From Flavour Anomalies Towards New Physics

Svjetlana Fajfer
Institute J. Stefan, Ljubljana and
Physics Department, University of Ljubljana, Slovenia

Implications of LHCb measurements and future prospects
25-27 October 2023

2024 J. J. Sakurai Prize for Theoretical Particle Physics Recipient

Andrzej J. Buras Technical University Munich

Citation:

"For exceptional contributions to quark-flavor physics, in particular, developing and carrying out calculations of higher-order QCD effects to electroweak transitions, as well as for drawing phenomenological connections between kaons, D mesons, and B mesons."

Background:

Master Degree, Warsaw University 1971, PhD Niels Bohr Institute, Copenhagen 1972, Postdoctoral Fellow at Niels Bohr Institute (19721975), CERN Fellow (1975-1977), Fermilab Scientist (1977-1982), Max-Planck-Institute (Munich) (1982-1988), Full Professor at Technical University Munich (1988-2012), Emeritus of Excellence of TUM (2012
 -now). Max Planck Medal 2020 of the German Physical Society, ERC-Advanced Grant 2011-2016, Smoluchowski-Warburg Medal of the German and Polish Physical Societies 2007, Ordinary Member of the Bavarian Academy of Sciences (2010), Foreign member of Polish Academy of Sciences (2013) and of Polish Academy of Arts and Sciences (2011), Member of the Academia Europaea

Sakurai prizes for flavour physics

Outline

Lepton flavor universality

Anomalies

- B meson anomalies $R_{D(*)}, P_{5}^{\prime}, R_{K\left({ }^{*}\right)}^{v v}$ (?)
- anomalous muon magnetic moments (?)

SM contributions to anomalous processes

Approaching New Physics

- SMEFT Lagrangian approach
- models of NP

Constraints from low-energy observables \& LHC data
Predictions relevant for LHCb, Belle2 \&LHC

$$
\text { UV complete theories of NP } \xrightarrow{?} \text { Flavour puzzle }
$$

From present anomalies to new anomalies!

International Bestseller and Winner of the Goncourt Prize

Hervé Le Tellier

The Anomaly

After analysing one anomaly, a new anomaly appers....

Anomalies - in the past

DO Collaboration, 1007.0395

We measure the charge asymmetry $A \equiv\left(N^{++}-N^{--}\right) /\left(N^{++}+N^{--}\right)$of like-sign dimuon events in $6.1 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions recorded with the D0 detector at a center-of-mass energy $\sqrt{s}=1.96 \mathrm{TeV}$ at the Fermilab Tevatron collider. From A we extract the like-sign dimuon charge asymmetry in semileptonic b-hadron decays: $A_{\mathrm{sl}}^{b}=-0.00957 \pm 0.00251$ (stat) ± 0.00146 (sys). It differs by 3.2 standard deviations from the standard model prediction $A_{\mathrm{sl}}^{b}(\mathrm{SM})=\left(-2.3_{-0.6}^{+0.5}\right) \times 10^{-4}$, and provides first evidence of anomalous $C P$ violation in the mixing of neutral B mesons.

$$
a_{\mathrm{sl}}^{b} \equiv \frac{\Gamma\left(\bar{B} \rightarrow B \rightarrow \mu^{+} X\right)-\Gamma\left(B \rightarrow \bar{B} \rightarrow \mu^{-} X\right)}{\Gamma\left(\bar{B} \rightarrow B \rightarrow \mu^{+} X\right)+\Gamma\left(B \rightarrow \bar{B} \rightarrow \mu^{-} X\right)}=A_{\mathrm{sl}}^{b}
$$

$$
A_{\mathrm{sl}}^{b} \equiv \frac{N_{b}^{++}-N_{b}^{--}}{N_{b}^{++}+N_{b}^{--}}
$$

$\mathrm{N}_{\mathrm{b}}{ }^{++}$and $\mathrm{N}_{\mathrm{b}}{ }^{--}$represent the number of events in which the two muons of highest transverse momentum, have the same positive or negative charges.
The large forward-backward asymmetry in the production of $t t$ pairs at the Tevatron

$$
\begin{aligned}
\text { CDF } & \text { Att }^{-}=0.193 \pm 0.069 \\
\text { DØ } & \text { Att }^{-1}=0.24 \pm 0.14
\end{aligned}
$$

2011

FIG. 3: (Color online) Comparison of $A_{\mathrm{s}}^{\mathrm{b}}$ in data with the SM prediction for $a_{\text {si }}^{d}$ and a_{s}^{s}. Also shown are other measurements of $a_{\mathrm{s}}=-0.0047 \pm 0.0046[15-17]$ and standard deviation uncertainties on each measurement.

Introduction

Why to formulate a new theory?

- observed phenomena, unexplained by existing theory (e.g. neutrino masses, Dark Matter,... in the Standard Model)
- disagreements of the existing theory predictions and data
- trying to cure theoretical problems of the existing theory as e.g. sizable corrections that depend quadratically on the cutoff energy scale for the SM
 Higgs mass (Supersymmetry, Little Higgs models etc.,...)
- Expectation that the Nature supports unification of fundamental interactions - GUT.
- ...

The thing that doesn't fit is the thing that is most interesting. Richard P. Feynman

Steven Weinberg

The Making of the Standard Model

"My starting point in 1967 was the old aim, going back to Yang and Mills, of developing a gauge theory of the strong interactions, but now based on the symmetry group that underlies the successful soft- pion predictions, the symmetry group $\operatorname{SU}(2) \times \operatorname{SU}(2)$ [32]. I supposed that the vector gauge boson of this theory would be the ρ-meson, which was an old idea, while the axial-vector gauge boson would be the a1 meson, an enhancement in the $\pi-\rho$ channel which was known to be needed to saturate certain spectral function sum rules, which I had developed a little earlier that year [33]. Taking the $\operatorname{SU}(2) \times S U(2)$ symmetry to be exact but spontaneously broken, I encountered the same result found earlier by Higgs and Brout and Englert; the Goldstone bosons disappeared and the a1 meson became massive. But with the isotopic spin subgroup unbroken, then (in accordance with a general result of Kibble [34]) the ρ-meson would remain massless. I could of course put in a common mass for the a1 and ρ by hand, which at first gave encouraging results. The pion now reappeared as a Goldstone boson, and the spontaneous breaking of the symmetry made the a1 mass larger than the ρ mass by a factor of the square root of two, which was just the ratio that had come out of the spectral function sum rules. For a while I was encouraged, but the theory was really too ugly. It was the same old problem: putting in a ρ-meson mass or any gauge boson mass by hand destroyed the rationale for the theory and made the theory less predictive, and it also made the theory not renormalizable. So I was very discouraged.
Then it suddenly occurred to me that this was a perfectly good sort of theory, but I was applying it to the wrong kind of interaction. "
"The gluons are in fact massless, but we don't see them for the same reason that we don't see the quarks, which is that, as a result of the peculiar infrared properties of non-Abelian gauge theories, color is trapped; color particles like quarks and gluons can never be isolated. This has never been proved.
There is now a million dollar prize offered by the Clay Foundation to anyone who succeeds in proving it rigorously, but since it is true I for one am happy to leave the proof to the mathematicians. "

Lepton Flavour Universality (LFU)

the same coupling of lepton and its neutrino with W for all three lepton generations!

$$
\binom{v_{e}}{\boldsymbol{e}^{-}}\binom{v_{\mu}}{\mu^{-}}\binom{v_{\tau}}{\tau^{-}} \quad \Gamma\left(\tau^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \nu_{\tau}\right)=\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right)
$$

Basic property of the SM: universal g

$$
\begin{array}{ll}
\mathcal{L}_{f}=\bar{f} i D_{\mu} \gamma^{\mu} f & f_{L}=Q_{L}, L_{L} \\
D_{\mu}=\partial_{\mu}+i g \frac{1}{2} \vec{\tau} \cdot \vec{W}_{\mu}+i g^{\prime} \frac{1}{2} Y_{W} B_{\mu} & \frac{g^{2}}{8 m_{W}^{2}}=\frac{G_{F}}{\sqrt{2}} J_{\mu}^{\dagger} J^{\mu} \\
\sqrt{2}
\end{array}
$$

the same for all SM fermions
valid for quarks too!
the same for all SM fermions

	$\left\|g_{\mu} / g_{e}\right\|$	$\left\|g_{\tau} / g_{e}\right\|$			$\left\|g_{\tau} / g_{\mu}\right\|$
$B_{\tau \rightarrow \mu} / B_{\tau \rightarrow e}$	1.0019 ± 0.0014			$B_{\tau \rightarrow e} \tau_{\mu} / \tau_{\tau}$	1.0009 ± 0.0014
$B_{\pi \rightarrow \mu} / B_{\pi \rightarrow e}$	1.0010 ± 0.0009	$B_{\tau \rightarrow \mu} \tau_{\mu} / \tau_{\tau}$	1.0027 ± 0.0014		0.9959 ± 0.0038
$B_{K \rightarrow \mu} / B_{K \rightarrow e}$	0.9978 ± 0.0018	$B_{W \rightarrow \tau} / B_{W \rightarrow e}$	1.007 ± 0.010	$\Gamma_{\tau \rightarrow K} / \Gamma_{K \rightarrow \mu}$	0.986 ± 0.008
$B_{K \rightarrow \pi \mu} / B_{K \rightarrow \pi e}$	1.0010 ± 0.0025			$B_{W \rightarrow \tau} / B_{W \rightarrow \mu}$	1.001 ± 0.010
$B_{W \rightarrow \mu} / B_{W \rightarrow e}$	1.001 ± 0.003				

Obviously LFU in the SM is a consequence of the same gauge coupling!

However, all quarks and leptons have different masses!

Flavour puzzle!

