Maximising the physics potential of $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$decays

Alex Marshall ${ }^{1}$, Michael McCann ${ }^{2}$, Mitesh Patel ${ }^{2}$, Konstantinos Petridis ${ }^{1}$, Méril Reboud ${ }^{3}$, Danny van Dyk ${ }^{3}$ October 26, 2023

Implications of LHCb measurements and future prospects - 2023
${ }^{1}$ University of Bristol, ${ }^{2}$ Imperial College London, ${ }^{3}$ Durham University,

Imperial College London

Introduction

u

Tensions exist with the SM in $B^{ \pm} \rightarrow K^{ \pm} \mu^{+} \mu^{-}$.$B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$is highly suppressed in the SM , $\left|V_{t s} / V_{t d}\right|^{2} \approx 22$ times relative to $B^{ \pm} \rightarrow K^{ \pm} \mu^{+} \mu^{-}$.
\triangleright New physics effects could be more pronounced.$B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$is a key piece in a complete picture of the flavour structure of these tensions.There is an existing binned (in q^{2}) measurement of $\mathcal{B}\left(B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right)$and $A_{C P}\left(B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right)$(Run 1 of LHCb) [1].

How do we maximise the experimental sensitivity to new physics effects?

u \qquad
Recent developments in both theory and experiment now allow for the possibility of unbinned measurements of channels such as $B^{ \pm} \rightarrow K^{ \pm} \mu^{+} \mu^{-}$.An unbinned approach exploits the full q^{2} shape, modelling non-local contributions and any interference.The low event yields of this channel motivate incorporating constraints from theory.We extract C_{9} (+ phase) and C_{10} with an unbinned
 maximum likelihood fit.

Differences with respect to $B^{ \pm} \rightarrow K^{ \pm} \mu^{+} \mu^{-}$

$\square\left|V_{t s} / V_{t d}\right|^{2} \approx 22$ - reduced decay rate across the board.
\triangleright Is this the case for any NP? Is NP minimal flavour violating?The ρ and ω resonances are more pronounced (relative to EW penguin mode).Relevant contributions from weak annihilation and light quark loops (the light quark continuum).Fitting B^{+}and B^{-}events separately is essential due to $C P$-asymmetries in $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}-$ even in the SM.

Describing the decay rate

Local contributions

Non-local contributions

$$
\mathcal{L}_{\text {eff }}^{b d e \ell}=\frac{4 G_{F}}{\sqrt{2}}\left(\lambda_{c} \mathcal{L}_{\text {eff }}^{(c)}+\lambda_{u} \mathcal{L}_{\text {eff }}^{(u)}\right)+\text { h.c. },
$$

where

$$
\lambda_{q}=V_{q b} V_{q d}^{*} \quad \text { and }
$$

$$
\mathcal{L}_{\text {eff }}^{(p)}=\mathcal{C}_{1} \mathcal{O}_{1}^{p}+\mathcal{C}_{2} \mathcal{O}_{2}^{p}+\sum_{i \in \mathcal{I}} \mathcal{C}_{i} \mathcal{O}_{i} \quad \text { with } \quad \mathcal{I}=\left\{3-10,7^{\prime}-10^{\prime}, P, P^{\prime}, S, S^{\prime}, T, T 5\right\}[3,4]
$$The matrix elements arising from these effective operators can be classified as either local form factors or non-local form factors.Relevant non-local contributions include four-quark operators.Relevant local contributions: C_{9}, C_{10}, C_{7}

Describing the decay rate

The kinematics of each $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$decay can be fully described with two variables, q^{2} and $\cos \left(\theta_{\ell}\right)$.We integrate over $\cos \left(\theta_{\ell}\right)$.The differential decay rate (over q^{2}) is then as follows ${ }^{1}$ [5]:

$$
\begin{aligned}
\frac{d \Gamma\left(B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right)}{d q^{2}} & =\frac{G_{F}^{2} \alpha^{2}\left|V_{t b} V_{t d}^{*}\right|^{2}}{2^{7} \pi^{5}}|k|\left\{\frac{2}{3}|k|^{2} \beta_{+}^{2}\left|C_{10} f_{+}\left(q^{2}\right)\right|^{2}\right. \\
& +\frac{m_{\ell}^{2}\left(M_{B}^{2}-M_{\pi}^{2}\right)^{2}}{q^{2} M_{B}^{2}}\left|C_{10} f_{0}\left(q^{2}\right)\right|^{2} \\
& \left.+|k|^{2}\left[1-\frac{1}{3} \beta_{+}^{2}\right]\left|C_{9}^{\mathrm{eff}, B^{ \pm}}\left(q^{2}\right) f_{+}\left(q^{2}\right)+2 C_{7} \frac{m_{b}+m_{d}}{M_{B}+M_{\pi}} f_{T}\left(q^{2}\right)\right|^{2}\right\}
\end{aligned}
$$

