A novel approach for calculating

 GPDs from asymmetric frames
Shohini Bhattacharya
 RIKEN BNL

26 July 2023

In Collaboration with:
Krzysztof Cichy (Adam Mickiewicz U.)
Martha Constantinou (Temple U.)
Jack Dodson (Temple U.)
Xiang Gao (ANL)
Andreas Metz (Temple U.)
Joshua Miller (Temple U.)
Swagato Mukherjee (BNL)
Peter Petreczky (BNL)
Aurora Scapellato (Temple U.)
Fernanda Steffens (Bonn U.)
Yong Zhao (ANL)

2023 Meeting on Lattice Parton Physics from Large Momentum Effective Theory (LaMET2023)

University of Regensburg

Based on: PhysRevD.106.114512 \& In Preparation

Generalized Parton Distributions (GPDs)

GPD correlator: Graphical representation

Definition: (See for example Diehl, hep-ph/0307382)

$$
F^{[\Gamma]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

Motivation for GPD studies

3D imaging (Burkardt, 0005108 ...)

Motivation for GPD studies

Spin sum rule \& orbital angular momentum ($\mathrm{ji}, 9603249$):

$$
J^{q}=\left.\int_{-1}^{1} d x x\left(H^{q}+E^{q}\right)\right|_{t=0}
$$

Motivation for GPD studies

Spin sum rule \& orbital angular momentum ($\mathrm{Ji}, 9603249$):

$$
J^{q}=\left.\int_{-1}^{1} d x x\left(H^{q}+E^{q}\right)\right|_{t=0}
$$

3D imaging (Burkardt, 0005108 ...)

Imprints of chiral/trace anomalies in GPDs (SB, Hatta, Vogelsang, 2305.09431):

Glueball mass
generation

$$
H(x), E(x) \sim \frac{1}{l^{2}-m_{G}^{2}}
$$

Motivation for GPD studies

Physical processes:

Motivation for GPD studies

Physical processes:

Deep Virtual Compton Scattering

Exclusive meson production

Exclusive massive pair production
Access to x-dependence

Motivation for GPD studies

Physical processes:

We need GPD measurements from Lattice QCD

Exclusive massive pair production
Access to x-dependence

Can we extract these quantities from lattice QCD?

Physical processes

Light-cone (standard) correlator $-1 \leq x \leq 1$
$F^{[\mathrm{T}]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}$
$\times\left.\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=\vec{z}_{+}=0}$
pattering
Correlator for quasi-GPDs $(\mathrm{Ji}, 2013) \quad-\infty \leq x \leq \infty$
$F_{Q}^{[\Gamma]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2} \int \frac{d z^{3}}{2 \pi} e^{i k \cdot z}$

$$
\left.\times\left\langle p^{\prime}, \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}_{\mathrm{Q}}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p, \lambda\rangle \right\rvert\,
$$

$\rangle\left.\right|_{z^{0}=\vec{z}_{\perp}=0}$

- Non-local correlator depending on position z^{3}
- Can be computed on Euclidean lattice
- Cannot be computed on Euclidean lattice

Can we extract these quantities from

"Physical" distributions lattice QCD?
Physi

"Auxiliary" distributions

Light-cone (standard) correlator $-1 \leq x \leq 1$

```
Correlator for quasi-GPDs (Ji, 2013) - - < <x\leq\infty
```


- Time dependence
- Cannot be compu

$$
q_{\mathrm{Q}}\left(x ; P_{3}\right)=\int_{-1}^{+1} \frac{d y}{|y|} C\left(\frac{x}{y}\right) q(y)+\mathcal{O}\left(\frac{1}{P_{3}^{2}}\right)
$$

(Xiong, Ji, Zhang, Zhao, 2013/
Stewart, Zhao, 2017/
Izubuchi, Ji, Jin, Stewart, Zhao, 2018/ ...)

Matching coefficient

First Lattice QCD results of the x-dependent GPDs

Example:

First Lattice QCD results of the x-dependent GPDs

Example:

But little hiccup ... protoln

First Lattice QCD results of the x-dependent GPDs

Example:

Excellent progress!!!

But little hiccup .