$\mathcal{L}_{\text {Yukawa }}=-Y_{d}^{i j} \bar{Q}_{L}^{i} H d_{R}^{j}-Y_{u}^{i j} \bar{Q}_{L}^{i} H^{c} u_{R}^{j}-Y_{\ell}^{i j} \bar{L}_{L}^{i} H \ell_{R}^{j}+$ h.c..
Within SM LFU is violated by different fermionic masses

The Yukawa interaction breaks

$$
\mathcal{G}_{\text {flavour }} \rightarrow U(1)_{B} \times U(1)_{e} \times U(1)_{\mu} \times U(1)_{\tau} \times U(1)_{Y}
$$

$$
m_{i}=\frac{f_{i} v}{\sqrt{2}} \quad i=u, d, e
$$

Only Yukawa terms in the SM Lagrangian are not invariant under CP symmetry.

The measure of CP violation is given by Jarlskog invariant

$$
J_{Y} \equiv \operatorname{Im}\left(\operatorname{det}\left[Y_{d} Y_{d}^{\dagger}, Y_{u} Y_{u}^{\dagger}\right]\right)
$$

$$
\begin{aligned}
& J_{Y}=J_{\mathrm{CP}} \frac{\left(m_{t}^{2}-m_{c}^{2}\right)}{v^{2} / 2} \frac{\left(m_{t}^{2}-m_{u}^{2}\right)}{v^{2} / 2} \frac{\left(m_{c}^{2}-m_{u}^{2}\right)}{v^{2} / 2} \frac{\left(m_{b}^{2}-m_{s}^{2}\right)}{v^{2} / 2} \frac{\left(m_{b}^{2}-m_{d}^{2}\right)}{v^{2} / 2} \frac{\left(m_{s}^{2}-m_{d}^{2}\right)}{v^{2} / 2} \simeq \mathcal{O}\left(10^{-22}\right) \\
& J_{\mathrm{CP}}=\operatorname{Im}\left[V_{u s} V_{c b} V_{u b}^{*} V_{c s}^{*}\right]=c_{12} c_{23} c_{13}^{2} s_{12} s_{23} s_{13} \sin \delta_{\mathrm{KM}} \simeq \lambda^{6} A^{2} \eta \simeq \mathcal{O}\left(10^{-5}\right)
\end{aligned}
$$

CP would be conserved in the SM, if any of two pairs of masses are equal!
"The Christenson, Cronin, Fitch and Turley discovery of the CP violating decay mode $\mathrm{K} _\rightarrow \pi \cdot \pi$-was reported in the summer of 1964 . This was a relatively low priority experiment that was not aimed at investigating CP violation but, instead, was designed to investigate some anomalies in coherent $K_{2} \rightarrow K_{1}$ regeneration measurements that had been reported during the previous year. It failed to qualify for a spot in the main experimental hall of the then, almost new, AGS synchrotron that was occupied by spectrometers specialized for total cross section determinations, and π, K, p^{-}and μ proton elastic scattering measurements. Instead, the experimental apparatus was located in a relatively inaccessible area inside the AGS magnet ring that the laboratory technical staff referred to as "Inner Mongolia," in a neutral particle line that was essentially a hole in the AGS shielding wall that was pointed at a target located in the accelerator's vacuum chamber, as illustrated in Fig. 2a. The high flux of γ-rays emerging from the target were attenuated by a 3.8 cm - thick lead block followed by a collimator and a bending magnet that swept charged particles out of the beam aperture. A doublearm spectrometer consisting of tracking spark chambers before and after two vertically bending magnets measured the directions and momenta of charged particles that were produced by Kımeson decays that occurred in a 2 m -long decay volume that was a plastic bag filled with atmospheric pressure helium-a low-budget approximation of a vacuum chamber."

Cabibbo Angle Anomaly (CAA)

No charm- see talks by Solomonidi and Vale Silva!
Lepton flavour universality violation in tau decays ($\tau \rightarrow \mu \vee v^{-}$)

B meson anomalies

$$
\mathrm{R}_{\mathrm{D}^{(*)}}=\left.\frac{\mathcal{B}\left(\mathrm{B} \rightarrow \mathrm{D}^{(*)} \tau \bar{\nu}\right)}{\mathcal{B}\left(\mathrm{B} \rightarrow \mathrm{D}^{(*)} \bar{\nu}\right)}\right|_{\mathrm{l} \in\{\mathrm{e}, \mu\}}
$$

- $R_{D}{ }^{\text {exp }}$ and $R_{D^{*}}{ }^{\text {exp }}$: dominated by BaBar!

- In $\mathrm{R}_{\mathrm{J} / \psi^{\mathrm{exp}}}$ and $\mathrm{R}_{\Lambda c}{ }^{\exp }$ limited precision.

Solution for the puzzle - New Physics!

There are still some issues!

$$
<D^{(*)}\left(p^{\prime},(\epsilon)\right)\left|\bar{c} \Gamma^{\mu} b\right| B(p)>=\sum_{j} K_{j}^{\mu} \mathcal{F}_{j}\left(q^{2}\right)_{\text {See Judd Harrison talk yesterday! }}
$$

1) $B \rightarrow D$: one (two) form-factors with $f_{0}(0)=f_{+}(0)$ at $q^{2}=0$; Lattice QCD at $q^{2}=/ q^{2}$ max for both form-factors.

$$
R_{D}^{l a t t}=0.293(5)
$$

2) $B \rightarrow D^{*}$: three (four) form-factors;

First lattice results at $q^{2}=/ q^{2}$ max $!$ Tensions with $B \rightarrow D^{*} / \bar{v}$ exp. data

If q^{2} spectrum for $I=e, \mu$

$$
R_{D}^{l a t t+e x p}=0.295(3)
$$

FNAL/MILC $B \rightarrow D^{*}: 2105.1401$

$$
\text { HPQCD } B \rightarrow D^{*}: 2304.03137
$$

$R\left(D^{*}\right)=0.252 \pm 0.003$, S.F., J.F.Kamenik, and I.Nisandzic, 1203.265420 JLQCD, $\mathrm{R}\left(\mathrm{D}^{*}\right)=0.252 \pm 0.022$, Y.Aoki et al. 2306.05657

Puzzles in $\mathrm{b} \rightarrow s \mu \mu$ transition

$$
R_{K^{(*)}}=\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \mu \mu\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} e e\right)}
$$

$$
\begin{array}{r}
0.1<q^{2}<1.1: \begin{cases}R_{K} & =0.994{ }_{-0.082}^{+0.090}(\mathrm{stat})_{-0.027}^{+0.029}(\mathrm{syst}) \\
R_{K^{*}} & =0.927_{-0.087}^{+0.093}(\text { stat })_{-0.035}^{+0.036}(\mathrm{syst})\end{cases} \\
1.1<q^{2}<6.0: \begin{cases}R_{K} & =0.949_{-0.041}^{+0.042}(\mathrm{stat})_{-0.022}^{+0.022}(\mathrm{syst}) \\
R_{K^{*}} & =1.027_{-0.068}^{+0.072}(\text { stat })_{-0.026}^{+0.027}(\mathrm{syst})\end{cases}
\end{array}
$$

LHCb

$$
2212.09152,2212.09153
$$

$$
R_{K^{(*)}}^{\mathrm{SM}}=1.00(1) \text { Bordone et al., } 1605.07633
$$

It is important that LFU (e, μ) holds! $-\mathrm{RK}_{(*)}$

$$
\mathcal{H}_{\mathrm{eff}}=\mathcal{H}_{\mathrm{eff}}^{\mathrm{SM}}-\frac{4 G_{F}}{\sqrt{2}} \frac{e^{2}}{16 \pi^{2}} \sum_{q=s, d} \sum_{\ell=e, \mu} \sum_{i=9,10, S, P} V_{t b} V_{t q}^{*}\left(C_{i}^{b q \ell \ell} O_{i}^{\text {bqle }}+C_{i}^{\prime b q \ell \ell} O_{i}^{\prime b q \ell \ell}\right)+\text { h.c. }
$$

$$
C_{7}^{S M}=0.29 ; C_{9}^{S M}=4.1 ; C_{10}^{S M}=-4.3
$$

$$
\begin{array}{ll}
O_{9}^{b q \ell \ell}=\left(\bar{q} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right), & O_{9}^{\prime b q \ell \ell}=\left(\bar{q} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) \\
O_{10}^{b q \ell \ell}=\left(\bar{q} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right), & O_{10}^{\prime \text { bq }}=\left(\bar{q} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right) \\
O_{S}^{b q \ell \ell}=m_{b}\left(\bar{q} P_{R} b\right)(\bar{\ell} \ell), & O_{S}^{\prime b q \ell \ell}=m_{b}\left(\bar{q} P_{L} b\right)(\overline{\ell \ell}) \\
O_{P}^{b q \ell \ell}=m_{b}\left(\bar{q} P_{R} b\right)\left(\bar{\ell} \gamma_{5} \ell\right), & O_{P}^{\prime b q \ell \ell}=m_{b}\left(\bar{q} P_{L} b\right)\left(\bar{\ell} \gamma_{5} \ell\right)
\end{array}
$$

Angular observables, $\mathrm{P}_{5}{ }^{\prime}$ still remains (Descotes-Genon et al., 1207.2753, Matias et al., 1202.4266).

$$
\begin{aligned}
C_{9}^{\text {univ. }} & =-0.64 \pm 0.22 \\
\Delta C_{9}^{b s \mu \mu}=-C_{10}^{b s \mu \mu} & =-0.11 \pm 0.06
\end{aligned}
$$

- If NP in muons only, there's now tension between LFU ratios and $B R \prime s+R_{K\left({ }^{*}\right)}+\mathrm{P}^{\prime} 5$
- A flavour universal shift in C_{9} is now sufficient to account for all $\mathrm{b} \rightarrow s \mu \mu$
- Still, difficult to distinguish long-distance QCD "charming penguins" from NP

Stefanek's illustration

A new anomaly?