where the non-local contribution $\left(\Delta C_{9}^{B^{ \pm}}\left(q^{2}\right)\right)$ is baked into $C_{9}^{e f f, B^{ \pm}}$,

$$
C_{9}^{\mathrm{eff}, B^{ \pm}}\left(q^{2}\right)=\left|C_{9}\right| e^{ \pm i \delta_{C_{9}}}+\Delta C_{9}^{B^{ \pm}}\left(q^{2}\right)
$$

[^0]
Non-local contributions in the $q^{2}<0$ region

\square The non-local contributions to $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$have been computed in the $q^{2}<0$ region by Hambrock et al. as in Ref [6].This computation employs operator-product expansion, QCD factorization and light-cone sum rule techniques.The full non-local contribution is the sum of the various components:

$$
\begin{aligned}
\mathcal{H}^{(p)}\left(q^{2}\right)= & \mathcal{H}_{\mathrm{fact}, \mathrm{LO}}^{(p)}\left(q^{2}\right)+\mathcal{H}_{\mathrm{WA}}^{(p)}\left(q^{2}\right)+\mathcal{H}_{\mathrm{fact}, \mathrm{NLO}}^{(p)}\left(q^{2}\right) \\
& +\mathcal{H}_{\mathrm{soft}}^{(p)}\left(q^{2}\right)+\mathcal{H}_{\mathrm{soft}, \mathrm{O}_{8}}^{(p)}\left(q^{2}\right)+\mathcal{H}_{\mathrm{nonf}, \mathrm{spect}}^{(p)}\left(q^{2}\right), \quad(p=u, c)
\end{aligned}
$$

\square These non-local contributions can then be recast into a shift to the Wilson coefficient C_{9} via:

$$
\begin{aligned}
& \Delta C_{9}^{B^{ \pm}}\left(q^{2}\right)= \\
& \quad-16 \pi^{2} \frac{\left(\lambda_{u} \mathcal{H}^{(u), B^{ \pm}}\left(q^{2}\right)+\lambda_{c} \mathcal{H}^{(c), B^{ \pm}}\left(q^{2}\right)\right)}{\lambda_{t} f^{+}\left(q^{2}\right)}
\end{aligned}
$$

 $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+}{ }_{\mu}{ }^{-} \quad 7 / 24$

Non-local contributions in the $q^{2}<0$ region

\square The non-local contributions to $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$have been computed in the $q^{2}<0$ region by Hambrock et al. as in Ref [6].This computation employs operator-product expansion, QCD factorization and light-cone sum rule techniques.The full non-local contribution is the sum of the various components:

$$
\begin{aligned}
\mathcal{H}^{(p)}\left(q^{2}\right)= & \mathcal{H}_{\mathrm{fact}, \mathrm{LO}}^{(p)}\left(q^{2}\right)+\mathcal{H}_{\mathrm{WA}}^{(p)}\left(q^{2}\right)+\mathcal{H}_{\mathrm{fact}, \mathrm{NLO}}^{(p)}\left(q^{2}\right) \\
& +\mathcal{H}_{\mathrm{soft}}^{(p)}\left(q^{2}\right)+\mathcal{H}_{\mathrm{soft}, \mathrm{O}_{8}}^{(p)}\left(q^{2}\right)+\mathcal{H}_{\mathrm{nonf}, \text { spect }}^{(p)}\left(q^{2}\right), \quad(p=u, c)
\end{aligned}
$$From these calculations we have values for $\Delta C_{9}^{B^{ \pm}}$at various points in negative- q^{2}.We need to build a model for the non-local contributions that we can use to fit the data in the positive q^{2} region.

$$
B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-} \quad 8 / 24
$$

Modelling the non-local contributions - $Y_{\text {light }}$ quark continuum $\left(q^{2}\right)$

