Updates on the determination of |Vcb|, $R\left(D^{*}\right)$ and /Vub|/|Vcb|

Work in collaboration with G. Martinelli and S. Simula [mainly based on arXiv:2310.03680 [hep-ph]]

Ludovico Vittorio (LAPTh \& CNRS, Annecy, France) Implications of LHCb measurements and future prospects 2023 -CERN
LAjЭ丁

Novelties for |Vcb| and |Vub|/|Vcb|determination from $B_{(s)}$ decays

In this talk l'll present the results of an updated global analysis of semileptonic B \to D* and B_{s} \to K decays, mainly based on the following novelties:
i) published results for the B \to D^{*} FFs by the FNAL/MILC Collaboration;

FNAL/MIILC Collaboration, FPJC ‘¿ఙ [arXiv:2105.14019]
ii) new results for the B \to D* FFs by the HPQCD Collaboration;

HPQCD Collaboration, arXiv:2304.03137
iii) new results for the B \to D* FFs by the JLQCD Collaboration;

JLQCD Collaboration, arXiv:2306.05657
iv) published results for the B_{s} \to K Form Factors by the RBC/UKQCD Collaboration.

RBC/UKQCD Collaboration, PRD ‘23 [arXiv:2303.11280]
E i) published results for the B \to D^{*} decays by the Belle Collaboration;

Novelties for \mid Vcb| and \mid Vub $|/|$ Vcb|determination from $B_{(s)}$ decays
For both these transitions, at present important differences exist among the results of different lattice calculations !

To have a reliable estimate of the uncertainties, we have adopted two different strategies:

1. Separate analyses of each lattice dataset
2. Combined study of all the lattice datasets

Determinations of the CKM matrix elements, LFU ratios ...

Novelties for \mid Vcb| and \mid Vub|/|Vcb|determination from $B_{(s)}$ decays
For both these transitions, at present important differences exist among the results of different lattice calculations!

To have a reliable estimate of the uncertainties, we have adopted two different strategies:

1. Separate analyses of each lattice dataset
2. Combined study of all the lattice datasets

Determinations of the CKM matrix elements, LFU ratios.

IMPORTANT: we will compute R(D*) in a fully-theoretical way, i.e. by constraining the shape of the FFs ONLY with lattice data. Only in this way we compute the SM expectation value of this quantity!

The results in this talk are all based on the implementation of the Dispersive Matrix (DM) method. However, similar results can be obtained with a BGL fit (although with sligthly larger uncertainties ...).

Updates on the "problematic" semileptonic B $\rightarrow \mathrm{D}^{*}$ channel

FNAL/MILC:
EPJC '22
(arXiv:2105.14019)
HPQCD:
arXiv:2304.03137
JLQCD:
arXiv:2306.05657
i) There is a strong tension between the values of F2(w) from HPQCD and those of the other two collaborations;
ii) Although at small w the values of $\operatorname{F2}(w)$ from FNAL/MILC and JLQCD are close, the extrapolated values are different;
iii) The results for $\mathrm{g}(\mathrm{w}), \mathrm{f}(\mathrm{w})$ and $\mathrm{F} 1(\mathrm{w})$ are approximately consistent at low recoil, where all the collaborations have computed the FFs (at w≤ 1.2);
iv) The allowed band of the extrapolated values of $\operatorname{F1}(w)$ from JLQCD, however, is very different from the bands obtained for this quantity using the values by FNAL/MILC and HPQCD (see the different slope of $\mathrm{F} 1(\mathrm{w})$ at the smaller w values).

Updates on the "problematic" semileptonic B $\rightarrow \mathrm{D}^{*}$ channel

FNAL/MILC:
EPJC '22
(arXiv:2105.14019)
HPQCD:
arXiv:2304.03137

JLQCD:
arXiv:2306.05657

IMPORTANT: the DM results always correspond
 to a vanishing value of the $\chi 2$-variable in a frequentist language!!

Updates on |Vcb| extraction

Two sets of data by Belle Collaboration to be used:
Belle Collaboration: PRD '19 [arXiv:1809.03290]

- Belle 2018: $\quad d \Gamma / d x, \quad x=w, \cos \theta_{l}, \cos \theta_{v}, \chi$
- Belle 2023: $\quad(d \Gamma / d x) / \Gamma, x=w, \cos \theta_{l}, \cos \theta_{v}, \chi$

Belle Collaboration: PRD ‘23 [arXiv:2301.07529]

Updates on |Vcb| extraction

Two sets of data by Belle Collaboration to be used:
Belle Collaboration: PRD '19 [arXiv:1809.03290]

- Belle 2018:
$d \Gamma / d x, \quad x=w, \cos \theta_{l}, \cos \theta_{v}, \chi$
- Belle 2023: $\quad(d \Gamma / d x) / \Gamma, x=w, \cos \theta_{l}, \cos \theta_{v}, \chi$

For Belle 2018 data:

- we use a modified covariance matrix to take into account the correct number of zero eigenvalues (see PRD '21 (arXiv:2105.08674))
- we can compute |Vcb| from the experimental total decay rate (see LV's PhD Thesis "The D(M)M perspective on Flavour Physics" and arxiv:2305.15457 [hep-ph])

For Belle 2023 data:

- the covariance matrix is already in the correct form
- we can NOT compute |Vcb| from the experimental total decay rate
- we have to use an external number for the total decay rate, i.e.

$$
\Gamma\left(B \rightarrow D^{*} \ell \nu\right)=2.20(9) \cdot 10^{-14} \mathrm{GeV}
$$

BIN-PER-BIN |Vcb|:

$$
\left|V_{c b}\right|_{i} \equiv \sqrt{\frac{(d \Gamma / d x)_{i}^{e x p}}{(d \Gamma / d x)_{i}^{t h-}}}
$$

IMPORTANT: exp. data do not enter in the description of the hadronic FFs !!

Our proposal: bin-per-bin exclusive Vcb determination through unitarity

bin number

bin number

FNAL/MILC input [HPQCD inputs give similar plots]

JLQCD inputs

Our proposal: bin-per-bin exclusive Vcb determination through unitarity

bin number

bin number

FNAL/MILC input [HPQCD inputs give similar plots]

The differences among these distributions reflect the differences among different theor. FFs results !

JLQCD inputs

Exclusive Vcb determination through unitarity

- CORRELATED AVERAGE among the four values of |Vcb| at fixed lattice inputs and at fixed experiment:

$\left\|V_{c b}\right\| \times 10^{3}$			
experiment	FNAL/MILC	HPCQD	JLQCD
Belle 2018	$39.72(64)$	$40.02(63)$	$39.89(76)$
Belle 2023	$40.41(71)$	$41.22(69)$	$41.24(79)$

Striking agreement with $|V c b|=(40.3 \pm 0.5) \times 10^{-3}$ obtained by I. Ray and S. Nandi, see arXiv:2305.11855 [hep-ph]

- OUR AVERAGE OF EPJC '22 (2109.15248) among all the values of |Vcb| of the Table of previous slide:

$$
\begin{aligned}
\mu_{x} & =\frac{1}{N} \sum_{k=1}^{N} x_{k} \\
\sigma_{x}^{2} & =\frac{1}{N} \sum_{k=1}^{N} \sigma_{k}^{2}+\frac{1}{N} \sum_{k=1}^{N}\left(x_{k}-\mu_{x}\right)^{2}
\end{aligned}
$$

$$
\left|V_{c b}\right|=(40.79 \pm 1.46) \cdot 10^{-3}
$$

Exclusive Vcb determination through unitarity

- CORRELATED AVERAGE among the four values of |Vcb| at fixed lattice inputs and at fixed experiment:

$\left\|V_{c b}\right\| \times 10^{3}$			
experiment	FNAL/MILC	HPCQD	JLQCD
Belle 2018	$39.72(64)$	$40.02(63)$	$39.89(76)$
Belle 2023	$40.41(71)$	$41.22(69)$	$41.24(79)$

\square| $\left\|V_{c b}\right\|=(40.55 \pm 0.54) \cdot 10^{-3}$ |
| :---: |
| (scaling factor à la PDG of 1.58) |

Striking agreement with $|V c b|=(40.3 \pm 0.5) \times 10^{-3}$ obtained by I. Ray and S. Nandi, see arXiv:2305.11855 [hep-ph]

- OUR AVERAGE OF EPJC '22 (2109.15248) among all the values of |Vcb| of the Table of previous slide:

$$
\begin{aligned}
\mu_{x} & =\frac{1}{N} \sum_{k=1}^{N} x_{k} \\
\sigma_{x}^{2} & =\frac{1}{N} \sum_{k=1}^{N} \sigma_{k}^{2}+\frac{1}{N} \sum_{k=1}^{N}\left(x_{k}-\mu_{x}\right)^{2}
\end{aligned}
$$

- COMBINED ANALYSIS of all lattice data
through an Importance Sampling procedure
see also S.Simula, LV, PRD ‘23 (2309.02135)

Exclusive Vcb determination through unitarity

- CORRELATED AVERAGE among the four values of |Vcb| at fixed lattice inputs and at fixed experiment:

$\left\|V_{c b}\right\| \times 10^{3}$			
experiment	FNAL/MILC	HPCQD	JLQCD
Belle 2018	$39.72(64)$	$40.02(63)$	$39.89(76)$
Belle 2023	$40.41(71)$	$41.22(69)$	$41.24(79)$

Striking agreement with $|V c b|=(40.3 \pm 0.5) \times 10^{-3}$ obtained by I. Ray and S. Nandi, see arXiv:2305.11855 [hep-ph]

- OUR AVERAGE OF EPJC '22 (2109.15248) among all the values of |Vcb| of the Table of previous slide:

$$
\begin{aligned}
\mu_{x} & =\frac{1}{N} \sum_{k=1}^{N} x_{k} \\
\sigma_{x}^{2} & =\frac{1}{N} \sum_{k=1}^{N} \sigma_{k}^{2}+\frac{1}{N} \sum_{k=1}^{N}\left(x_{k}-\mu_{x}\right)^{2}
\end{aligned}
$$

- COMBINED ANALYSIS of all lattice data through an Importance Sampling procedure see also S.Simula, LV, PRD '23 (2309.02135)

$$
\left|V_{c b}\right|=(40.79 \pm 1.46) \cdot 10^{-3}
$$

Vittorio (LAPTh \& CNRS, Annecy)

$R\left(D^{*}\right)$ and the polarization observables

Important observables for phenomenology! Tensions among the FNAL/MILC case and the exp. value not explainable by light New Physics (w/out deforming the original FFs shape), see
Fedele, Blanke, Crivellin, Iguro, Nierste, Simula, LV, PRD ${ }^{2} \mathbf{2 3}$ [2305.15457]

Lattice FFs	$R\left(D^{*}\right)$	$P_{\tau}\left(D^{*}\right)$	$F_{L, \tau}$	$F_{L, \ell}$	$A_{F B, \ell}$
FNAL/MILC [14]	$0.275(8)$	$-0.529(7)$	$0.418(9)$	$0.450(19)$	$0.261(14)$
HPQCD [15]	$0.276(8)$	$-0.558(13)$	$0.448(16)$	$0.426(30)$	$0.272(21)$
JLQCD [16]	$0.248(8)$	$-0.508(11)$	$0.398(16)$	$0.561(29)$	$0.220(21)$
Average [14]-[16]	$0.266(9)$	$-0.529(11)$	$0.420(11)$	$0.471(36)$	$0.254(14)$
(PDG scale factor)	(2.0)	(2.1)	(1.6)	(2.6)	(1.3)
Combined [14]-[16]	$0.262(5)$	$-0.525(5)$	$0.423(7)$	$0.468(14)$	$0.253(10)$
Experimental value	$0.284(12)[32]$	$-0.38 \pm 0.51_{-0.16}^{+0.21}[37]$	$0.49(8)[34,35]$	$0.523(8)[13,36]$	$0.231(17)[13,36]$

$$
\begin{aligned}
& \left.R^{\mathrm{opt}}\left(D^{*}\right) \equiv \frac{\int_{m_{\tau}^{2}}^{q_{\max }^{2}} d q^{2} \frac{d \Gamma}{d q^{2}}\left(B \rightarrow D^{*} \tau \nu_{\tau}\right)}{\left[q^{2}\right.} \right\rvert\, \quad \text { PDG-average (scale factor = 2.1): } \quad .0785+10.0073 \\
& \text { DM }{ }_{\text {IS }} \text { value: } \\
& 1.0812 \pm 0.0035
\end{aligned}
$$

L. Vittorio (LAPTh \& CNRS, Annecy)

$R\left(D^{*}\right)$ and the polarization observables

Zoom on $F_{L}{ }^{\tau}$ in different q2-bins:

Lattice FFs	low- q^{2} bin	high- q^{2} bin
FNAL/MILC [14]	$0.486(15)$	$0.381(5)$
HPQCD [15]	$0.534(25)$	$0.398(10)$
JLQCD [16]	$0.453(28)$	$0.369(10)$
Average [14]-[16]	$0.491(18)$	$0.382(6)$
(PDG scale factor)	(1.6)	(1.5)
Combined [14]-[16]	$0.495(12)$	$0.383(4)$
Experimental value [35]	$0.51(7)(3)$	$0.35(6)(3)$

Table 5. Longitudinal D^{*}-polarization fraction $F_{L, \tau}$ measured by LHCb[35] in two different q^{2}-bins: $q^{2}<7 G e V^{2}\left(l o w-q^{2}\right)$ and $q^{2}>7 G e V^{2}\left(h i g h-q^{2}\right)$.
(also https://indico.cern.ch/event/1184945/contributions/5435450/attachments/ $\mathbf{2 7 1 6 7 1 7 / 4 7 1 8 7 3 5 / L F U _ M C a l v i . p d f)}$

Update on |Vub|/|Vcb|

LHCb Collaboration has recently measured

$$
R_{B F}^{(i=1=l o w)}=1.66(08)(09) \cdot 10^{-3} \quad q^{2} \leq 7 \mathrm{GeV}^{2}
$$

$$
\begin{array}{ll}
R_{B F} \equiv \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}\right)} & R_{B F}^{(i=2=\text { high })}=3.25(21)(19) \cdot 10^{-3} \quad q^{2} \geq 7 \mathrm{GeV}^{2}, \\
\text { LHCb Collaboration, PRL ‘21 [2012.05143] } & R_{B F}^{(i=3=\text { total })}=4.89(21)(25) \cdot 10^{-3}
\end{array}
$$

Two possible phenomenological analyses:

1) Determination of $|\mathrm{Vub}|$:

$$
\left|V_{u b}\right|^{(i)}=\sqrt{R_{B F}^{(i)} \frac{\mathcal{B R}^{e x p}\left(B_{s} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}\right)}{\tau_{B_{s}} \widetilde{\Gamma}^{(i)}\left(B_{s} \rightarrow K \ell \nu_{\ell}\right)}}
$$

2) Determination of $|\mathrm{Vub}| /|\mathrm{Vcb}|$:

$$
\frac{\left|V_{u b}\right|^{(i)}}{\left|V_{c b}\right|}=\sqrt{R_{B F}^{(i)} \frac{\widetilde{\Gamma}\left(B_{s} \rightarrow D_{s} \ell \nu_{\ell}\right)}{\widetilde{\Gamma}^{(i)}\left(B_{s} \rightarrow K \ell \nu_{\ell}\right)}}
$$

Update on |Vub|/|Vcb|

Clarification needed for f0(q2) at high-q2 among different lattice Collaborations ...