$$
R_{\nu \nu}^{K^{(*)}}=\mathcal{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right) / \mathcal{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)^{\mathrm{SM}}
$$

A new player in the room!
Belle II at EPS conference, 2023

Belle II 2023

$$
\mathcal{B}\left(B^{ \pm} \rightarrow K^{ \pm} \nu \bar{\nu}\right)=2.40(67) \times 10^{-5}
$$

2.9σ larger then SM prediction

Searching for explanation

Bause et al., 2309.00075
Allwicher et al, 2309.02246
Felkl et al., 2309.02940,
He et al., 2309.12741

$$
R_{\nu \nu}^{K}=5.4 \pm 1.5
$$

Allwicher et al, 2309.02246

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}^{\mathrm{b} \rightarrow \mathrm{~s} \nu \nu} & =\frac{4 G_{F}}{\sqrt{2}} \lambda_{t} \sum_{a} C_{a} \mathcal{O}_{a}+\text { h.c. } \\
\mathcal{O}_{L}^{\nu_{i} \nu_{j}} & =\frac{e^{2}}{(4 \pi)^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\nu}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{j}\right), \\
\mathcal{O}_{R}^{\nu_{i} \nu_{j}} & =\frac{e^{2}}{(4 \pi)^{2}}\left(\bar{s}_{R} \gamma_{\mu} b_{R}\right)\left(\bar{\nu}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{j}\right),
\end{aligned}
$$

$\mathrm{SM} \begin{cases}C_{L}^{\mathrm{SM}}=-6.32(7) & \text { Buras et al.,1409.4557, } \\ C_{R}^{\mathrm{SM}}=0 & \text { Altmannshofer et al., 0902.0160 } \\ & \text { Buras, 2209.03968 }\end{cases}$

$$
\begin{aligned}
\mathcal{B}\left(B^{ \pm} \rightarrow K^{ \pm} \nu \nu\right) & =(4.44 \pm 0.30) \times 10^{-6}, \\
\mathcal{B}\left(B^{ \pm} \rightarrow K^{ \pm *} \nu \nu\right) & =(9.8 \pm 1.4) \times 10^{-6},
\end{aligned}
$$

Assuming SM neutrinos a large contribution to the right-handed quark operator necessary!

$$
C_{L, R}^{\nu_{i} \nu_{j}}=\delta_{i j} C_{L, R}^{\mathrm{SM}}+\delta C_{L, R}^{\nu_{i} \nu_{j}}
$$

$$
\begin{gathered}
\mathcal{B}\left(B \rightarrow K^{(*)} \nu \nu\right)=\left.\mathcal{B}\left(B \rightarrow K^{(*)} \nu \nu\right)\right|_{\mathrm{SM}}\left(1+\delta \mathcal{B}_{K^{(*)}}^{\nu \nu}\right), \\
\delta C_{L} \neq 0: \delta C_{L} \in[-4.2,-3.5] \cup[16.9,17.3] \\
R_{\nu \nu}^{K^{*}} \in(2.4,2.7) \\
\delta C_{R} \neq 0: \delta C_{R} \in[-12.0,-3.5] \\
R_{\nu \nu}^{K^{*}} \in(0.6,2.1)
\end{gathered}
$$

$(g-2)_{\mu}$ expecting the clarification of the theory

SM prediction

Theory Initiative
T. Aoyama et al. Phys. Rept. 887 (2020)

New results after 2020

Disclaimer: prediction from Lattice taken from Lattice 2023 talk; prediction from CMD3 based on our specific assumption Comparison of FNAL Run1-3 result with the Theory Initiative's calculation wp20 is at 5 sigma

G. Venanzoni, EPS-HEP2023, Hamburg,

The CMD-3 data in $\mathrm{e}+\mathrm{e}-\rightarrow \pi \pi$ provides an R-ratio result compatible with the lattice one

The picture is still unclear, however more studies are underway!

$$
a_{\mu}(\text { FNAL })=116592055(24) \times 10^{-11}
$$

$\mathrm{R}_{\mathrm{D}\left({ }^{*}\right)}$ disagreement SM and the world average at 3σ level

$$
\mathrm{B}(\mathrm{~B} \rightarrow \mathrm{~K} v \bar{v})=2.40(67) \times 10^{-5} \text { is } 2.9 \sigma \text { larger than its SM estimate }
$$

$(\mathrm{g}-2)_{\mu}$ theoretically not settled $-5.1 \sigma(1.8 \sigma$? $)$-unsettled HVP disappearance of $\mathrm{R}_{\mathrm{K} \mathbf{(*}^{*}}$ puzzle

Can we claim any New Physics?

```
LHC did not find any NP particles
```

We do not know what the rules of the game are; all we are allowed to do is to watch the playing. Of course, if we watch long enough, we may eventually catch on to a few of the rules. The rules of the game are what we mean by fundamental physics.

the quadratically divergent radiative correction is given by

$$
\delta m_{h}^{2} \simeq \frac{3}{4 \pi^{2}}\left(-\lambda_{t}^{2}+\frac{g^{2}}{4}+\frac{g^{2}}{8 \cos ^{2} \theta_{W}}+\lambda\right) \Lambda^{2}
$$

Haber \& Kane, Phys. Rep.117C 75 (1985)

Supersymmetry

In order to cancel quadratic divergence NP expected in TeV region!

Note that $\frac{\delta \mathrm{m}_{\mathrm{h}}}{\mathrm{m}_{\mathrm{h}}^{2}} \sim 10^{3}$ for NP scale $\Lambda=10 \mathrm{TeV}$

Standard model effective field theory (SMEFT)

Weak interactions before SM

$$
\mathcal{L}_{e f f}=-\frac{G_{F}}{\sqrt{2}} J_{\mu}^{\dagger} J^{\mu}
$$

However, we know that at low energies

$$
\frac{g_{2}^{2}}{8 m_{W}^{2}}=\frac{G_{F}}{\sqrt{2}}=\frac{1}{2 v^{2}}, \quad \text { Energy scale of } S U(2)_{\llcorner } \times U(1)_{Y}
$$

UV theory
no new particlesSM particles are massless up-to v

- Expectation: NP appears on high energy scale Λ;
- No new degrees of freedom bellow this scale;
- New NP mediators create operators of dimension $d \geq 5$;

$\mathrm{U}(1)_{\mathrm{Y}} \underbrace{\text { UV theory }}_{$| energy |
| :--- |
| no new particlesSM |
| massless ap-to V |$}$

- Integrating out heavy degrees of freedom we create new operators not present in the SM

SMEFT role towards a theory of NP

new heavy particle
There are many ways in which higher-dimensional operators can affect observables.
> New vertices: interaction vertices in the SMEFT Lagrangian that do not occur in the SM Lagrangian, due to symmetries or accidental reasons.
> New Lorentz structures: interaction vertices that do occur in the SM Lagrangian, but
 Eur.Phys.J.C 83 (2023) 7, 656 integrate out heavy field which appear in the SMEFT with a different number of derivatives, different contractions of Lorentz orspinor indices, etc.

Modified couplings: corrections to the coupling strengths of the interaction terms present in the SM Lagrangian.

First we study NP within SMEFT, then we can think of a model!

At the large scale Λ, we generate operators and match Wilson coefficients at tree and/or loop level

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }}=\mathcal{L}_{S M}+\sum_{d \geq 5} \frac{C_{k}^{(d)}}{\Lambda^{d-4}} \mathcal{O}_{k}^{(d)} \quad \text { Warsaw basis, Grzadkowski et al, 1008.4884 } \\
& \quad{ }^{\text {Gauge fields, Higgs }} \quad \mathcal{L}_{D=6}=\mathcal{L}_{D=6}^{\text {bosonic }}+\mathcal{L}_{D=6}^{\text {Yukawa }}+\mathcal{L}_{D=6}^{\text {current }}+\mathcal{L}_{D=6}^{\text {dipole }}+\mathcal{L}_{D=6}^{4 \text {-fermion }} .
\end{aligned}
$$

SMEFT papers: Manohar et al., 1308.2627, 1309.0819, 1310,4838, 1312.2014

- There are 1350 CP-even and 1149 CP-odd parameters in the dimension-six Lagrangian for 3 generations
- Manohar et al. in SMEFT papers calculated the complete order y^{2} and y^{4} terms and λ, λ^{2} and λy^{2}, of the 2499×2499 one-loop anomalous dimension matrix for the dimension-six operators of the SMEFT (y is a generic Yukawa coupling).
- Also they determined (1312.2014) the gauge terms of the one-loop anomalous dimension matrix for the dimension-six operators of the SMEFT

$N=2499$ dim-6 operators that conserve B and L - rich flavor structure!

Many operators! Symmetries might help in the analysis.

The SM gauge-kinetic sector is invariant under a global flavour symmetry

$$
G_{F} \equiv U(3)^{5}=U(3)_{q} \times U(3)_{u} \times U(3)_{d} \times U(3)_{l} \times U(3)_{e}
$$

The fermion Yukawa couplings to the Higgs ($\mathrm{Y}_{\mathrm{u}, \mathrm{d}, \mathrm{e}}$) act as the only sources of breaking in the SM

$$
G_{F} \rightarrow U(1)^{4}=U(1)_{B} \times U(1)_{e} \times U(1)_{\mu} \times U(1)_{\tau}
$$

However, first two generations have small Yukawas, the SM has the accidental approximate $\mathrm{U}(2)^{5}$

$$
G_{F} \sim U(2)^{5} \equiv U(2)_{q} \times U(2)_{u} \times U(2)_{d} \times U(2)_{l} \times U(2)_{e}
$$

Maybe it is not accidental, it can be a consequence of NP!