To fit $d \Gamma\left(B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right) / d q^{2}$ to data we build a model of $\Delta C_{9}^{B^{ \pm}}\left(q^{2}\right)$,

$$
\Delta C_{9}^{B^{ \pm}}\left(q^{2}\right)=\Delta C_{9}^{B^{ \pm}}\left(q_{0}^{2}\right)+Y_{\rho, \omega}^{B^{ \pm}}\left(q^{2}\right)+Y_{L Q C}^{B^{ \pm}}\left(q^{2}\right)+Y_{J / \psi, \psi(2 S), \ldots}^{B^{ \pm}}\left(q^{2}\right)+Y_{2 P, c \bar{c}}^{B^{ \pm}}\left(q^{2}\right)
$$

where the subtraction term $\Delta C_{9}^{B^{ \pm}}\left(q_{0}^{2}\right)$ is matched to the results of the LCSR+QCD factorisation calculations at the subtraction point q_{0}^{2}.This contribution is significant in $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$, but very small in $B^{ \pm} \rightarrow K^{ \pm} \mu^{+} \mu^{-}$.$\ln B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$, both the rare mode $\left(V_{t b} V_{t d}^{*}\right)$ and these light quark diagrams ($V_{u b} V_{u d}^{*}$) go as $\sim \lambda^{3}$.
$\triangleright \ln$ contrast, in $B^{ \pm} \rightarrow K^{ \pm} \mu^{+} \mu^{-}$the rare mode $\left(V_{t b} V_{t s}^{*}\right)$ goes as $\sim \lambda^{2}$.

Modelling the non-local contributions $-Y_{c \bar{c}}^{2 P}\left(q^{2}\right)$

To fit $d \Gamma\left(B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right) / d q^{2}$ to data we build a model of $\Delta C_{9}^{B^{ \pm}}\left(q^{2}\right)$,

$$
\Delta C_{9}^{B^{ \pm}}\left(q^{2}\right)=\Delta C_{9}^{B^{ \pm}}\left(q_{0}^{2}\right)+Y_{\rho, \omega}^{B^{ \pm}}\left(q^{2}\right)+Y_{L Q C}^{B^{ \pm}}\left(q^{2}\right)+Y_{J / \psi, \psi(2 S), \ldots}^{B^{ \pm}}\left(q^{2}\right)+Y_{2 P, c \bar{c}}^{B^{ \pm}}\left(q^{2}\right)
$$

where the subtraction term $\Delta C_{9}^{B^{ \pm}}\left(q_{0}^{2}\right)$ is matched to the results of the LCSR+QCD factorisation calculations at the subtraction point q_{0}^{2}.

We include the combination of the non-resonant continuum of open charm states and the contributions due to further broad vector charmonnia following the recipe of Cornella et al. [7].Includes the following rescatterings:

$$
B^{ \pm} \rightarrow \pi^{ \pm} M M^{\prime} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}
$$

where $\quad M M^{\prime}=\left\{D D, D D^{*}, D^{*} D^{*}\right\}$.

Modelling the non-local contributions - $Y_{C \bar{C}}^{2 P}\left(q^{2}\right)$

To fit $d \Gamma\left(B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right) / d q^{2}$ to data we build a model of $\Delta C_{9}^{B^{ \pm}}\left(q^{2}\right)$,

$$
\Delta C_{9}^{B^{ \pm}}\left(q^{2}\right)=\Delta C_{9}^{B^{ \pm}}\left(q_{0}^{2}\right)+Y_{\rho, \omega}^{B^{ \pm}}\left(q^{2}\right)+Y_{L Q C}^{B^{ \pm}}\left(q^{2}\right)+Y_{J / \psi, \psi(2 S), \ldots}^{B^{ \pm}}\left(q^{2}\right)+Y_{2 P, c \bar{c}}^{B^{ \pm}}\left(q^{2}\right)
$$

where the subtraction term $\Delta C_{9}^{B^{ \pm}}\left(q_{0}^{2}\right)$ is matched to the results of the LCSR+QCD factorisation calculations at the subtraction point q_{0}^{2}.

To reduce the number of fit parameters, we approximate the sum of $D D, D^{*} D^{*}$ and $D D^{*}$ contributions as a single component with a global magnitude and phase.
Exact effect from $B \rightarrow D D^{*} \rightarrow \pi \mu \mu$ amplitudes remains remains an open question Ref [8].

