Connecting Euclidean to lightcone correlations： From forward to non－forward kinematics

Fei Yao（Beijing Normal University）

In collaboration with Yao Ji（TUM）and Jian－hui Zhang（CUHK－Shenzhen）
LaMET 2023，Regensburg，24／07／2023
https：／／arxiv．org／abs／2212．14415

OUTLINE

	01
02	Introduction
03	Perturbative matching
04	Summary and outlook

\Rightarrow Generalized parton observables (3D structure)

```
            \(W\left(x, \mathbf{k}_{\mathbf{T}}, \mathbf{b}_{\mathbf{T}}\right)\)
            5D Wigner Distributions
                fan
\(f_{\mathrm{TMD}}\left(x, \mathbf{k}_{\mathbf{T}}\right)\)
Transverse Momentum
Dependent (TMD) PDFs
```



```
\[
f(x)
\]
1D Conventional PDFs forward kinematics
```

\rightarrow Theoretically, the unpolarized quark GPDs are defined as

$$
\begin{aligned}
& F(x, \xi, t)=\int \frac{d z^{-}}{4 \pi} e^{-i x p^{+} z^{-}}\left\langle p^{\prime \prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} L\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p^{\prime}\right\rangle_{z^{+}=0, z_{\perp}=0} \\
& =\frac{1}{2 p^{+}}\left[H(x, \xi, t) \bar{u}\left(p^{\prime \prime}\right) \gamma^{+} u\left(p^{\prime}\right)+E(x, \xi, t) \bar{u}\left(p^{\prime \prime}\right) \frac{i \sigma^{+\nu} \Delta_{\nu}}{2 M} u\left(p^{\prime}\right)\right] \\
& \begin{array}{c|c|c}
x & \Delta^{\mu}=p^{\prime \mu}-p^{\prime \mu} & t=\Delta^{2} \\
\xi=\frac{p^{\prime \prime+}-p^{\prime+}}{p^{\prime+}+p^{\prime+}}
\end{array} \\
& \underset{\text { fraction }}{\text { momentum }} \underset{\text { transfer }}{\text { momentum }} \quad \begin{array}{c}
\text { momentum } \\
\text { transfer squared }
\end{array} \quad \text { skewness } \\
& f_{\mathrm{GPD}}\left(x, \mathbf{b}_{\mathbf{T}}\right) \underset{\mathbf{b}_{\mathbf{T}} \leftrightarrow \Delta_{\mathrm{T}}}{ } H(x, 0, t), E(x, 0, t) \underset{\xi=0}{\rightleftarrows} H(x, \xi, t), E(x, \xi, t) \\
& \text { Impact Parameter FT } \\
& \int_{-1}^{1} d x x^{n-1} \\
& \text { Mellin moments }
\end{aligned}
$$

\Rightarrow Experimentally, GPDs can be accessed in exclusive processes
\approx deeply virtual Compton scattering (DVCS)
\& deeply virtual meson production (DVMP) Armstrong et al, arxiv: 1708.00888

DVCS

DVMP

Limitations in global fit

\& Only limited data, and they are indirectly related to GPD.
\& Complicated kinematic dependence and no reliable framework (QCD models) for extracting 3D parton distributions.

\Rightarrow Extracting nucleon GPDs using lattice QCD

\& Mellin moments of the GPDs (FFs and GFFs) Constantinou et al, PPNP 121 (2021)
\& Large-momentum effective theory (LaMET)

Unpolarized GPDs $\mathrm{H}(\mathrm{x}, \xi, \mathrm{t})$ and $\mathrm{E}(\mathrm{x}, \xi, \mathrm{t})$

Helicity GPDs $\tilde{H}(x, \xi, \mathrm{t})$ and $\tilde{E}(\mathrm{x}, \xi, \mathrm{t})$

$$
P_{z}=\{0.83,1.25,1.67\} \mathrm{GeV}, \mathrm{~m}_{\pi} \approx 260 \mathrm{MeV}, \mathrm{Q}^{2}=0.69 \mathrm{GeV}^{2}, \mathrm{RI} / \mathrm{MOM} \text { scheme. }
$$