- The leading flavour breaking sources are proportional to the lowest powers of the SM Yukawas, G. D'Ambrosio et al., hep-ph/0207036

All CP and flavor violation in the NP sector originates from the SM Yukawa couplings.

$$
\begin{aligned}
\lambda_{\mathrm{FC}} \approx\left(Y_{U} Y_{U}^{\dagger}\right)_{\mathrm{FC}} \approx y_{t t}^{2}
\end{aligned}\left(\begin{array}{ccc}
0 & V_{t d}^{*} V_{t s} & V_{t d}^{*} V_{t b} \\
V_{t d} V_{t s}^{*} & 0 & V_{t s}^{*} V_{t b} \\
V_{t d} V_{t b} & V_{t s} V_{t b}^{*} & 0
\end{array}\right) \sim 1\left(\begin{array}{ccc}
0 & \lambda^{5} & \lambda^{3} \\
\lambda^{5} & 0 & \lambda^{2} \\
\lambda^{3} & \lambda^{2} & 0
\end{array}\right)
$$

MFV operators

$$
\begin{aligned}
& \frac{1}{2}\left(\bar{Q}_{L} \lambda_{\mathrm{FC}} \gamma_{\mu} Q_{L}\right)^{2} \\
& H^{\dagger}\left(\bar{D}_{R} \lambda_{d} \lambda_{\mathrm{FC}} \sigma_{\mu \nu} Q_{L}\right) F_{\mu \nu} \\
& H^{\dagger}\left(\bar{D}_{R} \lambda_{d} \lambda_{\mathrm{FC}} \sigma_{\mu \nu} T^{a} Q_{L}\right) G_{\mu \nu}^{a} \\
& \left(\bar{Q}_{L} \lambda_{\mathrm{FC}} \gamma_{\mu} Q_{L}\right)\left(\bar{L}_{L} \gamma_{\mu} L_{L}\right) \\
& \left(\bar{Q}_{L} \lambda_{\mathrm{FC}} \gamma_{\mu} \tau^{a} Q_{L}\right)\left(\bar{L}_{L} \gamma_{\mu} \tau^{a} L_{L}\right) \\
& \left(\bar{Q}_{L} \lambda_{\mathrm{FC}}^{\mu} Q_{L}\right)\left(H^{\dagger} i D_{\mu} H\right) \\
& \left(\bar{Q}_{L} \lambda_{\mathrm{FC}} \gamma_{\mu} Q_{L}\right)\left(\bar{D}_{R} \gamma_{\mu} D_{R}\right)
\end{aligned}
$$

Observables

$$
\begin{gathered}
\epsilon_{K}, \quad \Delta m_{B_{d}} \\
B \rightarrow X_{s} \gamma \\
B \rightarrow X_{s} \gamma \\
B \rightarrow(X) \ell \bar{\ell}, \quad K \rightarrow \pi \nu \bar{\nu},(\pi) \ell \bar{\ell} \\
B \rightarrow(X) \ell \bar{\ell}, \quad K \rightarrow \pi \nu \bar{\nu},(\pi) \ell \bar{\ell} \\
B \rightarrow(X) \ell \bar{\ell}, \quad K \rightarrow \pi \nu \bar{\nu},(\pi) \ell \bar{\ell} \\
B \rightarrow K \pi, \quad \epsilon^{\prime} / \epsilon, \ldots
\end{gathered}
$$

LHC complementary searches

The scale Λ is in the TeV region

- NP is not flavour diagonal!
- New flavour non-universal interactions couple to the third family (TeV region)

flavour diagonal currents

Exact U(2)
Exact $\mathrm{U}(3) \longrightarrow \bar{q}^{i} \gamma_{\mu} P_{L} q^{i} \quad$ Exact $\mathrm{U}(2) \longrightarrow \bar{q}^{3} \gamma_{\mu} P_{L} q^{3}+\epsilon \bar{q}^{i} \gamma_{\mu} P_{L} q^{i}$
flavour changing currents
$\underset{\text { minimally broken } \mathrm{U}(3)}{\mathrm{MFV}} \bar{q}^{i} \lambda_{F C}^{i j} \gamma_{\mu} P_{L} q^{j} \underset{\mathrm{U}(2)}{\text { minimally broken }} \longrightarrow \bar{q}^{i} V_{q}^{i} \gamma_{\mu} P_{L} q^{3} \quad V_{q} \sim \mathcal{O}\binom{V_{t d}}{V_{t s}}$

$$
\begin{aligned}
& \left(\bar{q}^{i} V_{q}^{i} \gamma_{\mu} P_{L} q^{3}\right)^{2} \rightarrow \Delta M_{B_{s}}, \Delta M_{B_{s}} \\
& \left(\bar{q}^{i} V_{q}^{i} \gamma_{\mu} P_{L} q^{3}\right)\left(\bar{l}^{3} \gamma^{\mu} P_{L} l^{3}\right) \rightarrow\left(B \rightarrow K^{(*)} \bar{\tau} \tau, B \rightarrow K^{(*)} \bar{\nu}_{\tau} \nu_{\tau}, B_{s} \rightarrow \bar{\tau} \tau\right) \\
& \left(\bar{q}^{i} V_{q}^{i} \gamma_{\mu} \sigma^{I} P_{L} q^{3}\right)\left(\bar{l}^{3} \gamma^{\mu} \sigma^{I} P_{L} l^{3}\right) \rightarrow\left(B \rightarrow D^{(*)} \bar{\tau} \bar{\nu}_{\tau}, \Lambda_{b} \rightarrow \Lambda_{c} \bar{\tau} \bar{\nu}_{\tau}, B_{c} \rightarrow \bar{\tau} \bar{\nu}_{\tau}\right) \\
& \left(\bar{q}^{i} V_{q}^{i} \gamma_{\mu} P_{L} q^{3}\right)\left(H^{\dagger} D^{\mu} H\right) \rightarrow\left(B \rightarrow K^{(*)} \bar{\ell} \ell, B \rightarrow K^{(*)} \bar{\nu}_{\ell} \nu_{\ell}, B_{s} \rightarrow \bar{\ell} \ell\right) \\
& y_{b}\left(\bar{q}_{L}^{i} V_{q}^{i} \sigma_{\mu \nu} H P_{R} b\right) F^{\mu \nu} \rightarrow\left(B \rightarrow X_{s} \gamma\right)
\end{aligned}
$$

- The best probes of the SMEFT operators are rare/forbidden processes in the SM
- LHC processes can be useful to probe these types of scenarios (with lower values for Λ)!

SMEFT CP-odd invariants 699 found in Bonnefoy et al, 2112.03889

Comment:

There are a number of software tools one can use to generate Wilson ccoeficents and mixind Wilson, Flavio, DsixTools, Matchmakereft, ...

MFV factors (hatch filled surfaces).

Light (dark) colours correspond to present data
(mid-term prospects, including HL-LHC, Belle II, MEG II, Mu3e, Mu2e, COMET, ACME, PIK and SNS)

How to connect this set-up to low energy observables?
See talk of J. Šalko,
 yesterday

1) One connsider renormalisation group evolution (RGE) running of Wilson coefficents from the matching scale down to electroweak scale;
2) Below the weak scale \qquad \rightarrow EFT that is an $\mathrm{SU}(3)_{c} \otimes \mathrm{U}(1)_{\text {em }}$ gauge theory and contains the SM fermions, but not the top quark (H, W, Z, t are integrated out (1908.05295, Dekens\&Stoffer)
3) The LEFT Lagrangian consists of QCD and QED and a tower of additional higher-dimension effective operators
4) The matching condition at the electroweak scale requires that the LEFT and SMEFT S-matrix elements for the light-particle processes agree:

$$
\mathcal{M}_{\text {tree, ren. }}^{\mathrm{M}_{\mathrm{LEFT}}=\mathrm{M}_{\mathrm{SMEFT}}^{\mathrm{LEFT}}}+\mathcal{M}_{\mathrm{ct}}^{\mathrm{LEFT}}+\mathcal{M}_{\mathrm{loop}}^{\mathrm{LEFT}}=\mathcal{M}_{\text {tree }, \text { ren. }}^{\mathrm{SMEFT}}+\mathcal{M}_{\mathrm{ct}}^{\mathrm{SMEFT}}+\mathcal{M}_{\text {loop }}^{\mathrm{SMEFT}}
$$

Muon anomaloues magnetic moment in SMEFT

$$
\mathcal{L}_{S M E F T} \supset C_{2}^{p r} \bar{\ell}_{p} \sigma^{\mu \nu} e_{r} \tau^{a} \varphi W_{\mu \nu}^{a}+C_{3}^{p r} \bar{\ell}_{p} \sigma^{\mu \nu} e_{r} \varphi B_{\mu \nu}
$$

Tree level contributions within SMEFT, dim 6 operator
The one-loop improved RGE evolution and mixing of the relevant operators are considered in SF et al,2103.10859.

For a closed set under the RGE we need to include four- fermion scalar and tensor operators
It can help to that tree-level calculations in the UV model can reproduce the full theory two-loop calculations to remarkable accuracy.

SF et al., 2103.10859 (example 2HDM)

Leptoquarks can accommodate $R_{D\left(^{*}\right)}, R{ }^{v_{K}(*)}{ }^{*} . \quad L Q=\left(S U(3)_{C}, S U(2)_{L}, U(1)_{Y}\right)$
Scalar LQs they can modify Yukawa couplings ($S_{1}\left(3,1,1 / 3\right.$) and $R_{2}(3,2,7,6)$ for $\left.R_{D(*)}\right)$ hopefully can help in understanding origin of flavour masses and understanding flavour puzzle (why masses of quarks and leptons a so different).

Vector LQs prefarably should be gauge bosons, that requires full UV theory Some GUTs, Pati-Salam-like theories (the candidate to explain $R_{D\left(^{*}\right)} U_{1}(3,1,2 / 3)$).

Z' as a new gauge boson of additional U(1) gauge group (accompanied by 2HDM) explanation of Charm CP violation, D meson mixing.