Modelling the non-local contributions - Resonances

To fit $d \Gamma\left(B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right) / d q^{2}$ to data we build a model of $\Delta C_{9}^{B^{ \pm}}\left(q^{2}\right)$,

$$
\Delta C_{9}^{B^{ \pm}}\left(q^{2}\right)=\Delta C_{9}^{B^{ \pm}}\left(q_{0}^{2}\right)+Y_{\rho, \omega}^{B^{ \pm}}\left(q^{2}\right)+Y_{L Q C}^{B^{ \pm}}\left(q^{2}\right)+Y_{J / \psi, \psi(2 S), \ldots}^{B^{ \pm}}\left(q^{2}\right)+Y_{2 P, c \bar{c}}^{B^{ \pm}}\left(q^{2}\right)
$$

where the subtraction term $\Delta C_{9}^{B^{ \pm}}\left(q_{0}^{2}\right)$ is matched to the results of the LCSR + QCD factorisation calculations at the subtraction point q_{0}^{2}.

$$
\left|Y_{\rho, \omega}\left(q^{2}\right)+Y_{J / \psi, \psi(2 S), \ldots}\left(q^{2}\right)\right|^{2}
$$The resonances ${ }^{1}$ are described with relativistic Breit-Wigner distributions.

\square Each resonance has a unique phase $\left(\delta_{V}^{B^{ \pm}}\right)$and a unique magnitude $\left(\eta_{V}^{B^{ \pm}}\right)$for both the B^{+} and the B^{-}model.We introduce constraints on resonance branching fractions using existing measurements $\left(B F \propto \eta_{V}^{2}\right)$.
\square We fix both $\eta_{J / \psi}^{B^{ \pm}}$in the fit - uncertainty
 included as a systematic.

[^1]
$B \rightarrow \pi$ local form factors

In the case of $\bar{B} \rightarrow \pi$ transitions, there exist only three local $\bar{B} \rightarrow \pi$ form factors.

$$
\begin{aligned}
\langle\bar{\pi}(k)| \bar{b} \gamma^{\mu} d|\bar{B}(p)\rangle & =\left[(p+k)^{\mu}-\frac{M_{B}^{2}-M_{\pi}^{2}}{q^{2}} q^{\mu}\right] f_{+}\left(q^{2}\right)+\frac{M_{B}^{2}-M_{\pi}^{2}}{q^{2}} q^{\mu} f_{0}\left(q^{2}\right), \\
\langle\bar{\pi}(k)| \bar{b} \sigma^{\mu \nu} q_{\nu} d|\bar{B}(p)\rangle & =\frac{i}{M_{B}+M_{\pi}}\left[q^{2}(p+k)^{\mu}-\left(M_{B}^{2}-M_{\pi}^{2}\right) q^{\mu}\right] f_{T}\left(q^{2}\right) .
\end{aligned}
$$Taken from Leljak et al. [9].Take the nominal $K=4$ LCSR + LQCD option.

$\triangleright K$ is the maximal order of the z-expansion.In our fit the form factor parameters are fixed.We assess an uncertainty on the Wilson coefficients as a systematic using the covariance matrix provided in Ref [9].

$$
B^{ \pm} \rightarrow \pi^{ \pm}{ }_{\mu}^{+} \mu^{-} \quad 13 / 24
$$

$B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$decay rate model

We take the q^{2} shape of the efficiency $\varepsilon\left(q^{2}\right)$ from Ref. [2].We also take the experimental q^{2} resolution used in the LHCb analysis of decays in Ref. [2].\triangleright Our choice is motivated by the expectation that this resolution is close to if not identical to the LHCb resolution for decays.The resolution is folded into the decay rate model using a fast Fourier transform-based convolution,

$$
R\left(q_{\text {reco }}^{2}, q^{2}\right) \otimes\left(\frac{d \Gamma}{d q^{2}} \varepsilon\left(q^{2}\right)\right)
$$

Below is the signal PDF employed in our toy studies that includes these experimental effects.

Alex Marshall

$B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+}{ }^{-}$

Constraining the non-local contribution

$\operatorname{Re}\left(\Delta C_{9}^{B^{ \pm}}\right)$and $\operatorname{Im}\left(\Delta C_{9}^{B^{ \pm}}\right)$have been computed at various q^{2} points in the $q^{2}<0$ region and presented in Ref [6] along with uncertainties.We extend the likelihood used in the minimisation of our fits to include a theory constraint term.This term minimises the distance between the model of the non-local contribution and the theory reference values.
\square This distance is computed at each $q^{2}<0$ point presented in red, and is computed for both the real and imaginary parts of both B^{+}and B^{-}.We do not have access to the correlations between the individual pieces of the $q^{2}<0$ information, so in our fits we make the assumption of no correlations (a conservative choice).

