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Transverse Momentum Dependent Factorization

•Inelastic processes  Structure of Hadrons (PDFs, TMDPDFs, TMDFFs,…)


•Using effective theories (SCET) cross sections factorize into different blocks (in the 
regime where  and ) 

→

Q2 ≫ ΛQCD Q2 ≫ k2
T

dσ
d[…]dQdkT

≃ σ0 ∫
d2bT

(2π)2
e−ibTkT |CV(Q) |2 F1(x1, bT; μ, ζ) F2(x2, bT; μ, ζ)

TMD TMDHard
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TMD DistributionsTransverse Momentum Dependent PDFs 

F(x, bT) = ∫
db−

2π
e−ib−(xP+) < P | ψ̄ j(b)Γji[b, b + s∞][b + s∞, s∞][s∞,0]ψ i(0) |P >

•Hadron “tomography”  3D Map of hadron structure in 
momentum space


•Unsubtracted TMD

→

•Experimental measurements at particle colliders, like LHC 
or future EIC, are sensitive to these distributions


•Combine data from many experiments to extract TMD 
information  Global fits (e.g. Pavia 19 and SV19)


•Limited precision  Lattice QCD

→

→

Credit: SV19

arxiv:1811.00026
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Quasi-PDFs and Physical PDFs

•Physical PDF          mmmmmmmmm 



•Cannot be calculated on the lattice

f(x) = ∫
dr−

2π
e−ir−(xP+) < P | ψ̄ j(r−)Γji[r−,0]ψ i(0) |P >

?

•Quasi-PDF          mmmmmmmmm.     



•Directly calculable on the lattice

f̃(x, Pz) = ∫
drz

2π
eirz(xPz) < P | ψ̄ j(rz)Γji[rz,0]ψ i(0) |P >

Credit: Yong Zhao
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Credit: Yong Zhao

•Matching with LaMET b

        f̃(x, Pz) = ℂ(x, Pz) ⊗ f(x) + 𝒪( Λ
Pz )
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Quasi-Transverse-Momentum-Dependent PDFs

•We can also define a quasi-TMD suitable for lattice 
computation

•Equal-time operator ( , )


•Orientation of staple contour Access to 
Drell-Yan or SIDIS (check Sivers TMD sign-flip!)


•Leading power matrix element components projected 
by 


•Hard scale: 

v2 < 0 b2
T < 0

s = sign(L) →

Γ ∈ Γ+ = {γ+, γ+γ5, iσα+γ5}

Pz = v ⋅ P ≃ v−P+

F̃(x, bT, Pz) = ∫
drz

2π
eirz(xPz) < P | ψ̄ j(rz)Γji[rz, bT + Lv][bT + Lv, Lv][Lv,0]ψ i(0) |P >

S.Rodini and A. Vladimirov (2022) arxiv 2211.04494
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Quasi-TMD Factorization Theorem

•Same for all polarized quasi-TMDPDFs of the leading power


•Extra non perturbative function  (intrinsic soft factor)Ψ

F̃(x, bT, Pz; μ) = ℂ11(x, Pz; μ) Ψ(bT; μ, ζ̄) F(x, bT; μ, ζ) + 𝒪 ( P−

Pz
,

1
bTPz

,
bT

L
,

l
L )qTMD TMDIntrinsicCoeff. Fun.

•Factorization regime:


•Fast moving hadron with momentum 


•Staple gauge link much longer than broad  

Pμ = P+n̄μ + P−nμ →

→ bT, l ≪ L

P−

P+
≃

P−

Pz
≪ 1 ,

Ψ(bT) = < 0 |
Tr
Nc

[−n̄∞ + bT, bT][bT, bT + Lv][bT + Lv, Lv][Lv,0][0, − n̄∞] |0 >

1
bTPz

≪ 1
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Bare Coefficient Function
•We can write qTMD operator as 

product of currents J†
v (r)ΓJv(0)

 Ji
v(0) = [Lv,0] ψ i(0)

•Separation of currents 


•All needed is coefficient function of 
one current 

r2 ∼ b2
T ≫ 1/Pz

C1

ℂ11 = |C1 |2

•Coefficient independent on the 


•Diagrams contribute to bare 
coefficient Renormalize

Γ

C1,bare →
8



Renormalization Structure

F̃(x, bT, Pz; μ) = Z−1
W (μ) Z−2

J (μ) F̃bare(x, bT, Pz)

F(x, bT; μ, ζ) = |ZU1(μ, ζ) |−2 R−1(bT) Fbare(x, bT)

Ψ(bT; μ, ζ̄) = ZΨ1(μ, ζ̄)−2 Z−1
W (μ) R−1(bT) Ψbare(bT)

•Pole cancellation only happens if 


•Factors needed known to N LO in various works 

ζζ̄ = (2xμPz)2

3 →

C1(x, Pz; μ) = Z−1
J (μ) ZU1(μ, ζ) ZΨ1(μ, ζ̄) C1,bare(x, Pz)

