and light-cone sum rule techniques.
- □ The full non-local contribution is the sum of the various components:

$$\begin{split} \mathcal{H}^{(p)}\left(q^{2}\right) = & \mathcal{H}_{\text{fact,LO}}^{(p)}\left(q^{2}\right) + \mathcal{H}_{\text{WA}}^{(p)}\left(q^{2}\right) + \mathcal{H}_{\text{fact, NLO}}^{(p)}\left(q^{2}\right) \\ & + \mathcal{H}_{\text{soft}}^{(p)}\left(q^{2}\right) + \mathcal{H}_{\text{soft,O8}}^{(p)}\left(q^{2}\right) + \mathcal{H}_{\text{nonf,spect}}^{(p)}\left(q^{2}\right), \quad (p = u, c). \end{split}$$

These non-local contributions can then be recast into a shift to the Wilson coefficient C₉ via:

$$\Delta C_9^{B^{\pm}}(q^2) = -16\pi^2 \frac{(\lambda_u \mathcal{H}^{(u),B^{\pm}}(q^2) + \lambda_c \mathcal{H}^{(c),B^{\pm}}(q^2))}{\lambda_t f^+(q^2)}.$$

Non-local contributions in the $q^2 < 0$ region

- □ The non-local contributions to $B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ have been computed in the $q^{2} < 0$ region by Hambrock et al. as in Ref [6].
- This computation employs operator-product expansion, QCD factorization and light-cone sum rule techniques.
- □ The full non-local contribution is the sum of the various components:

$$\begin{split} \mathcal{H}^{(p)}\left(q^{2}\right) = & \mathcal{H}_{\text{fact,LO}}^{(p)}\left(q^{2}\right) + \mathcal{H}_{\text{WA}}^{(p)}\left(q^{2}\right) + \mathcal{H}_{\text{fact, NLO}}^{(p)}\left(q^{2}\right) \\ & + \mathcal{H}_{\text{soft}}^{(p)}\left(q^{2}\right) + \mathcal{H}_{\text{soft,O8}}^{(p)}\left(q^{2}\right) + \mathcal{H}_{\text{nonf,spect}}^{(p)}\left(q^{2}\right), \quad (p = u, c). \end{split}$$

- □ From these calculations we have values for $\Delta C_9^{B^{\pm}}$ at various points in negative- q^2 .
- □ We need to build a model for the non-local contributions that we can use to fit the data in the positive q^2 region.

Modelling the non-local contributions - $Y_{light\ quark\ continuum}(q^2)$ To fit $d\Gamma(B^{\pm} \to \pi^{\pm}\mu^{+}\mu^{-})/dq^2$ to data we build a model of $\Delta C_9^{B^{\pm}}(q^2)$,

$$\Delta C_9^{B^{\pm}}(q^2) = \Delta C_9^{B^{\pm}}(q_0^2) + Y_{\rho,\omega}^{B^{\pm}}(q^2) + Y_{LQC}^{B^{\pm}}(q^2) + Y_{J/\psi,\psi(2S),\dots}^{B^{\pm}}(q^2) + Y_{2P,c\bar{c}}^{B^{\pm}}(q^2),$$

where the subtraction term $\Delta C_9^{B^{\pm}}(q_0^2)$ is matched to the results of the LCSR+QCD factorisation calculations at the subtraction point q_0^2 .

- $\label{eq:approximation} \begin{array}{l} \square \mbox{ This contribution is significant in} \\ B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}, \mbox{ but very small in} \\ B^{\pm} \rightarrow K^{\pm} \mu^{+} \mu^{-}. \end{array}$
- $\label{eq:constraint} \begin{array}{|c|c|c|} \hline & \ln B^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-}, \text{ both the rare mode} \\ & (V_{tb} V_{td}^{*}) \text{ and these light quark diagrams} \\ & (V_{ub} V_{ud}^{*}) \text{ go as} \sim \lambda^{3}. \end{array}$
 - ▷ In contrast, in $B^{\pm} \to K^{\pm} \mu^{+} \mu^{-}$ the rare mode $(V_{tb} V_{ts}^{*})$ goes as $\sim \lambda^{2}$.

Alex Marshall

 $B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ 9 / 24

Modelling the non-local contributions - $Y_{c\bar{c}}^{2P}(q^2)$

To fit $d\Gamma(B^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-})/dq^{2}$ to data we build a model of $\Delta C_{9}^{B^{\pm}}(q^{2})$,

$$\Delta C_9^{B^{\pm}}(q^2) = \Delta C_9^{B^{\pm}}(q_0^2) + Y_{\rho,\omega}^{B^{\pm}}(q^2) + Y_{LQC}^{B^{\pm}}(q^2) + Y_{J/\psi,\psi(2S),\dots}^{B^{\pm}}(q^2) + Y_{2P,c\bar{c}}^{B^{\pm}}(q^2),$$

where the subtraction term $\Delta C_9^{B^{\pm}}(q_0^2)$ is matched to the results of the LCSR+QCD factorisation calculations at the subtraction point q_0^2 .