Traditionally, GPDs have been calculated from "symmetric frames"

Practical drawback

Lattice QCD calculations in symmetric frames are expensive

Lattice QCD calculations of GPDs in asymmetric frames

Resolution:

- Perform Lattice QCD calculations of GPDs in asymmetric frames See Joshua's talk

Lattice QCD calculations of GPDs in asymmetric frames

Our contribution in a nutshell:

Generalized Parton Distributions from Lattice QCD with Asymmetric Momentum Transfer: Unpolarized Quarks

;ource

Shohini Bhattacharya, , ${ }^{1, *}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou, ${ }^{3,}{ }^{\dagger}$ Jack Dodson, ${ }^{3}$ Xiang Gao, ${ }^{4}$
Andreas Metz, ${ }^{3}$ Swagato Mukherjee, ${ }^{1}$ Aurora Scapellato, ${ }^{3}$ Fernanda Steffens, ${ }^{5}$ and Yong Zhao ${ }^{4}$

$$
\begin{array}{ll}
\text { In Preparation } & \text { Generalized Parton Distributions from Lattice QCD } \\
& \text { with Asymmetric Momentum Transfer: Axial-vector case }
\end{array}
$$

$$
\text { Shohini Bhattacharya, }{ }^{1, *} \text { Krzysztof Cichy, }{ }^{2} \text { Martha Constantinou, }{ }^{3, \dagger} \text { Jack Dodson, }{ }^{3} \text { Xiang Gao, }{ }^{4} \text { Andreas Metz, }{ }^{3}
$$

$$
\text { Joshua Miller, }{ }^{3, \ddagger} \text { Swagato Mukherjee, }{ }^{5} \text { Peter Petreczky, }{ }^{5} \text { Aurora Scapellato, }{ }^{3} \text { Fernanda Steffens, }{ }^{6} \text { and Yong Zhao }{ }^{4}
$$

Key findings: e QCD calculations of GPDs in asymmetric frames

- Lorentz covariant formalism for calculating quasi-GPDs in any frame

This talk

- Elimination of power corrections potentially allowing faster convergence to light-cone GPDs

Lattice QCD calculations of GPDs in asymmetric frames

Symmetric \& asymmetric frames

Approach 1: Can we calculate a quasi-GPD in symmetric frame through an asymmetric frame?

Lattice QCD calculations of GPDs in asymmetric frames

Yes, since symmetric $\mathcal{\&}$ asymmetric frames are connected via Lorentz transformation

Lattice QCD calculations of GPDs in asymmetric frames

Case 1: Lorentz transformation in the z-direction

$$
\left.\begin{array}{r}
\left(\begin{array}{c}
z_{s}^{0} \\
z_{s}^{x} \\
z_{s}^{z}
\end{array}\right)=\left(\begin{array}{ccc}
\gamma & 0 & -\gamma \beta \\
0 & 1 & 0 \\
-\gamma \beta & 0 & \gamma
\end{array}\right)
\end{array}\right) \times\left(\begin{array}{c}
0 \\
0 \\
z_{a}^{z}
\end{array}\right)
$$

Lattice QCD calculations of GPDs in asymmetric frames

Lattice QCD calculations of GPDs in asymmetric frames

Case 2: Transverse boost in the x-direction

$$
\begin{array}{r}
\left(\begin{array}{c}
z_{s}^{0} \\
z_{s}^{x} \\
z_{s}^{z}
\end{array}\right)=\left(\begin{array}{ccc}
\gamma & -\gamma \beta & 0 \\
-\gamma \beta & \gamma & 0 \\
0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{c}
0 \\
0 \\
z_{a}^{z}
\end{array}\right) \\
\\
-\bar{\psi} \uparrow \bar{\uparrow} \psi \\
-z^{z} / 2 \\
z^{z} / 2
\end{array}
$$

Lattice QCD calculations of GPDs in asymmetric frames

Lattice QCD calculations of GPDs in asymmetric frames

Transverse boost: This Lorentz transformation allows for an exact calculation of quasi-GPDs in symmetric frame through matrix elements of asymmetric frame

Lattice QCD calculations of GPDs in asymmetric frames

Approach 2: Why does it matter in which frame quasi-GPDs are calculated?

Related via
Lorentz transformation?

What kind?

Case 2: Transy Approach 1: Can we calculate a quasi-GPD in symmetric frame through an asymmetric frame?

Transverse boost: This Lorentz transformation allows for an exact calculation of quasi-GPDs in symmetric frame through matrix elements of asymmetric frame

Lattice QCD calculations of GPDs in asymmetric frames

Approach 2: Why does it matter in which frame quasi-GPDs are calculated?

Transverse boost: This Lorentz transformation allows for an exact calculation of quasi-GPDs in symmetric frame through matrix elements of asymmetric frame

Lattice QCD calculations of GPDs in asymmetric frames

Approach 2: Why does it matter in which frame quasi-GPDs are calculated?

Lattice QCD calculations of GPDs in asymmetric frames

Approach 2: Why does it matter in which frame quasi-GPDs are calculated?