Vectorlike quarks and/or leptons.
"Scepticism is as important for a good journalist as it is for a good scientist." Freeman Dyson

Constraints from flavor observables

Constraints from LFV

If $N P$ couples to b constraints are

$$
(g-2)_{\mu}
$$

$$
B_{c} \rightarrow \tau \nu \quad B \rightarrow \tau \nu
$$

coming from $\mathrm{SU}(2)_{\llcorner }$singlets

$$
B \rightarrow K^{(*)} \nu \bar{\nu}
$$

$q_{L}^{3} \sim\left[\begin{array}{r}V_{i b}^{*} u_{L}^{i} \\ b_{L}\end{array}\right]$

$$
B_{s}^{0}-\bar{B}_{s}^{0}
$$

$$
D^{0}-\bar{D}^{0}
$$

$$
B \rightarrow D \mu \nu_{\mu}
$$

$$
K \rightarrow \mu \nu_{\mu}
$$

$$
D_{d, s} \rightarrow \tau, \mu \nu
$$

$$
K \rightarrow \pi \mu \nu_{\mu}
$$

$$
W \rightarrow \tau \bar{\nu}, \tau \rightarrow \ell \bar{\nu} \nu
$$

$$
Z \rightarrow b \bar{b} \quad Z \rightarrow l^{+} l^{-}
$$

$$
\begin{aligned}
& \tau \rightarrow \mu \gamma \\
& \mu \rightarrow e \gamma \\
& \tau \rightarrow K(\pi) \mu(e) \\
& K \rightarrow \mu e \\
& B \rightarrow K \mu e \\
& \tau \rightarrow \mu \mu \mu \\
& \tau \rightarrow \phi \mu \\
& t \rightarrow c \ell^{+} \ell^{i-}
\end{aligned}
$$

Becirevic et al., $1806.05689,2206.09717, \ldots$ Alonso et al., 1611.06676,...
Radiative constraints Feruglio et al.,1606.00524; Gherardi et. Al., 2008.09546,... Cornella et al., 2103.16558,

Scalar and Vector Leptoquarks as NP meditaors

$(S U(3), S U(2), U(1))$	Spin	Symbol	Type	F
$(\overline{\mathbf{3}}, \mathbf{3}, 1 / 3)$	0	S_{3}	$L L\left(S_{1}^{L}\right)$	-2
$(\mathbf{3}, \mathbf{2}, 7 / 6)$	0	R_{2}	$R L\left(S_{1 / 2}^{L}\right), L R\left(S_{1 / 2}^{R}\right)$	0
$(\mathbf{3}, \mathbf{2}, 1 / 6)$	0	\tilde{R}_{2}	$R L\left(\tilde{S}_{1 / 2}^{L}\right), \overline{L R}\left(\tilde{S}_{1 / 2}^{L}\right)$	0
$(\overline{\mathbf{3}}, \mathbf{1}, 4 / 3)$	0	\tilde{S}_{1}	$R R\left(\tilde{S}_{0}^{R}\right)$	-2
$(\overline{\mathbf{3}}, \mathbf{1}, 1 / 3)$	0	S_{1}	$L L\left(S_{0}^{L}\right), R R\left(S_{0}^{R}\right), \overline{R R}\left(S_{0}^{\bar{R}}\right)$	-2
$(\overline{\mathbf{3}}, \mathbf{1},-2 / 3)$	0	\bar{S}_{1}	$\overline{R R}\left(\bar{S}_{0}^{\bar{R}}\right)$	-2
$(\mathbf{3}, \mathbf{3}, 2 / 3)$	1	U_{3}	$L L\left(V_{1}^{L}\right)$	0
$(\overline{\mathbf{3}}, \mathbf{2}, 5 / 6)$	1	V_{2}	$R L\left(V_{1 / 2}^{L}\right), L R\left(V_{1 / 2}^{R}\right)$	-2
$(\overline{\mathbf{3}}, \mathbf{2},-1 / 6)$	1	\tilde{V}_{2}	$R L\left(\tilde{V}_{1 / 2}^{L}\right), \overline{L R}\left(\tilde{V}_{1 / 2}^{R}\right)$	-2
$(\mathbf{3}, \mathbf{1}, 5 / 3)$	1	\tilde{U}_{1}	$R R\left(\tilde{V}_{0}^{R}\right)$	0
$(\mathbf{3}, \mathbf{1}, 2 / 3)$	1	U_{1}	$L L\left(V_{0}^{L}\right), R R\left(V_{0}^{R}\right), \overline{R R}\left(V_{0}^{\bar{R}}\right)$	0
$(\mathbf{3}, \mathbf{1},-1 / 3)$	1	\bar{U}_{1}	$\overline{R R}\left(\bar{V}_{0}^{\bar{R}}\right)$	0

$F=0$, these LQs do not have diquark couplings and can not lead to the proton destabilisation.

$\mathrm{R}_{\mathrm{D}\left({ }^{*}\right)}$ explanation

$$
\begin{aligned}
\mathcal{L}_{c c} & =-2 \sqrt{2} G_{F} V_{c b}\left[\left(1+g_{V_{L}}\right)\left(\bar{c}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\ell}_{L} \gamma^{\mu} \nu_{L}\right)+g_{V_{R}}\left(\bar{c}_{R} \gamma_{\mu} b_{R}\right)\left(\bar{\ell}_{L} \gamma^{\mu} \nu_{L}\right)\right. \\
& \left.+g_{S_{R}}\left(\bar{c}_{L} b_{R}\right)\left(\bar{\ell}_{R} \nu_{L}\right)+g_{S_{L}}\left(\bar{c}_{R} b_{L}\right)\left(\bar{\ell}_{R} \nu_{L}\right)+g_{T}\left(\bar{c}_{R} \sigma_{\mu \nu} b_{L}\right)\left(\bar{\ell}_{R} \sigma^{\mu \nu} \nu_{L}\right)\right]+ \text { h.c. }
\end{aligned}
$$

Angelescu et al., 2103.12504.

Eff. coeff.	1σ range	$\chi_{\text {min }}^{2} /$ dof
$g_{V_{L}}\left(m_{b}\right)$	0.07 ± 0.02	$0.02 / 1$
$g_{S_{R}}\left(m_{b}\right)$	-0.31 ± 0.05	$5.3 / 1$
$g_{S_{L}}\left(m_{b}\right)$	0.12 ± 0.06	$8.8 / 1$
$g_{T}\left(m_{b}\right)$	-0.03 ± 0.01	$3.1 / 1$
$g_{S_{L}}=+4 g_{T} \in \mathbb{R}$	-0.03 ± 0.07	$12.5 / 1$
$g_{S_{L}}=-4 g_{T} \in \mathbb{R}$	0.16 ± 0.05	$2.0 / 1$
$g_{S_{L}}= \pm 4 g_{T} \in i \mathbb{R}$	0.48 ± 0.08	$2.4 / 1$

$$
\begin{array}{r}
U_{1}=(3,12 / 3): g_{V L}, g_{S R} \\
R_{2}=(3,2,7 / 6): g_{S L}=4 g_{T}, \\
S_{1}=(\overline{3}, 1,1 / 3): g_{S L}=-4 g_{T}, g_{V L}
\end{array}
$$

SMEFT in $\mathrm{R}_{\mathrm{D}\left(^{*}\right)} \mathrm{S}_{1}$ Leptoquark

$$
\frac{R(D)}{R(D)_{\mathrm{SM}}}=
$$

$$
\frac{R\left(D^{*}\right)}{R\left(D^{*}\right)_{\mathrm{SM}}}=1+\operatorname{Re}\left[2 C_{V_{L}}-0.11 C_{S_{L}}^{*}-5.12 C_{T}^{*}\right]+\mathcal{O}\left(C^{2}\right)
$$

$$
\frac{P_{\tau}(D)}{P_{\tau}(D)_{\mathrm{SM}}}=\left(\frac{R(D)}{R(D)_{\mathrm{SM}}}\right)^{-1}\left(1+\operatorname{Re}\left[2 C_{V_{L}}+4.65 C_{S_{L}}^{*}-1.18 C_{T}^{*}\right]+\mathcal{O}\left(C^{2}\right)\right)
$$

$$
\frac{P_{\tau}\left(D^{*}\right)}{P_{\tau}\left(D^{*}\right)_{\mathrm{SM}}}=\left(\frac{R\left(D^{*}\right)}{R\left(D^{*}\right)_{\mathrm{SM}}}\right)^{-1}\left(1+\operatorname{Re}\left[2 C_{V_{L}}+0.22 C_{S_{L}}^{*}-3.37 C_{T}^{*}\right]+\mathcal{O}\left(C^{2}\right)\right)
$$

$$
\frac{F_{L}^{D^{*}}}{\left[F_{L}^{D^{*}}\right]_{\mathrm{SM}}}=\left(\frac{R\left(D^{*}\right)}{R\left(D^{*}\right)_{\mathrm{SM}}}\right)^{-1}\left(1+\operatorname{Re}\left[2 C_{V_{L}}-0.24 C_{S_{L}}^{*}-4.37 C_{T}^{*}\right]+\mathcal{O}\left(C^{2}\right)\right)
$$

$$
\mathrm{C}_{\mathrm{VL}} \rightarrow \mathrm{~g}_{\mathrm{VL}}
$$

$\frac{\operatorname{Br}\left(B_{c}^{+} \rightarrow \tau^{+} \nu\right)}{\operatorname{Br}\left(B_{c}^{+} \rightarrow \tau^{+} \nu\right)_{\mathrm{SM}}}=1+2 \operatorname{Re}\left[C_{V_{L}}-4.33 C_{S_{L}}\right]+\mathcal{O}\left(C^{2}\right)$

Many papers:

Crivellin et al., 1703.09226
Butazzo et al., 1706.07808
Gherardi et al., et al, 2003.12525, 2008.09548
Bauer and Neubert, 1511.01900

$$
\begin{array}{rlrl}
\mathcal{L} \supset & +\left(V Y_{R}^{\left(R_{2}\right)} E_{R}^{\dagger}\right)^{i j} \bar{u}_{L i} \ell_{R j} R_{2}^{\frac{5}{3}}+\left(Y_{R}^{\left(R_{2}\right)} E_{R}^{\dagger}\right)^{i j} \bar{d}_{L i} \ell_{R j} R_{2}^{\frac{2}{3}} & & g_{S_{L}}(\Lambda)=4 g_{T}(\Lambda)=\frac{y_{L}^{c \tau} y_{R}^{b \tau *}}{4 \sqrt{2} G_{F} V_{c b} m_{R_{2}}^{2}} \\
& +\left(U_{R} Y_{L}^{\left(R_{2}\right)} U\right)^{i j} \bar{u}_{R i} \nu_{L j} R_{2}^{\frac{2}{3}}-\left(U_{R} Y_{L}^{\left(R_{2}\right)}\right)^{i j} \bar{u}_{R i} \ell_{L j} R_{2}^{\frac{5}{3}} & & \\
\mathcal{H}_{\mathrm{eff}}^{b \rightarrow c \tau \bar{\nu}} & \supset \frac{4 G_{F}}{\sqrt{2}} V_{c b}\left[g_{S_{L}}(\mu)\left(\bar{c}_{R} b_{L}\right)\left(\bar{\tau}_{R} \nu_{L}\right)\right. & \left.+g_{T}(\mu)\left(\bar{c}_{R} \sigma_{\mu \nu} b_{L}\right)\left(\bar{\tau}_{R} \sigma^{\mu \nu} \nu_{L}\right)\right]+ \text { h.c. } & \\
g_{S_{L}}\left(m_{b}\right) \approx 8.1 \times g_{T}\left(m_{b}\right)
\end{array}
$$

$$
y_{e f f}=\sqrt{\left|y_{L}^{c \tau} y_{R}^{b s *}\right|}
$$

$\mathrm{U}_{1}=(3,1,2 / 3)$ in B anomalies

Zurich group

$$
\begin{array}{ll}
\mathcal{O}_{L L}^{i j \alpha \beta}=\left(\bar{q}_{L}^{i} \gamma_{\mu} \ell_{L}^{\alpha}\right)\left(\overline{(}_{L}^{\beta} \gamma^{\mu} q_{L}^{j}\right)=\frac{1}{2}\left[Q_{l q}^{(1)}+Q_{l q}^{(3)}\right]^{\beta \alpha i j}, & \mathcal{C}_{L L}^{j i \beta \alpha}=\left(\mathcal{C}_{L L}^{i j \alpha \beta}\right)^{\prime} \\
\mathcal{O}_{L R}^{i j \alpha \beta}=\left(\bar{q}_{L}^{i} \gamma_{\mu} \ell_{L}^{\alpha}\right)\left(\bar{e}_{R}^{\beta} \gamma^{\mu} d_{R}^{j}\right)=-2\left[Q_{l e d q}^{\dagger}\right]^{\beta \alpha i j}, & \mathcal{C}_{R R}^{j i \beta \alpha}=\left(\mathcal{C}_{R R}^{i j \alpha \beta}\right)^{*} \\
\mathcal{O}_{R R}^{i \alpha \beta}=\left(\bar{d}_{R}^{i} \gamma_{\mu} e_{R}^{\alpha}\right)\left(\bar{e}_{R}^{\beta} \gamma^{\mu} d_{R}^{j}\right)=\left[Q_{e d}\right]^{\beta \alpha i j}, &
\end{array}
$$

SMEFT operators

$$
\begin{gathered}
\mathcal{L}_{\mathrm{EFT}}^{\mathrm{NP}}=-\frac{2}{v^{2}}\left[\mathcal{C}_{L L}^{i j \alpha \beta} \mathcal{O}_{L L}^{i j \alpha \beta}+\mathcal{C}_{R R}^{i j \alpha \beta} \mathcal{O}_{R R}^{i j \alpha \beta}+\left(\mathcal{C}_{L R}^{i j \alpha \beta} \mathcal{O}_{L R}^{i j \alpha \beta}+\text { h.c. }\right)\right] \\
\mathcal{L}_{b \rightarrow u_{i} \tau \bar{\nu}}=-\frac{4 G_{F}}{\sqrt{2}} \sum_{i=1,2}\left[\left(V_{i b}+\sum_{k=1}^{3} V_{i k} \mathcal{C}_{L L}^{k 3 \tau \tau}\right)\left(\bar{u}_{L}^{i} \gamma_{\mu} b_{L}\right)\left(\bar{\tau}_{L} \gamma^{\mu} \nu_{L}\right)-2 \sum_{k=1}^{3} V_{i k} \mathcal{L}_{L R}^{k 3 \tau \tau}\left(\bar{u}_{L}^{i} b_{R}\right)\left(\bar{\tau}_{R} \nu_{L}\right)\right]
\end{gathered}
$$

EFT constraints from the $b \rightarrow c \tau \bar{v}$ anomalies.
$\Lambda=2 \mathrm{TeV}$. The dashed contours denote the fit results taking also the constraint from $B(B-\rightarrow \tau v)$ into account, under the hypothesis of minimal $\mathrm{U}(2)^{5}$ breaking.
1σ regions.
Important constraints $B_{s}-\bar{B}_{s}$ mixing

Cornella et al., 2103.16558, Greljo et al., 150601705, Buttazo et al., 1706.07808, Bordone et al., 1712.01368, Fuentes-Martin et al., 1910.13474,
Fuentes-Martin et al.2012.10492, Fuentes-Martin et al.2006.16250, Fuentes-Martin et al. 2009.11296, Bordone et al., 1805.09328, Bordone et al., 1605.07633

The most general Lagrangian for a U_{1} vector leptoquark coupling to SM particles is given by

$$
\begin{aligned}
& \mathcal{L}_{U}=-\frac{1}{2} U_{\mu \nu}^{\dagger} U^{\mu \nu}+M_{U}^{2} U_{\mu}^{\dagger} U^{\mu}-i g_{s}\left(1-\kappa_{c}\right) U_{\mu}^{\dagger} T^{a} U_{\nu} G^{\mu \nu, a} \\
& -\frac{2 i}{3} g_{Y}\left(1-\kappa_{Y}\right) U_{\mu}^{\dagger} U_{\nu} B^{\mu \nu}+\frac{g_{U}}{\sqrt{2}}\left(U^{\mu} J_{\mu}^{U}+\text { h.c. }\right), \\
& g \ldots \infty \sim \sim U_{1} \\
& \text { (a) } \\
& \text { (b) } \\
& \text { (c) } \\
& \mathrm{B} \rightarrow \mathrm{~K}^{(*)} v \bar{v}
\end{aligned}
$$

Cornella et al., 2103.16558

NP effects are dominant in the Wilson coefficient involving the third family, while the other flavour combinations receive negligible contributions

Full theory contains new gauge bosons (G^{\prime}, Z^{\prime}), and vectorlike quarks
$\mathrm{M}_{\mathrm{U}}=4 \mathrm{TeV}$ and $\mathrm{g}_{4}=3$, and varying the scale of the scalar degrees of freedom and the Z^{\prime} mass in the $M_{R}=[1,2 \pi] M_{U}$ and $M_{Z^{\prime}}=[0.5,1] M_{U}$ ranges. Orange and purple correspond to the benchmarks $\beta_{b r}=0$ and $\beta_{b t}=-1$.

New physics in the meson mixing

$$
\mathcal{H}_{\mathrm{eff}}^{q}=\mathcal{H}_{\mathrm{eff}, q}^{\mathrm{SM}}+\mathcal{H}_{\mathrm{eff}, q}^{\mathrm{NP}}
$$

A.J. Buras "Gauge Theory of Weak Decays: The Standard Model and the

Expedition to New Physics Summits", Cambridge University Press
M. Bona @EPS 2023
A.J. Buras, "Climbing NLO and NNLO summits of weak decays: 1988-2023", Physics Reports 1025 (2023) 0.

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}}^{\bar{q}^{i} q^{j} \bar{\nu}^{\prime}}=\sqrt{2} G_{F}\left[c_{i j ; \nu \nu^{\prime}}^{L L}\left(\bar{q}_{L}^{i} \gamma_{\mu} q_{L}^{j}\right)\left(\bar{\nu}_{L} \gamma^{\mu} \nu_{L}^{\prime}\right)+c_{i j ; \nu \nu^{\prime}}^{R R}\left(\bar{q}_{R}^{i} \gamma_{\mu} q_{R}^{j}\right)\left(\bar{\nu}_{R} \gamma^{\mu} \nu_{R}^{\prime}\right)\right. \\
& +c_{i j ; \nu \nu^{\prime}}^{L R}\left(\bar{q}_{L}^{i} \gamma_{\mu} q_{L}^{j}\right)\left(\bar{\nu}_{R} \gamma^{\mu} \nu_{R}^{\prime}\right)+c_{i j ; \nu \nu^{\prime}}^{R L}\left(\bar{q}_{R}^{i} \gamma_{\mu} q_{R}^{j}\right)\left(\bar{\nu}_{L} \gamma^{\mu} \nu_{L}^{\prime}\right) \\
& +g_{i j ; \nu \nu^{\prime}}^{L L}\left(\bar{q}_{L}^{i} q_{R}^{j}\right)\left(\bar{\nu}_{L} \nu_{R}^{\prime}\right)+h_{i j ; \nu \nu^{\prime}}^{L L}\left(\bar{q}_{L}^{i} \sigma^{\mu \nu} q_{R}^{j}\right)\left(\bar{\nu}_{L} \sigma_{\mu} \nu_{R}^{\prime}\right) \\
& +g_{i j ; \nu \nu^{\prime}}^{R R}\left(\bar{q}_{R}^{i} q_{L}^{j}\right)\left(\bar{\nu}_{R} \nu_{L}^{\prime}\right)+h_{i j ; \nu \nu^{\prime}}^{R R}\left(\overline{(}_{R}^{i} \sigma^{\mu \nu} q_{L}^{j}\right)\left(\bar{\nu}_{R} \sigma_{\mu \nu} \nu_{L}^{\prime}\right) \\
& \left.+g_{i j ; \nu \nu^{\prime}}^{L R}\left(\bar{q}_{L}^{i} q_{R}^{j}\right)\left(\bar{\nu}_{R} \nu_{L}^{\prime}\right)+g_{i j ; \nu \nu^{\prime}}^{R L}\left(\bar{q}_{R}^{i} q_{L}^{j}\right)\left(\bar{\nu}_{L} \nu_{R}^{\prime}\right)\right] .
\end{aligned}
$$