•Renormalized functions are related to bare functions by renormalization factors

•V. M. Braun, K. G. Chetyrkin, and B. A. Kniehl (2020) 
arXiv:2004.01043


•M. G. Echevarria, I. Scimemi, and A. Vladimirov (2016) 
arXiv:1604.07869


•R. Bruser, Z. L. Liu, and M. Stahlhofen (2020) 
arXiv:1911.04494
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Evolution

•Collins-Soper kernel  and  do not contribute to the evolution of coefficient


•Anomalous dimension  coincides with heavy-quark one with 

D(bT, μ) γW

γΨ v2 > 0 ⟵

•Scaling of functions follows from their renormalization properties

d ln F̃(x, bT, Pz; μ)
d ln μ2

= 2 γJ + γW

( )
d ln F(x, bT; μ, ζ)

d ln μ2
=

1
2

Γcusp ln(μ2/ζ) − γV

2
d ln Ψ(bT; μ, ζ̄)

d ln μ2
=

1
2

Γcusp ln(μ2/ζ̄) + γΨ + γW

d ln F(x, bT; μ, ζ)
d ln ζ

= − D(bT, μ)

d ln Ψ(bT; μ, ζ̄)
d ln ζ̄

= − D(bT, μ)

d ln ℂ11(x, Pz; μ)
d ln μ2

= 2( γJ − γΨ ) +
1
2

γV −
1
2

Γcusp ln(μ4/ζζ̄)

A. Vladimirov and A. Schäfer 
arXiv:2002.07527
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One loop calculation
•Expression for the NLO diagram in momentum space

IA = − ig2CF ∫
ddk

(2π)d

γμ γν (Pμ + kμ) vν

[(P + k)2 + i0][k2 + i0][k ⋅ v + i0]

•Project to LP components of quark field in the numerator

1
4
Tr[ IA γ−γ+] ∝ 2(Pz + k+v−)

•We can then calculate the new ingredient of renormalization

→ C[1]
1,bare = 2CFΓ(−ϵ)Γ(2ϵ)

1 − ϵ
1 − 2ϵ

v2ϵ

(2xPz)2ϵ

ig2CF ∫
ddk

(2π)d

v−

[k2 + i0][k ⋅ v − iΔ][k− − iδ−]
→ Z [1]

Ψ1

•Verify pole cancellation: Pole[C[1]
1,bare]+Z[1]

U1+Z [1]
Ψ1−Z[1]

J = 0 → ℂ[1]
11
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Two loop calculation

•NNLO bare coefficient function has 8 diagrams to compute


•Integrals have the general form
+…

Iabcdefgh = ∫
ddk

(2π)d

ddl
(2π)d

1
[k2 + i0]a[(P + k)2 + i0]b[l2 + i0]c[(P + l)2 + i0]d

×
1

[(k − l)2 + i0]e[k ⋅ v + i0]f [l ⋅ v + i0]g[(k − l) ⋅ v + i0]h

•Reduction to base integrals is performed by FIRE6


•No need to compute  as we only need  which coincides with heavy quark anomalous 
dimension (known to N LO)

Ψ[2] γΨ
3
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Coefficient Function at NNLO

•Structure in terms of logarithm 


•Main result of the paper (NLO part coincides with known result and first 
computation of NNLO) 

Lp = ln [μ2/(2xPz)2]

•Squaring renormalize expressions for  and  we obtainC[1]
1 C[2]

1

13



Coefficient Function at N LO3*

•Using evolution equation for coefficient and expressions for anomalous dimensions we 
obtain logarithmic part of coefficient function at three loops (N LO)3*

Lp
d ln ℂ11

d ln μ2
= 2(γJ − γψ) +

γV

2
−

Γcusp
2
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Coefficient Function

•Typical setup for lattice 

 


•NNLO part provides 5% 
corrections at most for 

Good convergence


•Below  convergence drops 
rapidly (at  the NNLO 
correction is  and N LO 
is )


•Natural boundary 

μ = Pz = 2GeV → Lp = − 2 ln x

x ≥ 0.2 →

x < 0.2
x = 0.1

∼ 20 % 3*

∼ 40 %

x ≳ 0.2
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Conclusions

•We can access parton distributions by applying TMD factorization to a certain class 
of operators that can be computed within the lattice QCD approach 


•These are equal-time correlators called quasi-distributions


•The matching coefficient function relates physical distributions to quasi-
distributions through the factorization theorem and is independent of polarization


•First computation of NNLO coefficient shows good convergence


•Other perturbative ingredients are known at two-loop an higher so using this result one 
could analyze the lattice data at complete Next-to-Next-Leading Order
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Thank you for your attention!

Óscar del Río. Complutense University of Madrid
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