Lattice QCD calculations of GPDs in asymmetric frames

Lattice QCD calculations of GPDs in asymmetric frames

Lattice QCD calculations of GPDs in asymmetric frames

Can we come up with a
manifestly Lorentz invariant definition of quasi-GPDs for finite values of momentum?

Lattice QCD calculations of GPDs in asymmetric frames

Lorentz covariant formalism

Novel parameterization of position-space matrix element: (Inspired from Meissner, Metz, Schlegel, 2009)

$$
F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} \boldsymbol{A}_{1}+\frac{z^{\mu}}{M} \boldsymbol{A}_{\mathbf{2}}+\frac{\Delta^{\mu}}{M} \boldsymbol{A}_{3}+\frac{i \sigma^{\mu z}}{M} \boldsymbol{A}_{4}+\frac{i \sigma^{\mu \Delta}}{M} \boldsymbol{A}_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{8}\right] u(p, \lambda)
$$

Vector operator $F_{\lambda, \lambda^{\prime}}^{\mu}=\left.\left\langle p^{\prime}, \lambda^{\prime}\right| \bar{q}(-z / 2) \gamma^{\mu} q(z / 2)|p, \lambda\rangle\right|_{z=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}$

Lattice QCD calculations of GPDs in asymmetric frames

Lorentz covariant formalism

Novel parameterization of position-space matrix element:
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} \boldsymbol{A}_{1}+\frac{z^{\mu}}{M} \boldsymbol{A}_{2}+\frac{\Delta^{\mu}}{M} \boldsymbol{A}_{3}+\frac{i \sigma^{\mu z}}{M} \boldsymbol{A}_{4}+\frac{i \sigma^{\mu \Delta}}{M} \boldsymbol{A}_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M^{3}} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M^{3}} \boldsymbol{A}_{8}\right] u(p, \lambda)$

Features:

- General structure of matrix element based on constraints from Parity
- 8 linearly-independent Dirac structures
- 8 Lorentz-invariant amplitudes (or Form Factors) $A_{i} \equiv A_{i}\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)$

Lattice QCD calculations of GPDs in asymmetric frames

Novel parameterization of position-space matrix element:

See Joshua's talk:

Validating the frame-independence of A's from Lattice QCD

Features:

- General structure of matrix element based on constraints from Parity
- 8 linearly-independent Dirac structures
- 8 Lorentz-invariant amplitudes (or Form Factors) $A_{i} \equiv A_{i}\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)$

Lattice QCD calculations of GPDs in asymmetric frames

Re-exploring historical definitions of quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs: (Sample results)

Lattice QCD calculations of GPDs in asymmetric frames

Re-exploring historical definitions of quasi-GPDs

Frame-dependent expressions: Explicit non-invariance from kinematics factors

Lattice QCD calculations of GPDs in acummotrin framace Relation between light-cone GPD H \& amplitudes:

Re-exploring historical definitions	
Frame-dependent expressions: Explicit non-in	

| ~ren of a Sketch of the essence of a Sketch of the essition of quasi-GPDs invariant definition of quast-GPs

Relation between light-cone GPD H \& amplitudes:
vilapping amplitudes to the historical definitions of quasi-GP
$H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} A_{3}$

Symmetric frame:

$$
\begin{gathered}
\left.H_{Q(0)}\left(z, P_{s}, \Delta_{s}\right)\right|_{s}=A_{1}+\frac{\Delta_{s}^{0}}{P_{s}^{0}} A_{3} \frac{\Delta_{s}^{0} z^{3}}{2 P_{s}^{0} P^{3}} A_{4}+\left(\frac{\left(\Delta_{s}^{0}\right)^{2} z^{3}}{2 M^{2} P_{s}^{3}}-\frac{\Delta_{s}^{0} \Delta_{s}^{3} z^{3} P_{s}^{0}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{s}^{3}}\right) A_{6} \\
+\left(\frac{\left(\Delta_{s}^{0}\right)^{3} z^{3}}{2 M^{2} P_{s}^{0} P_{s}^{3}}-\frac{\left(\Delta_{s}^{0}\right)^{2} \Delta_{s}^{3} z^{3}}{2 M^{2}\left(P_{s}^{3}\right)^{2}}-\frac{\Delta_{s}^{0} z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{n}^{0} P_{s}^{3}}\right) A_{8}
\end{gathered}
$$