- □ We include the combination of the non-resonant continuum of open charm states and the contributions due to further broad vector charmonnia following the recipe of Cornella et al. [7].
- Includes the following rescatterings:

$$B^{\pm} \to \pi^{\pm} M M' \to \pi^{\pm} \mu^{+} \mu^{-},$$

where
$$MM' = \{DD, DD^*, D^*D^*\}.$$

 $B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ 10 / 24

Modelling the non-local contributions - $Y_{c\bar{c}}^{2P}(q^2)$

To fit $d\Gamma(B^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-})/dq^{2}$ to data we build a model of $\Delta C_{9}^{B^{\pm}}(q^{2})$,

$$\Delta C_9^{B^{\pm}}(q^2) = \Delta C_9^{B^{\pm}}(q_0^2) + Y_{\rho,\omega}^{B^{\pm}}(q^2) + Y_{LQC}^{B^{\pm}}(q^2) + Y_{J/\psi,\psi(2S),\dots}^{B^{\pm}}(q^2) + Y_{2P,c\bar{c}}^{B^{\pm}}(q^2),$$

where the subtraction term $\Delta C_9^{B^{\pm}}(q_0^2)$ is matched to the results of the LCSR+QCD factorisation calculations at the subtraction point q_0^2 .

□ To reduce the number of fit parameters, we approximate the sum of *DD*, *D***D** and *DD** contributions as a single component with a global magnitude and phase.

Exact effect from $B \rightarrow DD^* \rightarrow \pi \mu \mu$ amplitudes remains remains an open question Ref [8].

 $B^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$ 11 / 24

Modelling the non-local contributions - Resonances

To fit $d\Gamma(B^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-})/dq^{2}$ to data we build a model of $\Delta C_{9}^{B^{\pm}}(q^{2})$,

$$\Delta C_9^{B^{\pm}}(q^2) = \Delta C_9^{B^{\pm}}(q_0^2) + Y_{\rho,\omega}^{B^{\pm}}(q^2) + Y_{LQC}^{B^{\pm}}(q^2) + Y_{J/\psi,\psi(2S),\dots}^{B^{\pm}}(q^2) + Y_{2P,c\bar{c}}^{B^{\pm}}(q^2),$$

where the subtraction term $\Delta C_9^{B^{\pm}}(q_0^2)$ is matched to the results of the LCSR+QCD factorisation calculations at the subtraction point q_0^2 . $|Y_{a,w}(q^2) + Y_{I/ab,w}(q^2) = (q^2)|^2$

- The resonances¹ are described with relativistic Breit–Wigner distributions.
- □ Each resonance has a unique phase $(\delta_V^{B^{\pm}})$ and a unique magnitude $(\eta_V^{B^{\pm}})$ for both the B^+ and the B^- model.
- □ We introduce constraints on resonance branching fractions using existing measurements $(BF \propto \eta_V^2)$.
- □ We fix both $\eta_{J/\psi}^{B^{\pm}}$ in the fit uncertainty included as a systematic.

 $^{1}\rho(770)$, $\omega(782)$, J/ψ , $\psi(2S)$, $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, and the $\psi(4415)$

Alex Marshall

 $B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ 12 / 24

$B \rightarrow \pi$ local form factors

 \Box In the case of $\bar{B} \to \pi$ transitions, there exist only three local $\bar{B} \to \pi$ form factors.

$$\langle \bar{\pi}(k)|\bar{b}\gamma^{\mu}d|\bar{B}(p)\rangle = \left[(p+k)^{\mu} - \frac{M_B^2 - M_\pi^2}{q^2}q^{\mu}\right]f_+(q^2) + \frac{M_B^2 - M_\pi^2}{q^2}q^{\mu}f_0(q^2),$$

$$\langle \bar{\pi}(k) | \bar{b} \sigma^{\mu\nu} q_{\nu} d | \bar{B}(p)
angle = rac{i}{M_B + M_{\pi}} \left[q^2 (p+k)^{\mu} - (M_B^2 - M_{\pi}^2) q^{\mu} \right] f_T(q^2).$$

- Taken from Leljak et al. [9].
- □ Take the nominal K = 4 LCSR+LQCD option.
 - ▷ K is the maximal order of the z-expansion.
- In our fit the form factor parameters are fixed.
- We assess an uncertainty on the Wilson coefficients as a systematic using the covariance matrix provided in Ref [9].