Bause et al., 2309.00075, Allwicher et al, 2309 52246, assumed that neutrinos are SM-like.
In this case the most suitable candidate is the operator with the right-handed quarks.
Only $\tilde{R}_{2},\left(\mathrm{~V}_{2}\right)$ can have such interactions at the tree level! Note that these couplings would not generate any contributions to I

Allwicher et al, 2309.02246, one or two light lepton flavours, τ seems to workallowing $R_{D(*))} R^{S M}{ }_{D *}$ can be achieved if we allow only the coupling to τ and not to other species. (supported by S. Decotes-Genon et al., 2005.03734)

Constraints also from $B\left(B_{s} \rightarrow \mu \mu\right)^{\text {exp }}, B_{s}-B_{s}$ mixing,

$$
m_{\widetilde{R}_{2}} \lesssim 3 \mathrm{TeV} \quad m_{S_{1}} \lesssim 3.5 \mathrm{TeV}
$$

U_{1} with left-handed couplings only cannot work

Universal contribution to C_{9}
 Operators mix under running

$$
\rightarrow \Delta C_{9}^{U}=C_{9}^{U}-C_{9}^{\mathrm{SM}}
$$

Bobeth, Haisch, arXiv:1109.1826; Crivellin et al., arXiv:1807.02068, Algueró et al., 1695189
Universality in μe is well established (at $\sim 5 \%$ level)

However, there are still unsettled issues as presnted in talk by Dan Moise:
Parrott et al. 2207.13371
On theory side: CKM uncetainty, FF unknown at low q^{2}. To early to make a conclusion on the disagreement!

$$
\mathrm{B} \rightarrow \mathrm{~K} \tau \mu, \tau \rightarrow \mu \gamma, \mathrm{R}^{\nu v_{\mathrm{K}(*)}, \mathrm{B}} \rightarrow \mathrm{~K} \tau \tau, \tau \rightarrow \mu \mu \mu
$$

Becirevic et al., 2206.09717

 Gherardi et al. 2008.09546

Predictions B $\rightarrow \mathrm{K} \tau \tau$

Cornella et al., 2103.16558

LHC and serches for NP in flavour physics

EFT valid

Approach: Recast di-lepton searches and look for NP effects in the tails of the invariant-mass distributions (where is large).

EFT must be valid. Otherwise, use explicit model (e.g., leptoquark or Z^{\prime}). $E \ll \Lambda$

Allwicher et al. 2207.10714

Bounds on the leptoquark couplings from low-energy (blue), electroweak pole (gray) and high- p_{T} LHC (red) observables. The combined fit is shown in green

Unifying models

Pati Salam model reappearance $\quad S U(4)_{r S} \times S U(2) \times S U(2)_{R} \quad$ Pati \& Salam, PRD 10, 275 (1974)

PS - 4321 Di Luzio et al., 1708.08450, Callibi et al, 1709.00692

Gauge group $\quad G \equiv S U(4) \times S U(3) \times S U(2)\left\llcorner U(1)^{\prime}\right.$.
QCD is

$$
S U(3)_{c}=S U(3)_{4} \times S U(3)^{\prime}
$$

$$
U(1)_{Y}=\left(U(1)_{4} \times U(1)^{\prime}\right)_{\text {diag }}
$$

Field	$S U(4)$	$S U(3)^{\prime}$	$S U(2)_{L}$	$U(1)^{\prime}$	$U(1)_{B^{\prime}}$	$U(1)_{L^{\prime}}$
$q_{L}^{\prime i}$	1	3	2	$1 / 6$	$1 / 3$	0
$u_{R}^{h_{i}}$	1	3	1	$2 / 3$	$1 / 3$	0
d_{R}^{\prime}	1	3	1	$-1 / 3$	$1 / 3$	0
ℓ_{L}^{i}	1	1	2	$-1 / 2$	0	1
e_{R}^{i}	1	1	1	-1	0	1
Ψ_{L}^{i}	4	1	2	0	$1 / 4$	$1 / 4$
Ψ_{R}^{i}	4	1	2	0	$1 / 4$	$1 / 4$
H	1	1	2	$1 / 2$	0	0
Ω_{3}	$\frac{4}{4}$	3	1	$1 / 6$	$1 / 12$	$-1 / 4$
Ω_{1}	4	1	1	$-1 / 2$	$-1 / 4$	$3 / 4$

PS ${ }^{3}$ Bordone et al, $1805.09328,1712.01368$
B anomalies + the Standard Model flavour hierarchies
$\Omega_{3}=(8,1,0) \oplus(1,1,0) \oplus(3,1,2 / 3)$ and
$\Omega_{1}=(\overline{3}, 1,-2 / 3) \oplus(1,1,0)$.
$P S_{i}=S U(4)_{i} \times\left[S U(2)_{L_{i}} \times\left[S U(2)_{R}\right]_{i}\right.$
Colorons, and Z^{\prime} close in masses of U_{1}

Not popular- in the minimal set up (non-SUSY) without higher dimensional representations unification is not working

LEPTOQUARK	$S U(5)$
$S_{3} \equiv(\overline{\mathbf{3}}, \mathbf{3}, 1 / 3)$	$\overline{\mathbf{4 5}}, \overline{\mathbf{7 0}}$
$R_{2} \equiv(\mathbf{3}, \mathbf{2}, 7 / 6)$	$\overline{\mathbf{4 5}}, \overline{\mathbf{5 0}}$
$\tilde{R}_{2} \equiv(\mathbf{3}, \mathbf{2}, 1 / 6)$	$\mathbf{1 0}, \mathbf{1 5}, \mathbf{4 0}$
$\tilde{S}_{1} \equiv(\overline{\mathbf{3}}, \mathbf{1}, 4 / 3)$	$\mathbf{4 5}$
$S_{1} \equiv(\overline{\mathbf{3}}, \mathbf{1}, 1 / 3)$	$\overline{\mathbf{5}}, \overline{\mathbf{4 5}}, \overline{\mathbf{5 0}}, \overline{\mathbf{7 0}}$
$\bar{S}_{1} \equiv(\mathbf{3}, \mathbf{1},-2 / 3)$	$\mathbf{1 0}, \mathbf{4 0}$
$U_{3} \equiv(\mathbf{3}, \mathbf{3}, 2 / 3)$	$\overline{\mathbf{3 5}}, \overline{\mathbf{4 0}}$
$V_{2} \equiv(\overline{\mathbf{3}}, \mathbf{2}, 5 / 6)$	$\mathbf{2 4}, \mathbf{7 5}$
$\tilde{V}_{2} \equiv(\overline{\mathbf{3}}, \mathbf{2},-1 / 6)$	$\overline{\mathbf{1 0}}, \overline{\mathbf{4 0}}$
$\tilde{U}_{1} \equiv(\mathbf{3}, \mathbf{1}, 5 / 3)$	$\mathbf{7 5}$
$U_{1} \equiv(\mathbf{3}, \mathbf{1}, 2 / 3)$	$\overline{\mathbf{1 0}}, \overline{\mathbf{4 0}}$
$\bar{U}_{1} \equiv(\mathbf{3}, \mathbf{1},-1 / 3)$	$\mathbf{5}, \mathbf{4 5}, \mathbf{5 0}, \mathbf{7 0}$

Dorsner et al.,1603.04993

Running of gauge couplings with the SM particle content (solid lines) and with additional fields (dashed lines) comprising one scalar transforming as (1;2;1=2) and two scalars transforming as ($3 ; 2 ; 1=6$). Vertical line denotes the mass scale of additional fields

In this scenario even Majorana neutrino masses can be approached.

Do we understand fermion mass hierarchy?

Flavor Hierarchies from a Gauged SU(2) Symmetry
Instead of U(1) Froggatt-Nielsen models Nucl. Phys. B 147 (1979) 277, $\mathrm{SU}(2)_{\mathrm{q}+1}$ flavour (horizontal) symmetry group, under which light generations of left-handed quarks and leptons transform as doublets.

Field $\mathrm{SU}(3)_{c}$		$\mathrm{SU}(2){ }_{\text {L }}$	$\mathrm{U}(1)_{Y}$	$\mathrm{SU}(2)_{q+\ell}$
$q_{\text {L }}^{\alpha}$	3	2	1/6	2
$q_{\text {L }}^{3}$	3	2	1/6	1
u_{R}^{p}	3	1	2/3	1
$d_{\text {R }}^{p}$	3	1	-1/3	1
ℓ_{L}^{α}	1	2	-1/2	2
ℓ_{L}^{3}	1	2	-1/2	1
e_{R}^{p}	1	1	-1	1
H	1	2	1/2	1
Φ	1	1	0	2

Greljo\& Eller Thomsen 2309.11547

The leading gauge invariant operators under $\operatorname{SU}(2)_{q+1}$ horizontal gauged symmetry matching to the SM after SSB by $\langle\Phi\rangle \gg\langle H\rangle$

$$
\mathcal{L} \supset-x_{u}^{p} \bar{q}^{3} \widetilde{H} u^{p}-x_{d}^{p} \bar{q}^{3} H d^{p}-x_{e}^{p} \bar{\ell}^{3} H e^{p}+\text { Н.c. }
$$

the second SM family

Field $\mathrm{SU}(3)_{c}$		$\mathrm{SU}(2)_{\mathrm{L}}$	$\mathrm{U}(1)_{Y}$	$\mathrm{SU}(2)_{q+\ell}$
R_{u}	$\mathbf{3}$	$\mathbf{2}$	$7 / 6$	$\mathbf{1}$
R_{d}	$\mathbf{3}$	$\mathbf{2}$	$1 / 6$	$\mathbf{1}$
S	$\mathbf{3}$	$\mathbf{1}$	$2 / 3$	$\mathbf{2}$

Scalar leptoquark fields contribute to radiative mass generation in the first family, resulting in rank-3 Yukawa matrices.