Contamination from additional amplitudes or power corrections

$$
\left.H_{Q(0)}\right|_{a}\left(z, P_{a}, \Delta_{a}\right)=A_{1}+\frac{\Delta_{a}^{0}}{P_{\text {avg }, a}^{0}} A_{3}-\left(\frac{\Delta_{a}^{0} z^{3}}{2 P_{\text {avg }, a}^{0} P_{\text {avg.a }}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 \hat{a}_{\text {avg }, a}}\right)} \frac{\Delta_{a}^{0} \Delta_{a}^{3} z^{3}}{4 P_{\text {avg }, a}^{0}\left(P_{\text {avg }, a}^{3}\right)^{2}}\right) \boldsymbol{A}_{4}
$$

$$
\begin{aligned}
& +\left(\frac{\left(\Delta^{0}\right)^{2}}{2 M^{2} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{2} \Delta_{a}^{3} z^{3}}{4 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{P_{a v g, a}^{0} \Delta_{a}^{0} \Delta_{a}^{3} z^{3}}{2 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2}}{2 M^{2} P_{a v g, a}^{3}}\right) A_{6} \\
& \left(\frac{\left(\Delta_{a}^{0} z^{3}\right.}{2 \mathcal{Z}^{2} P_{a v g, a}^{0} P_{a v g, a}^{3}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{3} \Delta_{a}^{3} z^{3}}{4 M^{2} P_{a v g, a}^{0}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{1}{\left(1+\frac{\Delta_{a}^{3}}{2 P_{a v g, a}^{3}}\right)} \frac{\left(\Delta_{a}^{0}\right)^{2} \Delta_{a}^{3} z^{3}}{2 M^{2}\left(P_{a v g, a}^{3}\right)^{2}}-\frac{z^{3} \Delta_{\perp}^{2} \Delta_{a}^{0}}{2 M^{2} P_{a v g, a}^{0} P_{a v a}^{3}}\right) \text {, }
\end{aligned}
$$

Lattice QCD calculations of GPDs in acummotrin framac

Relation between light-cone GPD H \& amplitudes:

Let's go back to PDFs to the historical definitions of quasi-GP

$$
\mathcal{M}^{\alpha}(z, p) \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \psi(z)|p\rangle
$$

(12)

[^0]Therefore, γ^{0} is better behaved than γ^{3} with respect to power corrections
when $z^{2} \rightarrow 0$, while $\mathcal{M}_{z}\left((z p),-z^{2}\right)$ is a purely higher-
when $z^{2} \rightarrow 0$, while $\mathcal{M}_{z}\left((z p),-z^{2}\right)$ is a purely higher twist contamination. and it is better to get rid of it. \qquad

$$
H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} A_{3}
$$

If one takes $z=\left(z_{-}, z_{\perp}\right)$ in the $\alpha=+$ component aightof \mathcal{M}^{α}, the z^{α}-part drops out, and one can introduce a sentation. These matrix elements may be decomposed into p^{α} and z^{α} parts:

2 Amplitudes
(13)

$$
+z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right)
$$

Lattice QCD calculations of GPDs in acummotrin framac

Relation between light-cone GPD H \& amplitudes:

Novel definition of quasi-G

$$
H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} A_{3}
$$

Contrary to quasi-PDFs, γ^{0} operator for quasi-GPDs is contaminated with additional amplitudes or power corrections

In spirit of what's done for PDFs:
You can think of eliminating additional amplitudes by the addition of other operators:

Asymmetric frame:

$$
\left(\gamma^{1}, \gamma^{2}\right)
$$

Lattice QCD calculations of GPDs in acummotrin framac

Relation between light-cone GPD H \& amplitudes:
Novel definition of quasi-G

$$
H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} A_{3}
$$

Contrary to quasi-PDFs, γ^{0} operator for quasi-GPDs is contaminated with additional amplitudes or power corrections

In spirit of what's done for PDFs:

Asymmetric frame:

You can think of eliminating additional amplitudes by the addition of other operators:

$$
\left(\gamma^{1}, \gamma^{2}\right)
$$

Lorentz-invariant definition of quasi-GPDs: Main finding:

$$
\text { Schematic structure: } \quad H_{\mathrm{Q}} \rightarrow c_{0}\left\langle\bar{\psi} \gamma^{0} \psi\right\rangle+c_{1}\left\langle\bar{\psi} \gamma^{1} \psi\right\rangle+c_{2}\left\langle\bar{\psi} \gamma^{2} \psi\right\rangle
$$

Note: Here c's are frame-dependent kinematic factors that cancel additional amplitudes

Same functional forms QCD calculations of GPDs in asymmetric frames

Same functional forms QCD calculations of GPDs in asymmetric frames

Relation between light-cone GPD H \& amplitudes:

Same functional forms QCD calculations of GPDs in asymmetric frames

Relatoon between light-cone GPD H \& amplitudes:

Lattice QCD calculations of GPDs in asymmetric frames

Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs
Definition: (Historic)

$$
\begin{aligned}
\widetilde{F}^{3}\left(z, P^{s / a}, \Delta^{s / a}\right) & =\left\langle p_{f} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{3} \gamma_{5} \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i} ; \lambda\right\rangle \\
& =\bar{u}^{s / a}\left(p_{f}^{s / a}, \lambda^{\prime}\right)\left[\gamma^{3} \gamma_{5} \widetilde{\mathcal{H}}_{3}^{s / a}\left(z, P^{s / a}, \Delta^{s / a}\right)+\frac{\Delta^{3} \gamma_{5}}{2 m} \widetilde{\mathcal{E}}_{3}^{s / a}\left(z, P^{s / a}, \Delta^{s / a}\right)\right] u^{s / a}\left(p_{i}^{s / a}, \lambda\right)
\end{aligned}
$$

Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Definition: (Historic)

$$
\begin{aligned}
\widetilde{F}^{3}\left(z, P^{s / a}, \Delta^{s / a}\right) & =\left\langle p_{f} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{3} \gamma_{5} \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i} ; \lambda\right\rangle \\
& =\bar{u}^{s / a}\left(p_{f}^{s / a}, \lambda^{\prime}\right)\left[\gamma^{3} \gamma_{5} \widetilde{\mathcal{H}}_{3}^{s / a}\left(z, P^{s / a}, \Delta^{s / a}\right)-\frac{\Delta^{3} \gamma_{5}}{2 m} \widetilde{\mathcal{E}}_{3}^{s / a}\left(z, P^{s / a}, \Delta^{s / a}\right] u^{s / a}\left(p_{i}^{s / a}, \lambda\right)\right.
\end{aligned}
$$

GPD \widetilde{E} can not be accessed at zero skewness because it simply does not contribute to the matrix element at this point

Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Definition: (Historic)

$$
\widetilde{F}^{3}\left(z, P^{s / a}, \Delta^{s / a}\right)=\left\langle p_{f} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{3} \gamma_{5} \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i} ; \lambda\right\rangle
$$

$$
=\bar{u}^{s / a}\left(p_{f}^{s / a}, \lambda^{\prime}\right)\left[\gamma^{3} \gamma_{5} \widetilde{\mathcal{H}}_{3}^{s / a}\left(z, P^{s / a}, \Delta^{s / a}\right)-\frac{\Delta^{3} \gamma_{5}}{2 m} \widetilde{\mathcal{E}}_{3}^{s / a}\left(z, P^{s / a}, \Delta^{s / a}\right] u^{s / a}\left(p_{i}^{s / a}, \lambda\right)\right.
$$

GPD \widetilde{E} can not be accessed at zero skewness because it simply does not contribute to the matrix element at this point

Krzysztof's talk:
Glimpse into GPD \widetilde{E} through twist 3 at zero skewness:

Lattice QCD calculations of GPDs in asymmetric frames

Lorentz covariant formalism

Novel parameterization of position-space matrix element:

$\widetilde{F}^{\mu}=\bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\frac{i \epsilon^{\mu P z \Delta}}{m} \widetilde{A}_{1}+\gamma^{\mu} \gamma_{5} \widetilde{A}_{2}+\gamma_{5}\left(\frac{P^{\mu}}{m} \widetilde{A}_{3}+m z^{\mu} \widetilde{A}_{4}+\frac{\Delta^{\mu}}{m} \widetilde{A}_{5}\right)+m \not \gamma_{5}\left(\frac{P^{\mu}}{m} \widetilde{A}_{6}+m z^{\mu} \widetilde{A}_{7}+\frac{\Delta^{\mu}}{m} \widetilde{A}_{8}\right)\right] u\left(p_{i}, \lambda\right)$.

Axial-vector operator $\widetilde{F}_{\lambda, \lambda^{\prime}}^{\mu}=\left.\left\langle p^{\prime}, \lambda^{\prime}\right| \bar{q}(-z / 2) \gamma^{\mu} \gamma_{5} q(z / 2)|p, \lambda\rangle\right|_{z=0, \vec{z}_{\perp}=\vec{o}_{\perp}}$

Lattice QCD calculations of GPDs in asymmetric frames

Lorentz covariant formalism

Novel parameterization of position-space matrix element:

$$
\widetilde{F}^{\mu}=\bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\frac{i \epsilon^{\mu P z \Delta}}{m} \widetilde{A}_{1}+\gamma^{\mu} \gamma_{5} \widetilde{A}_{2}+\gamma_{5}\left(\frac{P^{\mu}}{m} \widetilde{A}_{3}+m z^{\mu} \widetilde{A}_{4}+\frac{\Delta^{\mu}}{m} \widetilde{A}_{5}\right)+m \not \gamma_{5}\left(\frac{P^{\mu}}{m} \widetilde{A}_{6}+m z^{\mu} \widetilde{A}_{7}+\frac{\Delta^{\mu}}{m} \widetilde{A}_{8}\right)\right] u\left(p_{i}, \lambda\right)
$$