Sensitivity studies

Use toys to study fit stability and to estimate expected precision.

We run toys at the SM, using values for the non-local parameters as obtained from fits to negative q^{2} points.\triangleright Note that the model obtained is compatible with that of Ref. [6].Fit B^{+}and B^{-}simultaneously sharing C_{10}, C_{9} and the phase of C_{9} (flipping sign under $C P$).Fix the light quark continuum contribution ($Y_{\text {light }}$ quark continuum $\left(q^{2}\right)$).Float both the phase and magnitude the $Y_{c \bar{c}}^{2 P}\left(q^{2}\right)$ component, sharing the component between B^{+} and B^{-}.

$B^{ \pm} \rightarrow \pi^{ \pm}{ }_{\mu}^{+} \mu^{-}$
$16 / 24$

Choosing a q^{2} region to fit

With the expected candidate yields in LHCb Run1+2 it is no surprise that we cannot float the parameters of the open charm resonances.We fix these parameters to the $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$measurements of Ref. [2] scaled by $\left|V_{c d} / V_{c s}\right|$ and limit the phase space to $q_{\text {reco }}^{2}<14.0625 \mathrm{GeV}^{2}$.$\triangleright$ This is such that contributions from $q_{T R U E}^{2}$ above the $\psi(3770)$ are negligible even after accounting resolution effects.

We find this cut not to be necessary when we study fit stability with a future LHCb data set where we can fit the full q^{2} phase space.

$$
B^{ \pm} \rightarrow \pi^{ \pm}{ }_{\mu}{ }_{\mu}^{-}
$$

Fit stability

With the LHCb Run $1+2$ dataset, there is a significant chance that the best-fit point lies in an unphysical region.\triangleright Unrealistic without imposing some assumption on NP? $C_{9}^{\mathrm{NP}}=-C_{10}^{\mathrm{NP}}$?A fraction of fits fail with $C_{10} \approx 0$.
\triangleright There is a discontinuity at $C_{10}=0$, due to the presence of $\left|C_{10}\right|^{2}$ in the PDF.Reparametrising the likelihood in terms of $\left|C_{10}\right|^{2}$ (rather than C_{10}), we find a fraction of fits to pseudo-datasets converge with negative values of $\left|C_{10}\right|^{2}$.We label these as failed fits.Fraction of failed fits reduces when employing the $q^{2}<0$ constraint and when increasing event yields.

Impact of employing the $q^{2}<0$ constraint
Run fits to generated pseudo-datasets representative of $45 \mathrm{fb}^{-1}$ of LHCb data ($\times 5 \mathrm{Run} 1+2$).Fit each dataset both with and without the $q^{2}<0$ constraint.Largest improvements are in the phases of the resonances, and the magnitude of the $Y_{c \bar{c}}^{2 P}\left(q^{2}\right)$.This increase in sensitivity to non-local parameters translates into better precision on the Wilson coefficients describing the short-distance physics.

Impact of employing the $q^{2}<0$ constraint

Intervals from fit results to an ensemble of toys representing $45 \mathrm{fb}^{-1}$ of LHCb data.

How does the picture change with more data?
\square With $300 \mathrm{fb}^{-1}$ the expected $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$event yields are similar to those expected of LHCb Run1 $+2 B^{ \pm} \rightarrow K^{ \pm} \mu^{+} \mu^{-}$yields.
\square We can then float the open charm resonance parameters.

Addressing systematic uncertainties

\square Compute the systematic uncertainty accounting for choice to fix the local form factor parameters, $\eta_{J / \psi}^{B^{+}}$and $\eta_{J / \psi}^{B^{-}}$.
\square This computation is done separately for the $45 \mathrm{fb}^{-1}$ and $300 \mathrm{fb}^{-1}$ scenarios due to inclusion of the open charm region.
Fold the systematic into the intervals.