Extrapolation at q2 $\mathbf{= 0}$:

- upper panels:
$f^{D M_{I S}}(0)=0.243 \pm 0.043$
- lower panels:
$f^{D M_{I S}}(0)=0.291 \pm 0.053$

Update on |Vub|/|Vcb|

$\mathrm{DM}_{I S}$			
lattice FFs	$\left\|V_{u b}\right\|^{(1)} \cdot 10^{3}$	$\left\|V_{u b}\right\|^{(2)} \cdot 10^{3}$	$\left\|V_{u b}\right\|^{(3)} \cdot 10^{3}$
FNAL/MILC+HPQCD+RBC/UKQCD	$3.55(49)$	$3.70(27)$	$3.64(32)$
HPQCD+RBC/UKQCD	$3.12(46)$	$3.62(29)$	$3.42(33)$

Final number:

$\left|V_{u b}\right|=(3.64 \pm 0.32) \cdot 10^{-3}$
Perfect agreement with:

- J.M. Flynn et al., 2303.12285
- A. Biswas et al., JHEP '23 [2212.02528]
- D. Leljak et al., JHEP '23 [2302-05268]

$\mathrm{DM}_{I S}$			
lattice FFs	$\left\|V_{u b}\right\|^{(1)} /\left\|V_{c b}\right\|$	$\left\|V_{u b}\right\|^{(2)} /\left\|V_{c b}\right\|$	$\left\|V_{u b}\right\|^{(3)} /\left\|V_{c b}\right\|$
FNAL/MILC+HPQCD+RBC/UKQCD	$0.085(13)$	$0.088(8)$	$0.087(9)$
HPaCD+RBc/UKQCD	$0.075(12)$	$0.086(8)$	$0.082(9)$

Final number:

$\left|V_{u b}\right| /\left|V_{c b}\right|=0.087 \pm 0.009$
Perfect agreement with FLAG Review '21, EPJC '22 [2111.09849] (difference in the lattice inputs used)

Conclusions

i) Unitarity and kinematical constraints matter!!
ii) Avoid any mixing of lattice and experimental data in determining the shapes of the FFs (true also for |Vcb| extraction)
iii) Technical point: DM can be used for combined studies of many lattice datasets through the Importance Sampling procedure
iv) Technical point: DM FFs can be used for further phenomenological analyses:

- Global NP study of semileptonic B \to D(*) decays:

Fedele, Blanke, Crivellin, Iguro, Nierste, Simula, LV, PRD '23 [2305.15457]

- Interplay between b \to s data and R(D(*)):

Guadagnoli, Normand, Simula, LV, JHEP '23 [2308.00034]
$\left|V_{c b}\right|_{\text {incl }} \times 10^{3}=42.16 \pm 0.50$
Bordone et al., Phys.Lett.B ‘21 [2107.00604]

Global fits of the Unitarity Triangle within the Standard Model. Updates from the UTfit collaboration.

Marcella Bona ${ }^{1}$ Marco Ciuchini ${ }^{2}$ Denis Derkach ${ }^{3}$ Fabio Ferrari4,5 Vittorio Lubicz ${ }^{2,7}$ Guido Martinelli6,8 Davide Morgante ${ }^{9,10}$ Maurizio Pierini ${ }^{11}$ Luca Silvestrini ${ }^{6}$ Silvano Simula ${ }^{2}$ Achille Stocchi ${ }^{12}$ Cecilia Tarantino ${ }^{2,7}$ Vincenzo Vagnoni4 Mauro Valli6 and Ludovico Vittorio ${ }^{14}$
See M. Pierini's talk @ EPSKO23 and M. Bona's talk @ CKMß3

FINAL MESSAGE: decreasing tension among exclusive and inclusive values of | Vcb| ! The global SM Unitarity Triangle fit prefers a high |Vcb|.

Important implications for other observables, such as ε_{K}

Rend. Lincei Sci.Fis.Nat. 34 (2023) 37-57 [arXiv:2212.03894]-SUMLMER (23 UPDATE!

Conclusions

$$
\left\lvert\, \begin{gathered}
\left|V_{c b}\right|_{\text {incl }} \times 10^{3}=42.16 \pm 0.50 \\
\text { Bordone et al., Phys.Lett.B } \mathfrak{2 1}\left[\begin{array}{l}
\text { [2107.00604] }
\end{array}\right)
\end{gathered}\right.
$$

Global fits of the Unitarity Triangle within the Standard Model. Updates from the UTfit collaboration.

Marcella Bona ${ }^{1}$ Marco Ciuchini ${ }^{2}$ Denis Derkach ${ }^{3}$ Fabio Ferrari4,5 Vittorio Lubicz ${ }^{2,7}$ Guido Martinelli6,8 Davide Morgante ${ }^{9,10}$ Maurizio Pierini ${ }^{11}$ Luca Silvestrini ${ }^{6}$ Silvano Simula ${ }^{2}$ Achille Stocchi ${ }^{12}$ Cecilia Tarantino ${ }^{2,7}$ Vincenzo Vagnoni4 Mauro Valli6 and Ludovico Vittorio ${ }^{14}$

See M. Pierini's talk @ BPSณO\&3 and M. Bona's talk @ CKMMふ3

FINAL MESSAGE: decreasing tension among exclusive and inclusive values of | Vcb| ! The global SM Unitarity Triangle fit prefers a high /Vcb|.

Important implications for other observables, such as ε_{K}

Rend. Lincei Sci.Fis.Nat. 34 (2023) 37-57 [arXiv:2212.03894] -SUMLMER (23 UPDATE!

THANKS FOR

YOUR ATTENTION!