Features:

- General structure of matrix element based on constraints from Parity
- 8 linearly-independent Dirac structures (similar to vector case)

Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

$$
\widetilde{\mathcal{H}}_{3}\left(z, P^{s / a}, \Delta^{s / a}\right)=\widetilde{\boldsymbol{A}}_{\mathbf{2}}-z^{3} P^{3, s / a} \widetilde{\boldsymbol{A}}_{\mathbf{6}}-m^{2}\left(z^{3}\right)^{2} \widetilde{\boldsymbol{A}}_{7}-z^{3} \Delta^{3, s / a} \widetilde{\boldsymbol{A}}_{\mathbf{8}}
$$

Features:

- Same functional form in both symmetric $\&$ asymmetric frames

Frame-independence of $\gamma^{3} \gamma_{5}$ understood by considering
"transverse boosts" that preserve the 3-component

Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

$$
\begin{aligned}
\widetilde{\mathcal{H}}_{3}\left(z, P^{s / a}, \Delta^{s / a}\right) & =\widetilde{A}_{2}-z^{3} P^{3, s / a} \widetilde{A}_{6}-m^{2}\left(z^{3}\right)^{2} \widetilde{A}_{7}-z^{3} \Delta^{3, s / a} \widetilde{A}_{8} \\
& =\widetilde{A}_{2}+\left(P^{s / a} \cdot z\right) \widetilde{A}_{6}+m^{2} z^{2} \widetilde{A}_{7}+\left(\Delta^{s / a} \cdot z\right) \widetilde{A}_{8}
\end{aligned}
$$

Features:

- Same functional form in both symmetric \& asymmetric frames

- Kinematical prefactor of amplitudes can be uniquely promoted to a Lorentz-invariant status

The historic definition involving $\gamma^{3} \gamma_{5}$ is a contender for a Lorentz invariant definition

Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

$$
\begin{aligned}
\widetilde{\mathcal{H}}_{3}\left(z, P^{s / a}, \Delta^{s / a}\right) & =\tilde{A}_{2}-z^{3} P^{3, s / a} \tilde{A}_{6}-m^{2}\left(z^{3}\right)^{2} \tilde{A}_{7}-z^{3} \Delta^{3, s / a} \tilde{A}_{8} \\
& =\widetilde{\boldsymbol{A}}_{\mathbf{2}}+\left(P^{s / a} \cdot z\right) \widetilde{\boldsymbol{A}}_{\mathbf{6}}+m^{2} z^{2} \widetilde{\boldsymbol{A}}_{\boldsymbol{7}}+\left(\Delta^{s / a} \cdot z\right) \widetilde{\boldsymbol{A}}_{\mathbf{8}}
\end{aligned}
$$

Features:

- Non-uniqueness of LI definitions for quasi-GPDs

Contender 2

Lorentz-invariant definition of LC definition to $z^{2} \neq 0$:
Formulation in terms of a new operator:

$$
\widetilde{\mathcal{H}}=\widetilde{A}_{\mathbf{2}}+\left(P^{s / a} \cdot z\right) \widetilde{A}_{6}+\left(\Delta^{s / a} \cdot z\right) \widetilde{A}_{8}
$$

$$
A_{i} \equiv A_{i}\left(z^{2} \neq 0\right)
$$

Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

Features:

- $\widetilde{\mathcal{E}}$ expression for $\xi \neq 0$

Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

Features:

- $\widetilde{\mathcal{E}}$ expression for $\xi \neq 0$

Based on symmetry arguments we expect $\widetilde{A}_{3 / 4}$ to exhibit at least linear scaling with respect to ξ

Hence appearance of $1 / \xi$ in above expression is innocuous

Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

$$
\widetilde{\mathcal{E}}_{3}\left(z, P^{s / a}, \Delta^{s / a}\right)=2 \frac{P^{3, s / a}}{\Delta^{3, s / a}} \widetilde{A}_{\mathbf{3}}+2 m^{2} \frac{z^{3}}{\Delta^{3, s / a}} \widetilde{\boldsymbol{A}}_{\mathbf{4}}+2 \widetilde{\boldsymbol{A}}_{\mathbf{5}}
$$

Features:

- $\widetilde{\mathcal{E}}$ expression for $\xi \neq 0$
- To calculate $\widetilde{\mathcal{E}}$ at $\xi=0$ using above expression, one needs to determine the zero-skewness limit of $\widetilde{A}_{3} / \xi, \widetilde{A}_{4} / \xi$ (well-defined limit)

Lattice QCD calculations of GPDs in asymmetric frames

Helicity quasi-GPDs

Mapping amplitudes to the historical definitions of quasi-GPDs:

See Joshua's talk:
Validation of formalism \& Lattice QCD results

- To calculate \mathcal{E} at $\xi=0$ using above expression, one needs to determine the zero-skewness limit of $\widetilde{A}_{3} / \xi, \widetilde{A}_{4} / \xi$ (well-defined limit)

Summary

Connecting dots: Ending with what I started with

Summary

Goal:
Connecting dots: Ending with what I started with
Perform Lattice QCD calculations of GPDs in asymmetric frames

Summary

Transverse boost: This Lorentz transformation allows for an exact calculation of quasi-GPDs in symmetric frame through matrix elements of asymmetric frame

Summary

Approach 2: Why does it matter in which frame quasi-GPDs are calculated?
 -

arted with

All
um transfer to source
Shohini Bhattacharya, ${ }^{1, *}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou, ${ }^{3, \dagger}{ }^{\dagger}$ Jack Dodson, ${ }^{3}$ Xiang Gao, ${ }^{4}$ Andreas Metz, ${ }^{3}$ Swagato Mukherjee, ${ }^{1}$ Aurora Scapellato, ${ }^{3}$ Fernanda Steffens, ${ }^{5}$ and Yong Zhao ${ }^{4}$

- Perform Lattice QCD calculations of GPDs in asymmetric frames

Summary

Approach 2: Why does it matter in which frame quasi-GPDs are calculated?

Generalized Parton Distributions from Lattice QCD with Asymmetric Momentum Transfer: Unpolarized Quarks
Shohini Bhattacharya, ${ }^{1, *}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou, ${ }^{3,}{ }^{, \dagger}$ Jack Dodson, ${ }^{3}$ Xiang Gao, ${ }^{4}$ Andreas Metz, ${ }^{3}$ Swagato Mukherjee, ${ }^{1}$ Aurora Scapellato, ${ }^{3}$ Fernanda Steffens, ${ }^{5}$ and Yong Zhao

1) Historic definitions of $\mathbf{H} \& E$ quasi-GPDs are not manifestly Lorentz invariant

Key findings: :e QCD calculations of

Summary

Approach 2: Why does it matter in which frame quasi-GPDs are calculated?

arted with

Generalized Parton Distributions from Lattice QCD with Asymmetric Momentum Transfer: Unpolarized Quarks
Shohini Bhattacharya, ${ }^{1, *}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou, ${ }^{3,}{ }^{\dagger}$ Jack Dodson, ${ }^{3}$ Xiang Gao, ${ }^{4}$ Andreas Metz, ${ }^{3}$ Swagato Mukherjee, ${ }^{1}$ Aurora Scapellato, ${ }^{3}$ Fernanda Steffens, ${ }^{5}$ and Yong Zhao ${ }^{4}$

All
um transfer to source

2) Novel parameterization of position-space matrix element: (Vector operator)

$$
F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+\frac{z^{\mu}}{M} A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+\frac{i \sigma^{\mu z}}{M} A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M^{3}} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M^{3}} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M^{3}} A_{8}\right] u(p, \lambda)
$$

Key findings:

QCD calculations of GPDS in asymmetric frames

- Lorentz covariant formalism for calculating quasi-GPDs in any frame

Summary

Approach 2: Why does it matter in which frame quasi-GPDs are calculated?

Generalized Parton Distributions from Lattice QCD
with Asymmetric Momentum Transfer: Unpolarized Quarks
Shohini Bhattacharya, ${ }^{1, *}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou, ${ }^{3, \dagger}$ Jack Dodson, ${ }^{3}$ Xiang Gao, ${ }^{4}$ Andreas Metz, ${ }^{3}$ Swagato Mukherjee, ${ }^{1}$ Aurora Scapellato, ${ }^{3}$ Fernanda Steffens, ${ }^{5}$ and Yong Zhao ${ }^{4}$

3) Lorentz-invariant definition of quasi-GPDs:

$$
H_{\mathrm{Q}}\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} A_{3}
$$

Key findings: e QCD calcume functional form as LC GPD

- Lorentz covariant formalism for calculating quasi-GPDs in any frame
- Elimination of power corrections potentially allowing faster convergence to light-cone GPDs