Statistical

Statistical + systematic

22 / 24
$B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$

Local form factor uncertainties

Local form factors uncertainties dominate the systematic uncertainty for all the rare mode parameters: $\operatorname{Re}\left(C_{10}\right), \operatorname{Re}\left(C_{9}\right)$ and $\operatorname{Im}\left(C_{9}\right)$.We stress the importance of addressing form factor uncertainties alongside the coming increase in event yields from future runs of the LHC.\triangleright Even with Run $4\left(45 \mathrm{fb}^{-1}\right)$ we are limited by FF uncertainties.
\square As an example we show the intervals obtained ($300 \mathrm{fb}^{-1}$) if we had improved uncertainties (assume 3 times smaller).
\triangleright This improvement would be in line with that achieved for $B \rightarrow K^{(*)}$ in Ref. [10].

$B^{ \pm} \rightarrow \pi^{ \pm}{ }_{\mu}+{ }_{\mu}^{-}$
23 / 24

Conclusion - $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$We present an unbinned approach that fully accounts for $C P$-violation, the largest non-local contributions and all interference effects.Employing $q^{2}<0$ information is essential to maximise sensitivity.Systematic uncertainties are dominated by knowledge of the local form factors, we emphasise the importance of improving local form factor uncertainties as LHCb takes more data.Fitting the current LHCb data set is impractical due to issues of fit stability.
\triangleright We have begun an analysis that will assume $C_{9}^{\mathrm{NP}}=-C_{10}^{\mathrm{NP}}$This work has been submitted to JHEP (2310.06734).
Thanks for listening

References i

[1] LHCв collaboration, First measurement of the differential branching fraction and CP asymmetry of the $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$decay, JHEP 10 (2015) 034 [1509.00414].
[2] LНСв collaboration, Measurement of the phase difference between short- and long-distance amplitudes in the $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$decay, Eur. Phys. J. C 77 (2017) 161 [1612.06764].
[3] C. Bobeth, M. Misiak and J. Urban, Photonic penguins at two loops and m_{t} dependence of $B R\left[B \rightarrow X_{s} l^{+} l^{-}\right]$, Nucl. Phys. B 574 (2000) 291 [hep-ph/9910220].
[4] C. Bobeth, A.J. Buras, F. Kruger and J. Urban, $Q C D$ corrections to $\bar{B} \rightarrow X_{d, s} \nu \bar{\nu}, \bar{B}_{d, s} \rightarrow \ell^{+} \ell^{-}$, $K \rightarrow \pi \nu \bar{\nu}$ and $K_{L} \rightarrow \mu^{+} \mu^{-}$in the MSSM, Nucl. Phys. B 630 (2002) 87 [hep-ph/0112305].
[5] A. Ali, A.Y. Parkhomenko and A.V. Rusov, Precise Calculation of the Dilepton Invariant-Mass Spectrum and the Decay Rate in $B^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}$in the SM, Phys. Rev. D 89 (2014) 094021 [1312.2523].
[6] C. Hambrock, A. Khodjamirian and A. Rusov, Hadronic effects and observables in $B \rightarrow \pi \ell^{+} \ell^{-}$ decay at large recoil, Phys. Rev. D 92 (2015) 074020 [1506.07760].
[7] C. Cornella, G. Isidori, M. König, S. Liechti, P. Owen and N. Serra, Hunting for $B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}$ imprints on the $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$dimuon spectrum, Eur. Phys. J. C 80 (2020) 1095 [2001.04470].

References ii

[8] M. Ciuchini, M. Fedele, E. Franco, A. Paul, L. Silvestrini and M. Valli, Constraints on lepton universality violation from rare B decays, Phys. Rev. D 107 (2023) 055036 [2212.10516].
[9] D. Leljak, B. Melić and D. van Dyk, The $\bar{B} \rightarrow \pi$ form factors from $Q C D$ and their impact on $\left|V_{u b}\right|, J H E P 07$ (2021) 036 [2102.07233].
[10] N. Gubernari, M. Reboud, D. van Dyk and J. Virto, Dispersive Analysis of $B \rightarrow K^{(*)}$ and $B_{s} \rightarrow \phi$ Form Factors, 2305.06301.

BACKUP SLIDES

[^0]: ${ }^{1}$ This requires an assumption of no (pseudo-)scalar and (pseudo-)tensor new physics.

[^1]: ${ }^{1} \rho(770), \omega(782), J / \psi, \psi(2 S), \psi(3770), \psi(4040), \psi(4160)$, and the $\psi(4415)$