BACK-UP SLIDES

HFLAV plots for R(D(*))

Our goal is to describe the FFs using a novel, non-perturbative and model independent approach in the whole kinematical region! - Pioneering works from S. Okubo [PRD, 3 (1971); PRD, 4 (1971)], C.'Bourrely et al [NPB, 189 (1981)] and L. Lellouch [NPB, 479 (1996)]:

New developments in M. di Carlo et al, PRD '21 (2105.02497)
Let us focus on a generic FF f : we will determine $f(t)$ with $f\left(t_{i}\right)$ known at positions $t_{i}(i=1, \ldots, N)$
How? Through: - An inner product $\left\langle h_{1} \mid h_{2}\right\rangle=\int_{|z|=1} \frac{d z}{2 \pi i z} \bar{h}_{1}(z) h_{2}(z)$

- An auxialiary function

$$
g_{t}(z) \equiv \frac{1}{1-\bar{z}(t) z}
$$

$$
\left(\begin{array}{c}
z(t)=\frac{\sqrt{\frac{t_{+}-t}{t_{+}-t_{-}}}-1}{\sqrt{\frac{t_{+}-t}{t_{+}-t_{-}}}+1} \\
t_{ \pm} \equiv\left(m_{B} \pm m_{D}\right)^{2} \\
t: \text { momentum transfer }
\end{array}\right)
$$

We build up the matrix M

 of the scalar products of $\phi f, g_{t}, g_{t 1}, \ldots, g_{t N}$:$$
\mathbf{M}=\left(\begin{array}{ccccc}
\langle\phi f \mid \phi f\rangle & \left\langle\phi f \mid g_{t}\right\rangle & \left\langle\phi f \mid g_{t_{1}}\right\rangle & \cdots & \left\langle\phi f \mid g_{t_{n}}\right\rangle \\
\left\langle g_{t} \mid \phi f\right\rangle & \left\langle g_{t} \mid g_{t}\right\rangle & \left\langle g_{t} \mid g_{t_{1}}\right\rangle & \cdots & \left\langle g_{t} \mid g_{n}\right\rangle \\
\left\langle g_{t_{1}} \mid \phi f\right\rangle & \left\langle g_{t_{1}} \mid g_{t}\right\rangle & \left\langle g_{t_{1}} \mid g_{t_{1}}\right\rangle & \cdots & \left\langle g_{t_{1}} \mid g_{t_{n}}\right\rangle \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\left\langle g_{t_{n}} \mid \phi f\right\rangle & \left\langle g_{t_{n}} \mid g_{t}\right\rangle & \left\langle g_{t_{n}} \mid g_{t_{1}}\right\rangle & \cdots & \left\langle g_{t_{n}} \mid g_{t_{n}}\right\rangle
\end{array}\right)
$$

The Dispersive Matrix (DM) method
CENTRAL ISSUE: since M contains only inner products, by construction its determinant is semipositive definite

$$
\operatorname{det} \mathbf{M} \geq 0 \Longleftrightarrow f_{\mathrm{lo}}(z) \leq f(z) \leq f_{\mathrm{up}}(z)
$$

DISPERSION RELATIONS:

$0 \leq\langle\phi f \mid \phi f\rangle \leq \chi\left(q^{2}\right)$

Statistical and systematic uncertainties

How can we finally combine all the N_{U} lower and upper bounds of both the FFs??

One bootstrap event case:

after a single extraction, we have one value of the lower bound f_{L} and one value of the upper one f_{U} for each FF. Assuming that the true value of each $F F$ can be everywhere inside the range $\left(f_{u}-f_{L}\right)$ with equal probability, we associate to the FFs a flat distribution

$$
P\left(f_{0(+)}\right)=\frac{1}{f_{U, 0(+)}-f_{L, 0(+)}} \Theta\left(f_{0(+)}-f_{L, 0(+)}\right) \Theta\left(f_{U, 0(+)}-f_{0(+)}\right)
$$

Many bootstrap events case:
how to mediate over the whole set of bootstrap events? Since the lower and the upper bounds of a generic FF are deeply correlated, we will assume a multivariate Gaussian distribution:

$$
P\left(f_{L}, f_{U}\right)=\frac{\sqrt{\operatorname{det} \rho}}{2 \pi} \exp \left[-\frac{\rho_{u p, u p}\left(f_{U}-\left\langle f_{U}\right\rangle\right)^{2}+\rho_{l o, l o}\left(f_{L}-\left\langle f_{L}\right\rangle\right)^{2}+2 \rho_{l o, u p}\left(f_{U}-\left\langle f_{U}\right\rangle\right)\left(f_{L}-\left\langle f_{L}\right\rangle\right)}{2}\right]
$$

In conclusion, we can combine the bounds of each FF in a final mean value and a final standard deviation, defined as

$$
\begin{aligned}
\langle f\rangle & =\frac{\left\langle f_{L}\right\rangle+\left\langle f_{U}\right\rangle}{2}, \\
\sigma_{f} & =\frac{1}{12}\left(\left\langle f_{U}\right\rangle-\left\langle f_{L}\right\rangle\right)^{2}+\frac{1}{3}\left(\sigma_{f_{l o}}^{2}+\sigma_{f_{u p}}^{2}+\rho_{l o, u p} \sigma_{f_{l o}} \sigma_{f_{u p}}\right)
\end{aligned}
$$

Kinematical Constraints (KCs)

REMINDER: after the unitarity filter we were left with $N_{U}<N$ survived events!!!

Let us focus on the pseudoscalar case. Since by construction the following kinematical constraint holds

$$
f_{0}(0)=f_{+}(0)
$$

we will filter only the $N_{K C}<N_{U}$ events for which the two bands of the FFs intersect each other @ $t=0$. Namely, for each of these events we also define

$$
\begin{aligned}
\phi_{l o} & =\max \left[F_{+, l o}(t=0), F_{0, l o}(t=0)\right] \\
\phi_{u p} & =\min \left[F_{+, u p}(t=0), F_{0, u p}(t=0)\right]
\end{aligned}
$$

From WE theorem

$$
\left\langle D\left(p_{D}\right)\right| V^{\mu}\left|B\left(p_{B}\right)\right\rangle=f_{+}\left(p_{B}+p_{D}\right)^{\mu}+f_{-}\left(p_{B}-p_{D}\right)^{\mu}
$$

One then defines

$$
f_{0}\left(q^{2}\right)=f_{+}\left(q^{2}\right)+\frac{q^{2}}{m_{B}^{2}-m_{D}^{2}} f_{-}\left(q^{2}\right)
$$

$$
\left\langle D\left(p_{D}\right)\right| V^{\mu}\left|B\left(p_{B}\right)\right\rangle=f^{+}\left(q^{2}\right)\left(p_{B}^{\mu}+p_{D}^{\mu}-\frac{m_{B}^{2}-m_{D}^{2}}{q^{2}} q^{\mu}\right)+f^{0}\left(q^{2}\right) \frac{m_{B}^{2}-m_{D}^{2}}{q^{2}} q^{\mu}
$$

Kinematical Constraints (KCs)