Summary

Approach 2: Why does it matter in which frame quasi-GPDs are calculated?

arted with

Generalized Parton Distributions from Lattice QCD
with Asymmetric Momentum Transfer: Unpolarized Quarks
Shohini Bhattacharya, ${ }^{1, *}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou, ${ }^{3, \dagger}$ Jack Dodson, ${ }^{3}$ Xiang Gao, ${ }^{4}$
Andreas Metz, ${ }^{3}$ Swagato Mukherjee, ${ }^{1}$ Aurora Scapellato, ${ }^{3}$ Fernanda Steffens, ${ }^{5}$ and Yong Zhao ${ }^{4}$

3) Lorentz-invariant definition of quasi-GPDs:

$$
H_{\mathrm{Q}}\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{a v g, s / a} \cdot z} A_{3}
$$

Key findings:

However, it is essential to acknowledge that the amplitudes themselves also contain implicit power corrections. Moreover, it is worth noting that the presence of additional amplitudes in the first place could potentially serve to mitigate the implicit power corrections inherent in the amplitudes Ultimately, the actual convergence of the different quasi-GPD definitions is

- Lorentz covariant formalis determined bv the underlving non-perturbative dvnamics. Therefore. it is important to perform numerical comparisons
- Elimination of power corrections potentially allowing faster convergence to light-co $\begin{gathered}\text { Numerical comparison of convergence of } \\ \text { different definitions of quasi-GPDs }\end{gathered}$

Summary

Approach 2: Why does it matter in which frame quasi-GPDs are calculated? \qquad

1) Novel parameterization of position-space matrix element:

Key findings:

- Lorentz covariant formalism for calculating quasi-GPDs in any frame

Summary

Approach 2: Why does it matter in which frame quasi-GPDs are calculated?

```
arted with
```

In Preparation $\begin{gathered}\text { Generalized Parton Distributions from Lattice QCD } \\ \text { with Asymmetric Momentum Transfer: Axial-vector case }\end{gathered}$
Shohini Bhattacharya, ${ }^{1, *}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou, ${ }^{3, \dagger}$ Jack Dodson, ${ }^{3}$ Xiang Gao, ${ }^{4}$ Andreas Metz, ${ }^{3}$ Joshua Miller, ${ }^{3, \ddagger}$ Swagato Mukherjee, ${ }^{5}$ Peter Petreczky, ${ }^{5}$ Aurora Scapellato, ${ }^{3}$ Fernanda Steffens, ${ }^{6}$ and Yong Zhao ${ }^{4}$
2) Contender 1: Historic definition $\gamma^{3} \gamma_{5}$

$$
\widetilde{\mathcal{H}}_{3}\left(z, P^{s / a}, \Delta^{s / a}\right)=\widetilde{A}_{2}+\left(P^{s / a} \cdot z\right) \widetilde{A}_{6}+m^{2} z^{2} \widetilde{A}_{7}+\left(\Delta^{s / a} \cdot z\right) \widetilde{A}_{8}
$$

Key findings: e QCD calculations of GPDs in as

- Lorentz covariant formalism for calculating qua
- Demonstrated non-uniqueness of LI definitions of quasi-GPDs

$$
\widetilde{\mathcal{H}}=\widetilde{\boldsymbol{A}}_{\mathbf{2}}+\left(P^{s / a} \cdot z\right) \widetilde{\boldsymbol{A}}_{\mathbf{6}}+\left(\Delta^{s / a} \cdot z\right) \widetilde{\boldsymbol{A}}_{\mathbf{8}}
$$

Formulation in terms of a new operator: $\left(\gamma^{0}, \gamma^{1}, \gamma^{2}\right) \gamma_{5}$

- Demonstratednon-uniqueness of LI definitions of quasi-GPDs

Backup slides

Main results

Renormalization: Sketch

Few words on operators:

- Schematic structure of Lorentz non-invariant quasi-GPD: \square
- Schematic structure of Lorentz invariant quasi-GPD:

Few words on renormalization:
Renormalization factors are different for $\left\langle\bar{\psi} \gamma^{0} \psi\right\rangle,\left\langle\bar{\psi} \gamma^{1} \psi\right\rangle,\left\langle\bar{\psi} \gamma^{2} \psi\right\rangle \quad$--- UV-divergent terms same
--- Frame-independent

- Matching: --- Available for only γ^{0}
--- Takes care of finite terms for γ^{0}
- Strategy to renormalize: Use Renormalization factor for operator whose matching is known

[^0]: The $\mathcal{M}_{p}\left(-(z p),-z^{2}\right)$ part gives the twist- 2 distribution