$B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ decay rate model

- \Box We take the q^2 shape of the efficiency $\varepsilon(q^2)$ from Ref. [2].
- \Box We also take the experimental q^2 resolution used in the LHCb analysis of decays in Ref. [2].
 - Our choice is motivated by the expectation that this resolution is close to if not identical to the LHCb resolution for decays.
- The resolution is folded into the decay rate model using a fast Fourier transform-based convolution,

$$R(q^2_{
m reco},q^2)\otimes\left(rac{d\Gamma}{dq^2}arepsilon(q^2)
ight).$$

Below is the signal PDF employed in our toy studies that includes these experimental effects.

Constraining the non-local contribution

 ${\rm Re}(\Delta {C_9^B}^\pm)$ and ${\rm Im}(\Delta {C_9^B}^\pm)$ have been computed at various q^2 points in the $q^2<0$ region and presented in Ref [6] along with uncertainties.

- □ We extend the likelihood used in the minimisation of our fits to include a theory constraint term.
- □ This term minimises the distance between the model of the non-local contribution and the theory reference values.
- □ This distance is computed at each $q^2 < 0$ point presented in red, and is computed for both the real and imaginary parts of both B^+ and B^- .
- □ We do not have access to the correlations between the individual pieces of the $q^2 < 0$ information, so in our fits we make the assumption of no correlations (a conservative choice).

Sensitivity studies

Use toys to study fit stability and to estimate expected precision.

- $\hfill \hfill \hfill$
 - ▷ Note that the model obtained is compatible with that of Ref. [6].
- \Box Fit B^+ and B^- simultaneously sharing C_{10} , C_9 and the phase of C_9 (flipping sign under CP).
- \Box Fix the light quark continuum contribution ($Y_{light \; quark \; continuum}(q^2)$).
- □ Float both the phase and magnitude the $Y_{c\bar{c}}^{2P}(q^2)$ component, sharing the component between B^+ and B^- .

Choosing a q^2 region to fit

- □ With the expected candidate yields in LHCb Run1+2 it is no surprise that we cannot float the parameters of the open charm resonances.
- □ We fix these parameters to the $B^+ \rightarrow K^+ \mu^+ \mu^-$ measurements of Ref. [2] scaled by $|V_{cd}/V_{cs}|$ and limit the phase space to $q^2_{\text{reco}} < 14.0625 \text{ GeV}^2$.
 - > This is such that contributions from q_{TRUE}^2 above the $\psi(3770)$ are negligible even after accounting resolution effects.

We find this cut not to be necessary when we study fit stability with a future LHCb data set where we can fit the full q^2 phase space.

Alex Marshall $B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ 17 / 24

Fit stability

□ With the LHCb Run 1+2 dataset, there is a significant chance that the best-fit point lies in an unphysical region.

- ▷ Unrealistic without imposing some assumption on NP? $C_9^{\rm NP} = -C_{10}^{\rm NP}$?
- \Box A fraction of fits fail with $C_{10} \approx 0$.
 - $\triangleright~$ There is a discontinuity at $C_{10}=0,$ due to the presence of $|C_{10}|^2$ in the PDF.
- □ Reparametrising the likelihood in terms of $|C_{10}|^2$ (rather than C_{10}), we find a fraction of fits to pseudo-datasets converge with negative values of $|C_{10}|^2$.
- We label these as failed fits.
- □ Fraction of failed fits reduces when employing the $q^2 < 0$ constraint and when increasing event yields.

$$B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$$
 18 / 24

Impact of employing the $q^2 < 0$ constraint

- □ Run fits to generated pseudo-datasets representative of 45 fb⁻¹ of LHCb data (×5 Run 1+2). □ Fit each dataset both with and without the $a^2 < 0$ constraint.
- \Box Largest improvements are in the phases of the resonances, and the magnitude of the $Y_{c\bar{c}}^{2P}(q^2)$.
- □ This increase in sensitivity to non-local parameters translates into better precision on the Wilson coefficients describing the short-distance physics.

Alex Marshall
$$B^{\pm}
ightarrow \pi^{\pm} \mu^{+} \mu^{-}$$
 19 / 24

Impact of employing the $q^2 < 0$ constraint

Intervals from fit results to an ensemble of toys representing 45 fb^{-1} of LHCb data.

Alex Marshall

How does the picture change with more data?