Embedding in the Pati-Salam gauge group
$S U(4) x S U(2)_{\llcorner } x S U(2)_{R} \times S U(2)_{q+1}$

$$
m_{L} \approx m_{Q}
$$

Rich pheonmenology!
Explains the CKM structure
Can explain neutrino masses (type I see-saw)

Summary \& outlook

- We need more precision measurements at low and high energies. LHCb, Bele II, CMS \& ATLAS
- On theory side: lattice QCD + other approaches (dispersive approaches, light-cone sum rules,...) improvement on the possible precision $\mathrm{a}_{\mu}, \mathrm{B} \rightarrow D^{*}$ form factors, and all the inputs.
- $\mathrm{b} \rightarrow s \mu \mu$, still a lot of studies on theory and experiment sides.
- $B \rightarrow K^{(*)}$ invisibles offers many more phenomenological studies.
- Improvements of LHC bounds (ATLAS, CMS) on NP couplings.
- Understanding of fermion mass pattern within new theories.

Thanks!

Bing is writing

Here is a poem I wrote on B meson puzzles:

B mesons are made of beauty and light They decay in different ways that we can measure and write But some of their ratios do not match the theory They show deviations that make us weary Is it a sign of new physics beyond the standard model? Or just a statistical fluctuation or a subtle fiddle?
We need more data and more precision
To confirm or reject this tantalizing vision Some leptoquarks may be the solution They can explain both puzzles with minimal intrusion But they also predict other effects that we should see In muon g-2 or tau lepton decays, for example So we keep searching for the answers with our tools and brains We hope to find the clues in the LHC or Belle II domains B mesons are our guides to the unknown frontier

They may reveal the secrets of the universe,
or so we cheer

Constrains scalar leptoquarks couplings using the leptonic W and Z couplings
Arnan et al., 1901.06315

LEP results

$$
\begin{aligned}
g_{V}^{e, \exp } & =-0.03817(47), \\
g_{V}^{\mu, \exp } & =-0.0367(23), \\
g_{V}^{\tau, \exp } & =-0.0366(10),
\end{aligned}
$$

$$
g_{A}^{e, \exp }=-0.50111(35)
$$

$$
g_{V}^{\mu, \exp }=-0.0367(23), \quad g_{A}^{\mu, \exp }=-0.50120(54)
$$

$$
N_{\nu}^{\exp }=2.9840(82)
$$

$$
g_{A}^{e_{A}^{, e \exp }=-0.50204(64), ~, ~}
$$

$\mathcal{L}_{\text {yuk. }}^{F=0}=\bar{q}_{i}\left[l_{i j} P_{R}+r_{i j} P_{L}\right] \ell_{j} \Delta+$ h.c.

$$
\mathcal{L}_{\text {yuk. }}^{F=2}=\bar{q}_{i}^{C}\left[l_{i j} P_{R}+r_{i j} P_{L}\right] \ell_{j} \Delta+\text { h.c. }
$$

$N_{\nu}=\sum_{i, j}\left[\left|\delta_{i j}+\frac{\delta g_{\nu_{L}}^{i j}}{g_{\nu_{L}}^{S M}}\right|^{2}+\left|\frac{\delta g_{\nu_{R}}^{i j}}{g_{\nu_{L}}^{S M}}\right|^{2}\right]$

Decay	$w_{i j}$	q	R_{2}	\widetilde{R}_{2}	S_{1}	S_{3}	$\widetilde{S_{1}}$	\bar{S}_{1}
$Z \rightarrow \ell$	$r_{i j}$	q_{u} q_{d}	$\begin{gathered} -\left(y_{R_{2}}^{L}\right)_{i,} \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ -\left(y_{\bar{R}_{2}}^{L}\right)_{i j} \end{gathered}$	$\begin{gathered} \left(V^{*} y_{S_{1}}^{L}\right)_{i j} \\ 0 \end{gathered}$	$\begin{aligned} & -\left(V^{*} y_{S_{3}}^{L}\right)_{i j} \\ & -\sqrt{2}\left(y_{S_{3}}^{L}\right)_{i j} \end{aligned}$	0	
	$l_{i j}$	q_{u} q_{d}	$\left(V y_{R_{2}}^{R}\right)_{i j}$ $\left(y_{R_{2}}^{R}\right)_{i j}$	0 0	$\begin{gathered} \left(y_{S_{1}}^{R}\right)_{i j} \\ 0 \end{gathered}$	0	$\begin{gathered} 0 \\ \left(y_{\tilde{S}_{1}}^{R}\right)_{i j} \end{gathered}$	0
$Z \rightarrow \nu \nu$	$r_{i j}$	q_{u} q_{d}	$\begin{gathered} \left(y_{R_{2}}^{L}\right)_{i j} \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ \left(y_{\tilde{R}_{2}}^{L}\right)_{i j} \end{gathered}$	$\begin{gathered} 0 \\ -\left(y_{S_{1}}^{L}\right)_{i j} \end{gathered}$	$\begin{gathered} \sqrt{2}\left(V^{*} y_{S_{3}}^{L}\right)_{i j} \\ -\left(y_{S_{3}}^{L}\right)_{i j} \end{gathered}$	0	0
	$l_{i j}$	q_{u} q_{d}		$\begin{aligned} & \left(V y_{R_{R}}^{R}\right)_{i j} \\ & \left(y_{\overline{R_{2}}}^{R}\right)_{i j} \end{aligned}$	$\begin{gathered} 0 \\ \left(y_{S_{1}}^{\prime R}\right)_{i i} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \left(y_{S_{1}}^{R}\right)_{i j} \\ 0 \end{gathered}$

LHC and serches for NP in flavour physics

$$
\mathcal{L}_{e f f}=\mathcal{L}_{S M}+\sum_{d \geq 5} \frac{C_{k}^{(d)} \Lambda^{d-4} \mathcal{O}_{k}^{(d)}}{} \quad \text { (}
$$ energies - but can be constrained at high energies

Allwicher et al. 2207.10714 e.g., $\mathrm{b} \rightarrow \mathrm{s} \tau \tau, \mathrm{c} \rightarrow \mathrm{d} \tau v, \mathrm{c} \rightarrow \mathrm{d} e v, \ldots$

Correlating New Physics Effects in Semileptonic $\Delta C=1$ and $\Delta S=1$ Processes

$\mathcal{L}_{\text {SMEFT }} \supset \frac{X_{i j}^{(3, \ell)}}{\Lambda^{2}}\left(\bar{Q}_{i} \gamma_{\mu} \sigma^{a} Q_{j}\right)\left(\bar{L}_{\ell} \gamma^{\mu} \sigma_{a} L_{\ell}\right)+\frac{X_{i j}^{(1, \ell)}}{\Lambda^{2}}\left(\bar{Q}_{i} \gamma_{\mu} Q_{j}\right)\left(\bar{L}_{\ell} \gamma^{\mu} L_{\ell}\right)$.

$$
X_{i j}^{(\pm)}=\lambda^{(\pm)} \delta_{i j}+c_{a}^{(\pm)}\left(\sigma^{a}\right)_{i j}
$$

2305.13851, SF, JF Kamenik, N. Kosnik and a. Korajac

$$
\begin{array}{rlrl}
s \rightarrow d \nu \bar{\nu}: & C_{L, \nu}^{\Delta S=1, \mathrm{NP}}=\frac{2 \pi}{\alpha_{\mathrm{em}}} \frac{v^{2}}{\Lambda^{2}}\left\{c_{R}^{(-)} \sin \theta_{d}^{(-)}-i c_{I}^{(-)}\right\}, & s \rightarrow d \ell^{+} \ell^{-}: & C_{9}^{\Delta S=1, \mathrm{NP}}=-C_{10}^{\Delta S=1, \mathrm{NP}}=\frac{\pi}{\alpha_{\mathrm{em}}} \frac{v^{2}}{\Lambda^{2}}\left\{c_{R}^{(+)} \sin \theta_{d}^{(+)}-i c_{I}^{(+)}\right\} \\
c \rightarrow u \ell^{+} \ell^{-}: & C_{9}^{\Delta C=1, \mathrm{NP}}=-C_{10}^{\Delta C=1, \mathrm{NP}}=\frac{\pi}{\alpha_{\mathrm{em}}} \frac{v^{2}}{\Lambda^{2}}\left\{c_{R}^{(-)} \sin \left(\theta_{d}^{(-)}-2 \theta_{c}\right)-i c_{I}^{(-)}\right\}, & c \rightarrow u \nu \bar{\nu}: \quad C_{L, \nu}^{\Delta C=1, \mathrm{NP}}=\frac{2 \pi}{\alpha_{\mathrm{em}}} \frac{v^{2}}{\Lambda^{2}}\left\{c_{R}^{(+)} \sin \left(\theta_{d}^{(+)}-2 \theta_{c}\right)-i c_{I}^{(+)}\right\} .
\end{array}
$$

$\left|\operatorname{Im}\left[c_{\tau, I}^{(+)}\right]\right| \lesssim 0.15$

$$
c_{\mu, R}^{(-)}
$$