We then consider a modified matrix

$$
\mathbf{M}_{\mathbf{C}}=\left(\begin{array}{cccccc}
\phi f|\phi f\rangle & \left\langle\phi f \mid g_{t}\right\rangle & \left\langle\phi f \mid g_{t_{1}}\right\rangle & \cdots & \left\langle\phi f \mid g_{t_{n}}\right\rangle & \left\langle\phi f \mid g_{t_{n+1}}\right\rangle \\
\left\langle g_{t} \mid \phi f\right\rangle & \left\langle g_{t} \mid g_{t}\right\rangle & \left\langle g_{t} \mid g_{t_{1}}\right\rangle & \cdots & \left\langle g_{t} \mid g_{t_{n}}\right\rangle & \left\langle g_{t} \mid g_{t_{n+1}}\right\rangle \\
\left\langle g_{t_{1}} \mid \phi f\right\rangle & \left\langle g_{t_{1}} \mid g_{t}\right\rangle & \left\langle g_{t_{1}} \mid g_{t_{1}}\right\rangle & \cdots & \left\langle g_{t_{1}} \mid g_{t_{n}}\right\rangle & \left\langle g_{t_{1}} \mid g_{t_{n+1}}\right\rangle \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\left\langle g_{t_{n}} \mid \phi f\right\rangle & \left\langle g_{t_{n}} \mid g_{t}\right\rangle & \left\langle g_{t_{n}} \mid g_{t_{1}}\right\rangle & \cdots & \left\langle g_{t_{n}} \mid g_{t_{n}}\right\rangle & \left\langle g_{t_{n}} \mid g_{t_{n+1}}\right\rangle \\
\left\langle g_{t_{n+1}} \mid \phi f\right\rangle & \left\langle g_{t_{n+1}} \mid g_{t}\right\rangle & \left\langle g_{t_{n+1}} \mid g_{t_{1}}\right\rangle & \cdots & \left\langle g_{t_{n+1}} \mid g_{t_{n}}\right\rangle & \left\langle g_{t_{n+1}} \mid g_{t_{n+1}}\right\rangle
\end{array}\right)
$$

with $t_{n+1}=0$. Hence, we compute the new lower and upper bounds of the FFs in this way. For each of the $N_{K c}$ events, we extract $N_{K C, 2}$ values of $f_{0}(0)=f_{+}(0) \equiv f(0)$ with uniform distribution defined in the range [$\phi_{l o}, \phi_{u p}$]. Thus, for both the FFs and for each of the $N_{K C}$ events we define

$$
\begin{aligned}
F_{l o}(t) & =\min \left[F_{l o}^{1}(t), F_{l o}^{2}(t), \cdots, F_{l o}^{N_{K C, 2}}(t)\right] \\
F_{u p}(t) & =\max \left[F_{u p}^{1}(t), F_{u p}^{2}(t), \cdots, F_{u p}^{N_{K C, 2}}(t)\right]
\end{aligned}
$$

Non-perturbative computation of the susceptibilities

In PRD '21 [arXiv:2105.07851], we have presented the results of the first computation on the lattice of the susceptibilities for the $b \rightarrow c$ quark transition, using the $N_{f}=2+1+1$ gauge ensembles generated by ETM Collaboration.

How are they defined? The starting point is the HVP tensor:

$$
\begin{aligned}
\Pi_{\mu \nu}^{V}(Q) & =\int d^{4} x e^{-i Q \cdot x}\langle 0| T\left[\bar{b}(x) \gamma_{\mu}^{E} c(x) \bar{c}(0) \gamma_{\nu}^{E} b(0)\right]|0\rangle \\
& =-Q_{\mu} Q_{\nu} \Pi_{0^{+}}\left(Q^{2}\right)+\left(\delta_{\mu \nu} Q^{2}-Q_{\mu} Q_{\nu}\right) \Pi_{1^{-}}\left(Q^{2}\right)
\end{aligned}
$$

To compute the susceptibilities on the lattice, we start from the Euclidean correlators:

$$
\begin{aligned}
& \chi_{0^{+}}\left(Q^{2}\right) \equiv \frac{\partial}{\partial Q^{2}}\left[Q^{2} \Pi_{0^{+}}\left(Q^{2}\right)\right]=\int_{0}^{\infty} d t t^{2} j_{0}(Q t) C_{0^{+}}(t), \xrightarrow{\text { W.I. }} \frac{1}{4} \int_{0}^{\infty} d t^{\prime} t^{\prime 4} \frac{j_{1}\left(Q t^{\prime}\right)}{Q t^{\prime}}\left[\left(m_{b}-m_{c}\right)^{2} C_{S}\left(t^{\prime}\right)+Q^{2} C_{0^{+}}\left(t^{\prime}\right)\right] \\
& \chi_{1^{-}}\left(Q^{2}\right) \equiv-\frac{1}{2} \frac{\partial^{2}}{\partial^{2} Q^{2}}\left[Q^{2} \Pi_{1^{-}}\left(Q^{2}\right)\right]=\frac{1}{4} \int_{0}^{\infty} d t t^{4} \frac{j_{1}(Q t)}{Q t} C_{1^{-}}(t) \\
& \chi_{0^{-}}\left(Q^{2}\right) \equiv \frac{\partial}{\partial Q^{2}}\left[Q^{2} \Pi_{0^{-}}\left(Q^{2}\right)\right]=\int_{0}^{\infty} d t t^{2} j_{0}(Q t) C_{0^{-}}(t), \xrightarrow{\text { W.I. }} \frac{1}{4} \int_{0}^{\infty} d t^{\prime} t^{\prime 4} \frac{j_{1}\left(Q t^{\prime}\right)}{Q t^{\prime}}\left[\left(m_{b}+m_{c}\right)^{2} C_{P}\left(t^{\prime}\right)+Q^{2} C_{0^{-}}\left(t^{\prime}\right)\right] \\
& \chi_{1^{+}}\left(Q^{2}\right) \equiv-\frac{1}{2} \frac{\partial^{2}}{\partial^{2} Q^{2}}\left[Q^{2} \Pi_{1^{+}}\left(Q^{2}\right)\right]=\frac{1}{4} \int_{0}^{\infty} d t t^{4} \frac{j_{1}(Q t)}{Q t} C_{1^{+}}(t)
\end{aligned}
$$

Non-perturbative computation of the susceptibilities

Let us choose for the moment zero Q^{2} :

$$
\begin{aligned}
& \chi_{0^{+}}\left(Q^{2}=0\right)=\int_{0}^{\infty} d t t^{2} C_{0^{+}}(t), \\
& \chi_{1^{-}}\left(Q^{2}=0\right)=\frac{1}{12} \int_{0}^{\infty} d t t^{4} C_{1^{-}}(t), \\
& \chi_{0^{-}}\left(Q^{2}=0\right)=\int_{0}^{\infty} d t t^{2} C_{0^{-}}(t), \\
& \chi_{1^{+}}\left(Q^{2}=0\right)=\frac{1}{12} \int_{0}^{\infty} d t t^{4} C_{1^{+}}(t) . \\
& \chi_{0^{+}}\left(Q^{2}=0\right)=\frac{1}{12}\left(m_{b}-m_{c}\right)^{2} \int_{0}^{\infty} d t t^{4} C_{S}(t) \\
& \chi_{0^{-}}\left(Q^{2}=0\right)=\frac{1}{12}\left(m_{b}+m_{c}\right)^{2} \int_{0}^{\infty} d t t^{4} C_{P}(t)
\end{aligned}
$$