- □ With 300 fb⁻¹ the expected $B^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$ event yields are similar to those expected of LHCb Run1+2 $B^{\pm} \rightarrow K^{\pm}\mu^{+}\mu^{-}$ yields.
- □ We can then float the open charm resonance parameters.

Alex Marshall

 $B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ 21 / 24

Addressing systematic uncertainties

Compute the systematic uncertainty accounting for choice to fix the local form factor parameters, $\eta^{B^+}_{J/\psi}$ and $\eta^{B^-}_{J/\psi}$.

- □ This computation is done separately for the 45 fb⁻¹ and 300 fb⁻¹ scenarios due to inclusion of the open charm region.
- Fold the systematic into the intervals.

Local form factor uncertainties

- □ Local form factors uncertainties dominate the systematic uncertainty for all the rare mode parameters: $Re(C_{10})$, $Re(C_9)$ and $Im(C_9)$.
- □ We stress the importance of addressing form factor uncertainties alongside the coming increase in event yields from future runs of the LHC.
 - \triangleright Even with Run 4 (45 fb⁻¹) we are limited by FF uncertainties.
- \Box As an example we show the intervals obtained (300 fb⁻¹) if we had improved uncertainties (assume 3 times smaller).
 - ▷ This improvement would be in line with that achieved for $B \to K^{(*)}$ in Ref. [10].

Conclusion - $B^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$

- □ We present an unbinned approach that fully accounts for *CP*-violation, the largest non-local contributions and all interference effects.
- \Box Employing $q^2 < 0$ information is essential to maximise sensitivity.
- Systematic uncertainties are dominated by knowledge of the local form factors, we emphasise the importance of improving local form factor uncertainties as LHCb takes more data.
- □ Fitting the current LHCb data set is impractical due to issues of fit stability.

 \triangleright We have begun an analysis that will assume $C_9^{\rm NP} = -C_{10}^{\rm NP}$

□ This work has been submitted to JHEP (2310.06734).

Thanks for listening

References i

- [1] LHCB collaboration, First measurement of the differential branching fraction and CP asymmetry of the $B^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$ decay, JHEP 10 (2015) 034 [1509.00414].
- [2] LHCB collaboration, Measurement of the phase difference between short- and long-distance amplitudes in the $B^+ \rightarrow K^+ \mu^+ \mu^-$ decay, Eur. Phys. J. C 77 (2017) 161 [1612.06764].
- [3] C. Bobeth, M. Misiak and J. Urban, Photonic penguins at two loops and mt dependence of BR[B → X_sl⁺l⁻], Nucl. Phys. B 574 (2000) 291 [hep-ph/9910220].
- [4] C. Bobeth, A.J. Buras, F. Kruger and J. Urban, *QCD corrections to* $\bar{B} \to X_{d,s}\nu\bar{\nu}$, $\bar{B}_{d,s} \to \ell^+\ell^-$, $K \to \pi\nu\bar{\nu}$ and $K_L \to \mu^+\mu^-$ in the MSSM, Nucl. Phys. B 630 (2002) 87 [hep-ph/0112305].
- [5] A. Ali, A.Y. Parkhomenko and A.V. Rusov, Precise Calculation of the Dilepton Invariant-Mass Spectrum and the Decay Rate in B[±] → π[±]μ⁺μ⁻ in the SM, Phys. Rev. D 89 (2014) 094021 [1312.2523].
- [6] C. Hambrock, A. Khodjamirian and A. Rusov, Hadronic effects and observables in $B \to \pi \ell^+ \ell^$ decay at large recoil, Phys. Rev. D 92 (2015) 074020 [1506.07760].
- [7] C. Cornella, G. Isidori, M. König, S. Liechti, P. Owen and N. Serra, Hunting for $B^+ \rightarrow K^+ \tau^+ \tau^$ imprints on the $B^+ \rightarrow K^+ \mu^+ \mu^-$ dimuon spectrum, Eur. Phys. J. C 80 (2020) 1095 [2001.04470].

References ii

- [8] M. Ciuchini, M. Fedele, E. Franco, A. Paul, L. Silvestrini and M. Valli, Constraints on lepton universality violation from rare B decays, Phys. Rev. D 107 (2023) 055036 [2212.10516].
- [9] D. Leljak, B. Melić and D. van Dyk, The $\overline{B} \to \pi$ form factors from QCD and their impact on $|V_{ub}|$, JHEP 07 (2021) 036 [2102.07233].
- [10] N. Gubernari, M. Reboud, D. van Dyk and J. Virto, *Dispersive Analysis of* $B \to K^{(*)}$ and $B_s \to \phi$ Form Factors, 2305.06301.

BACKUP SLIDES