$$
\begin{aligned}
C_{0^{+}}(t) & =\widetilde{Z}_{V}^{2} \int d^{3} x\langle 0| T\left[\bar{q}_{1}(x) \gamma_{0} q_{2}(x) \bar{q}_{2}(0) \gamma_{0} q_{1}(0)\right]|0\rangle, \\
C_{1^{-}}(t) & =\widetilde{Z}_{V}^{2} \frac{1}{3} \sum_{j=1}^{3} \int d^{3} x\langle 0| T\left[\bar{q}_{1}(x) \gamma_{j} q_{2}(x) \bar{q}_{2}(0) \gamma_{j} q_{1}(0)\right]|0\rangle, \\
C_{0^{-}}(t) & =\widetilde{Z}_{A}^{2} \int d^{3} x\langle 0| T\left[\bar{q}_{1}(x) \gamma_{0} \gamma_{5} q_{2}(x) \bar{q}_{2}(0) \gamma_{0} \gamma_{5} q_{1}(0)\right]|0\rangle, \\
C_{1^{+}}(t) & =\widetilde{Z}_{A}^{2} \frac{1}{3} \sum_{j=1}^{3} \int d^{3} x\langle 0| T\left[\bar{q}_{1}(x) \gamma_{j} \gamma_{5} q_{2}(x) \bar{q}_{2}(0) \gamma_{j} \gamma_{5} q_{1}(0)\right]|0\rangle, \\
C_{S}(t) & =\widetilde{Z}_{S}^{2} \int d^{3} x\langle 0| T\left[\bar{q}_{1}(x) q_{2}(x) \bar{q}_{2}(0) q_{1}(0)\right]|0\rangle, \\
C_{P}(t) & =\widetilde{Z}_{P}^{2} \int d^{3} x\langle 0| T\left[\bar{q}_{1}(x) \gamma_{5} q_{2}(x) \bar{q}_{2}(0) \gamma_{5} q_{1}(0)\right]|0\rangle,
\end{aligned}
$$

We are working in twisted mass LQCD: the Wilson parameter r can be equal or opposite for the two quarks in the currents
\longrightarrow Two possible independent combinations of $\left(r_{1}, r_{2}\right)$!
Z: appropriate renormalization constants
N. Carrasco et al. [ETM Coll.], NPB 887 (2014) [arXiv:1403.4504]

Non-perturbative computation of the susceptibilities

$$
\begin{aligned}
& \Pi_{V}^{\alpha \beta}=\int_{-\pi / a}^{+\pi / a} \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{Tr}\left[\gamma^{\alpha} G_{1}\left(k+\frac{Q}{2}\right) \gamma^{\beta} G_{2}\left(k-\frac{Q}{2}\right)\right], \\
& G_{i}(p)=\frac{-i \gamma_{\mu} \stackrel{\circ}{p}_{\mu}+\mathcal{M}_{i}(p)-i r_{i} \mu_{q, i} \gamma_{5}}{\stackrel{p}{p}_{\mu}^{2}+\mathcal{M}_{i}^{2}(p)+\mu_{q, i}^{2}} \\
& \stackrel{\circ}{p}_{\mu} \equiv \frac{1}{a} \sin \left(a p_{\mu}\right), \quad \mathcal{M}_{i}(p) \equiv m_{i}+\frac{r_{i}}{2} a \hat{p}_{\mu}^{2}, \quad \hat{p} \equiv \frac{2}{a} \sin \left(\frac{a p_{\mu}}{2}\right) . \\
& -\square \\
& \Pi_{V}^{\alpha \beta}=a^{-2}\left(Z_{1}^{I}+\left(r_{1}^{2}-r_{2}^{2}\right) Z_{2}^{I}+\left(r_{1}^{2}-r_{2}^{2}\right)\left(r_{1}^{2}+r_{2}^{2}\right) Z_{3}^{I}\right) g^{\alpha \beta} \\
& +\left(\mu_{1}^{2} Z^{\mu_{1}^{2}}+\mu_{2}^{2} Z^{\mu_{2}^{2}}+\mu_{1} \mu_{2} Z^{\mu_{1} \mu_{2}}\right) g^{\alpha \beta}+\left(Z_{1}^{Q^{2}}+\left(r_{1}^{2}-r_{2}^{2}\right) Z_{2}^{Q^{2}}\right) Q \cdot Q g^{\alpha \beta} \\
& +\left(Z_{1}^{Q^{\alpha} Q^{\beta}}+\left(r_{1}^{2}-r_{2}^{2}\right) Z_{2}^{Q^{\alpha} Q^{\beta}}\right) Q^{\alpha} Q^{\beta}+r_{1} r_{2}\left(a^{-2} Z_{1}^{r_{1} r_{2}} g^{\alpha \beta}+\left(Z_{2}^{r_{1} r_{2}}+\left(r_{1}^{2}+r_{2}^{2}\right) Z_{3}^{r_{1} r_{2}}\right.\right. \\
& \left.\left.+\left(r_{1}^{4}+r_{2}^{4}\right) Z_{4}^{r_{1} r_{2}}\right) Q \cdot Q g^{\alpha \beta}+\left(\mu_{1}^{2} Z_{5}^{r_{1} r_{2}}+\mu_{2}^{2} Z_{6}^{r_{1} r_{2}}\right) g^{\alpha \beta}\right)+O\left(a^{2}\right), \quad \text { CONTACT TERMS!!! }
\end{aligned}
$$

Contact terms \& perturbative subtraction

In twisted mass LQCD:

$$
\Pi_{V}^{\alpha \beta}=\int_{-\pi / a}^{+\pi / a} \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{Tr}\left[\gamma^{\alpha} G_{1}\left(k+\frac{Q}{2}\right) \gamma^{\beta} G_{2}\left(k-\frac{Q}{2}\right)\right]
$$

Thus, by separating the longitudinal and the transverse contributions, we can compute the susceptibilities for all the spin-parity quantum numbers in the free theory on the lattice, i.e. at order $\mathcal{O}\left(\alpha_{s}^{0}\right)$ using twisted-mass fermions!

$$
\chi_{j}^{f r e e}=\chi_{j}^{L O}+\chi_{j}^{\text {discr }}
$$

$$
\text { LO term of PT @ } \mathcal{O}\left(\alpha_{s}^{0}\right) \quad \text { contact terms and discretization effects @ } \mathcal{O}\left(\alpha_{s}^{0} a^{m}\right) \text { with } m \geq 0
$$

Perturbative subtraction:

$$
\chi_{j} \rightarrow \chi_{j}-\left[\chi_{j}^{\text {free }}-\chi_{j}^{L O}\right]
$$

ETMC ratio method \& final results

For the extrapolation to the physical b-quark point we have used the ETMC ratio method:

$$
R_{j}\left(n ; a^{2}, m_{u d}\right) \equiv \frac{\chi_{j}\left[m_{h}(n) ; a^{2}, m_{u d}\right]}{\chi_{j}\left[m_{h}(n-1) ; a^{2}, m_{u d}\right]} \frac{\rho_{j}\left[m_{h}(n)\right]}{\rho_{j}\left[m_{h}(n-1)\right]} \underset{\begin{array}{c}
\text { to ensure that } \\
\lim _{n \rightarrow \infty} R_{j}(n)=1
\end{array}}{ } \quad \begin{aligned}
& \rho_{0+}\left(m_{h}\right)=\rho_{0-}\left(m_{h}\right)=1, \\
& \rho_{1-}\left(m_{h}\right)=\rho_{1}\left(m_{h}\right)=\left(m_{h}^{\text {pole }}\right)^{2}
\end{aligned}
$$

All the details are deeply discussed in PRD '21 [2105.07851]. In this way, we have obtained the first lattice QCD determination of susceptibilities of heavy-to-heavy (and heavy-to-light, see JHEP '22 [2202.10285]) transition current densities:

$$
b \rightarrow c
$$

	Perturbative	With subtraction	Non-perturbative	With subtraction
$\chi_{V_{L}}\left[10^{-3}\right]$	$6.204(81)$	-	$7.58(59)$	-
$\chi_{A_{L}}\left[10^{-3}\right]$	24.1	19.4	$25.8(1.7)$	$21.9(1.9)$
$\chi_{V_{T}}\left[10^{-4} \mathrm{GeV}^{-2}\right]$	$6.486(48)$	$5.131(48)$	$6.72(41)$	$5.88(44)$
$\chi_{A_{T}}\left[10^{-4} \mathrm{GeV}^{-2}\right]$	3.894	-	$4.69(30)$	-

Differences with PT? ~4\% for $\mathbf{1}^{-}, \mathbf{\sim} \%$ for $\mathbf{0}^{-}, \sim \mathbf{2 0} \%$ for $\mathbf{0}^{+}$and $\mathbf{1}^{+}$

Exclusive Vcb determination through unitarity

The averages of $|\mathrm{Vcb}|$ for each of the kinematic distributions are:

FNAL/MILC				
experiment	$\left\|V_{c b}\right\|_{x=w} \times 10^{3}$	$\left\|V_{c b}\right\|_{x=\cos \theta_{l}} \times 10^{3}$	$\left\|V_{c b}\right\|_{x=\cos \theta_{v}} \times 10^{3}$	$\left\|V_{c b}\right\|_{x=\chi} \times 10^{3}$
Belle 2018 $\chi^{2} /(\text { d.o.f. })$	$\begin{gathered} 39.50(68) \\ 1.21 \end{gathered}$	$\begin{gathered} 40.9(12) \\ 1.36 \end{gathered}$	$\begin{gathered} 39.98(99) \\ 1.99 \end{gathered}$	$\begin{gathered} 42.8(13) \\ 0.38 \end{gathered}$
Belle 2023 $\chi^{2} /(\text { d.o.f. })$	$\begin{gathered} 40.26(72) \\ 1.94 \end{gathered}$	$\begin{gathered} 42.6(13) \\ 0.85 \end{gathered}$	$\begin{gathered} 42.1(12) \\ 1.23 \end{gathered}$	$\begin{gathered} 42.3(14) \\ 1.87 \end{gathered}$
HPCQD				
experiment	$\left\|V_{c b}\right\|_{x=w} \times 10^{3}$	$\left\|V_{c b}\right\|_{x=\cos \theta_{l}} \times 10^{3}$	$\left\|V_{c b}\right\|_{x=\cos \theta_{v}} \times 10^{3}$	$\left\|V_{c b}\right\|_{x=\chi} \times 10^{3}$
Belle 2018 $\chi^{2} /(\text { d.o.f. })$	$\begin{gathered} 40.06(70) \\ 1.33 \end{gathered}$	$\begin{gathered} 41.5(11) \\ 1.15 \end{gathered}$	$\begin{gathered} 40.82(93) \\ 1.37 \end{gathered}$	$\begin{gathered} 43.5(14) \\ 0.40 \end{gathered}$
Belle 2023 $\chi^{2} /(\text { d.o.f. })$	$\begin{gathered} 41.16(71) \\ 1.64 \end{gathered}$	$\begin{gathered} 42.9(13) \\ 0.95 \end{gathered}$	$\begin{gathered} 42.4(11) \\ 1.09 \end{gathered}$	$\begin{gathered} 43.3(15) \\ 1.98 \end{gathered}$
JLQCD				
experiment	$\left\|V_{c b}\right\|_{x=w} \times 10^{3}$	$\left\|V_{c b}\right\|_{x=\cos \theta_{l}} \times 10^{3}$	$\left\|V_{c b}\right\|_{x=\cos \theta_{v}} \times 10^{3}$	$\left\|V_{c b}\right\|_{x=\chi} \times 10^{3}$
Belle 2018 $\chi^{2} /(\text { d.o.f. })$	$\begin{gathered} 39.94(77) \\ 0.25 \end{gathered}$	$\begin{gathered} 40.1(12) \\ 0.16 \end{gathered}$	$\begin{gathered} 39.8(11) \\ 0.53 \end{gathered}$	$\begin{gathered} 40.1(14) \\ 0.11 \end{gathered}$
Belle 2023 $\chi^{2} /(\text { d.o.f. })$	$\begin{gathered} 41.28(80) \\ 1.87 \end{gathered}$	$\begin{gathered} 40.7(14) \\ 0.52 \end{gathered}$	$\begin{gathered} 40.8(12) \\ 0.65 \end{gathered}$	$\begin{gathered} 40.0(15) \\ 1.72 \end{gathered}$

FROM TOTAL DECAY RATE:

$$
\left|V_{c b}\right|=(43.3 \pm 1.6) \cdot 10^{-3}
$$

consistent with arXiv:2304.03137

$$
\left|V_{c b}\right|=(44.6 \pm 1.7) \cdot 10^{-3}
$$

$\left|V_{c b}\right|=(40.2 \pm 1.6) \cdot 10^{-3}$

The unitary BGL fit (App.B of arXiv:2309.02135)

$$
g(z)=\frac{1}{\sqrt{\chi_{1-}\left(q_{0}^{2}\right)}} \frac{1}{\phi_{g}\left(z, q_{0}^{2}\right) P_{1-}-(z)} \sum_{n=0}^{\infty} a_{n} z^{n}
$$

Boyd, Grinstein and Lebed, Phys. Lett. B353, 306 (1995)

$$
\begin{aligned}
& \text { Unitarity: } \\
& \sum_{n=0}^{\infty} a_{n}^{2} \leq 1
\end{aligned}
$$

Boyd, Grinstein and Lebed, Nucl. Phys. B461, 493 (1996) Boyd, Grinstein and Lebed, Phys. Rev. D 56, 6895 (1997)

Let us introduce $N_{B G L}+1$ parameters $r_{k}\left(k=0,1, . ., N_{B G L}\right)$ which can vary in the range $[0,1]$. Then we define:

$$
\begin{aligned}
\theta_{k} & =\pi r_{k} \quad \text { for } \quad k=1,2, \ldots N_{\mathrm{BGL}}-1, \\
\theta_{N_{\mathrm{BGL}}} & =2 \pi r_{N_{\mathrm{BGL}}}
\end{aligned}
$$

The unitary BGL fit (App.B of arXiv:2309.02135)
Basis transformation:

$$
\begin{aligned}
a_{0} & =r_{0} \cos \theta_{1} \\
a_{k} & =r_{0}\left[\prod_{j=1}^{k} \sin \theta_{j}\right] \cos \theta_{k+1} \quad \text { for } k=1,2, \ldots N_{\mathrm{BGL}}-1 \\
a_{N_{\mathrm{BGL}}} & =r_{0}\left[\prod_{j=1}^{N_{\mathrm{BGL}}-1} \sin \theta_{j}\right] \sin \theta_{N_{\mathrm{BGL}}} \cdot
\end{aligned}
$$

$$
\sum_{k=0}^{N_{\mathrm{BGL}}} a_{k}^{2}=r_{0}^{2}
$$

$$
\left\{\begin{aligned}
r_{0} & =\sqrt{\sum_{j=0}^{N_{\mathrm{BGL}}} a_{j}^{2}}, \\
\theta_{k} & =\operatorname{Arccos} \frac{a_{k-1}}{\sqrt{\sum_{j=k-1}^{N_{\mathrm{BGL}} a_{j}^{2}}}} \quad \text { for } k=1,2, \ldots N_{\mathrm{BGL}}-1, \\
\theta_{N_{\mathrm{BGL}}} & =\operatorname{Arccos} \frac{a_{N_{\mathrm{BGL}}-1}}{\sqrt{a_{N_{\mathrm{BGL}}-1}^{2}+a_{N_{\mathrm{BGL}}}^{2}}} \\
& \text { for } a_{N_{\mathrm{BGL}} \geq 0,} \\
& =2 \pi-\operatorname{Arccos} \frac{a_{N_{\mathrm{BGL}}-1}}{\sqrt{a_{N_{\mathrm{BGL}}-1}^{2}+a_{N_{\mathrm{BGL}}}^{2}}}
\end{aligned} \quad \text { for } a_{N_{\mathrm{BGL}}<0} .\right.
$$

Combined study of all the lattice data?

What about a combined study of FNAL/MILC + HPQCD + JLQCD lattice data?

Basics of IS DM

The basic idea is a substitution of the usual probability density function (PDF) adopted in our analyses:

$$
\begin{aligned}
P D F\left(f_{i}\right) \propto e^{-\frac{1}{2} \sum_{i, j=0}^{N}\left(f_{i}-F_{i}\right) C_{i j}^{-1}\left(f_{j}-F_{j}\right)} \\
\quad \text { All the details are contained } \\
\text { also in arXiv: 2309.02135 }
\end{aligned}
$$

In short: a new set of input data $\left\{\widetilde{F}_{i}, \widetilde{C}_{i j}\right\}$ is introduced in order to increase the likelihood of small values of $\chi \mathrm{DM}$!

$$
\begin{gathered}
\beta-\sqrt{\gamma} \leq f(z) \leq \beta+\sqrt{\gamma} \\
\beta=\frac{1}{d(z) \phi(z)} \sum_{j=1}^{N} f_{j} \phi_{j} d_{j} \frac{1-z_{j}^{2}}{z-z_{f}} \quad \gamma=\frac{1}{d^{2}(z) \phi^{2}(z)} \frac{1}{1-z^{2}}\left[\chi-\sum_{i, j=1}^{N} f_{i} f_{j} \phi_{i} \phi_{j} d_{i} d_{j} \frac{\left(1-z_{i}^{2}\right)\left(1-z_{j}^{2}\right)}{1-z_{i} z_{j}}\right]
\end{gathered}
$$

Recall that the DM remains a fitting procedure with a vanishing value of the $\chi 2$-variable in a frequentist language! Then, we have to monitorate the deviation of the new input data from the initial ones thorugh the quantities
$\Delta \equiv\left\{\frac{1}{N+1} \sum_{i, j=0}^{N}\left(\widetilde{F}_{i}-F_{i}\right) C_{i j}^{-1}\left(\widetilde{F}_{j}-F_{j}\right)\right\}^{1 / 2}$

$$
\eta \equiv\left\{\frac{1}{N+1} \sum_{i=0}^{N} \frac{\widetilde{F}_{i}^{2}}{F_{i}^{2}}\right\}^{1 / 2}
$$

$\epsilon \equiv\left\{\frac{1}{N+1} \sum_{i=0}^{N} \frac{\widetilde{C}_{i i}}{C_{i i}}\right\}^{1 / 2}=\left\{\frac{1}{N+1} \sum_{i=0}^{N} \frac{\widetilde{\sigma}_{i}^{2}}{\sigma_{i}^{2}}\right\}^{1 / 2}$
$\Delta<1$ means that on average the new data deviate from the original ones by less than one standard deviation

The value of η can be less or larger than unity depending on whether the new data are (on average) less or larger than original ones

Same physical meaning of η, but now referred to the uncertaintities of the new data in comparison to the original ones

A counter-check of the IS DM results

Unitary BGL fit of Bs \to K data

A quick zoom on FLAG results for Bs \to K decays

Figure 32: The form factors $f_{+}\left(q^{2}\right)$ and $f_{0}\left(q^{2}\right)$ for $B_{s} \rightarrow K \ell \nu$ plotted versus z (left panel) and q^{2} (right panel). In the left plot, we remove the Blaschke factors. See text for a discussion of the data sets. The grey and salmon bands display our preferred $N^{+}=N^{0}=4 \mathrm{BCL}$ fit (seven parameters).

Poles \& branch cuts

How to parametrize the effect of the branch cut?
C: coupling in diagrams connecting the $(\mathrm{V}-\mathrm{A})$ current to an external $\mathrm{B}-\pi$ pair through non-resonant on-shell intermediate states.

$$
\begin{aligned}
& \operatorname{Im} g(t)=C\left(\sqrt{t-M_{b}^{2}} \theta\left(t-M_{b}^{2}\right)-\sqrt{t-M_{a}^{2}} \theta\left(t-M_{a}^{2}\right)\right) \\
& \text { Boyd, Grinstein and Lobed, NPB '96 [arXiv:hep-ph/9508211] } \\
& M_{a}^{2}=\left(m_{B}+m_{\pi}\right)^{2} \\
& M_{b}^{2}=\left(m_{B_{s}}+m_{K}\right)^{2} \\
& g_{\mathrm{cut}}(z)=4 c M^{s-2} \sqrt{r}\left(\frac{\sqrt{\left(z-z_{a}\right)\left(1-z z_{a}\right)}}{(1-z)\left(1-z_{a}\right)}-\frac{\sqrt{\left(z-z_{b}\right)\left(1-z z_{b}\right)}}{(1-z)\left(1-z_{b}\right)}\right)
\end{aligned}
$$

Poles \& branch cuts

At the end of the day: if $f_{\text {cut }}=g_{\text {cut }} \phi P$, then we have guaranteed the analiticity (on the unit disc) of $\tilde{f} \phi P$, where

$$
\tilde{f}(z)=f(z)-g_{\mathrm{cut}}(z)
$$

How to describe then the unitarity constraint?

$$
\begin{gathered}
\left(\int_{0}^{2 \pi} d \theta|\tilde{f} \phi|^{2}\right)^{1 / 2} \leq\left(\int_{0}^{2 \pi} d \theta|f \phi|^{2}\right)^{1 / 2}+\left(\int_{0}^{2 \pi} d \theta\left|f_{\mathrm{cut}}\right|^{2}\right)^{1 / 2} \leq \sqrt{2 \pi}\left(1+I_{\mathrm{cut}}^{1 / 2}\right) \\
I_{\mathrm{cut}} \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta\left|f_{\mathrm{cut}}\right|^{2}
\end{gathered}
$$

> In the B_{s} \to K case, we expect $I_{\text {cut }}$ to be small... Moreover, the susceptibilities are affected by big uncertainties...

	Non-perturbative	With subtraction
$\chi_{V_{L}}\left[10^{-3}\right]$	$2.04(20)$	-
$\chi_{A_{L}}\left[10^{-3}\right]$	$2.34(13)$	-
$\chi_{V_{T}}\left[10^{-4} \mathrm{GeV}^{-2}\right]$	$4.88(1.16)$	$4.45(1.16)$
$\chi_{A_{T}}\left[10^{-4} \mathrm{GeV}^{-2}\right]$	$4.65(1.02)$	-

Results III: Bayesian Inference vs Dispersive Matrix Method

Application

 to $B_{s} \rightarrow K$: identical results!
Pair-product. threshold issue here

 numerically negligible!