\rightarrow Extracting nucleon GPDs using lattice QCD (LaMET)

$\xi=0, P_{z} \approx 2.2 \mathrm{GeV}, \mathrm{m}_{\pi}=135 \mathrm{MeV}, \mathrm{Q}^{2}=\{0,0.19,0.39,0.77,0.97\} \mathrm{GeV}^{2}, \mathbf{R I} / \mathbf{M O M}$ scheme.
For helicity operator $\Gamma=\gamma_{z} \gamma_{5}, \tilde{\mathrm{E}}(\mathrm{x}, \xi, \mathrm{t})$ couples with $q_{\mathrm{z}}=\left(P_{\mathrm{i}}-P_{\mathrm{f}}\right)_{z}$.

- Extracting nucleon GPDs using lattice QCD

\& Studying proton GPDs in asymmetric frames. Bhattacharya et al, PRD 106 (2022)

The lattice quasi-observables connect the light-cone observables via a perturbative matching coefficient.

Motivation and Goal

(Only quark GPDs in flavor non-singlet case without mixing (isovector).
© Renormalization and matching using $\mathrm{RI} / \mathrm{MOM}$ scheme.
© The flavor-singlet quark GPDs and gluon GPDs have been much less studied.
\& To have a unified framework for perturbative matching including flavor nonsinglet and singlet case, both in coordinate and momentum space.
ρ In a state-of-the-art scheme.
ρ Provide a manual for extracting all leading-twist GPDs, PDFs and DAs from lattice QCD.
upper sign: non-singlet (ns) lower sign: singlet (s)

quark operator

$$
\begin{array}{cll}
\text { unpolarized } & O_{q, u}\left(z_{1}, z_{2}\right)=\frac{1}{2}\left[\bar{\psi}\left(z_{1}\right) \gamma^{t}\left[z_{1}, z_{2}\right] \psi\left(z_{2}\right) \pm\left(z_{1} \leftrightarrow z_{2}\right)\right] \\
\text { helicity } & O_{q, h}\left(z_{1}, z_{2}\right)=\frac{1}{2}\left[\bar{\psi}\left(z_{1}\right) \gamma^{z} \gamma_{5}\left[z_{1}, z_{2}\right] \psi\left(z_{2}\right) \mp\left(z_{1} \leftrightarrow z_{2}\right)\right] & \rightarrow \begin{array}{c}
\text { s: } q(x)-\bar{q}(x) \\
\text { ns }(x)+\bar{q}(x)
\end{array} \\
\text { transversity } & O_{q, t}\left(z_{1}, z_{2}\right)=\frac{1}{2}\left[\bar{\psi}\left(z_{1}\right) \gamma^{t} \gamma^{\perp} \gamma_{5}\left[z_{1}, z_{2}\right] \psi\left(z_{2}\right)+\left(z_{1} \leftrightarrow z_{2}\right)\right] &
\end{array}
$$

gluon operator

unpolarized

$$
O_{g, u}\left(z_{1}, z_{2}\right)=g_{\perp}^{\mu \nu} \mathbf{F}_{\mu \nu}
$$

helicity

$$
O_{g, h}\left(z_{1}, z_{2}\right)=i \epsilon_{\perp}^{\mu \nu} \mathbf{F}_{\mu \nu}
$$

transversity

$$
O_{g, t}\left(z_{1}, z_{2}\right)=\frac{1}{2}\left[\mathbf{F}_{\mu \nu}+\mathbf{F}_{\nu \mu}\right]-\frac{1}{d-2} g_{\perp}^{\mu \nu} \mathbf{F}_{\alpha}^{\alpha}
$$

$$
\mathbf{F}_{\mu \nu} \equiv \mathrm{F}_{z_{12} \mu}\left(z_{1}\right)\left[z_{1}, z_{2}\right] \mathrm{F}_{\nu z_{12}}\left(z_{2}\right) \quad\{\mu, \nu, \alpha=1,2\}
$$

\rightarrow The quasi-GPDs v.s light-cone GPDs (unpolarized quark operator)

Quasi-LF correlation

$$
\left\langle P_{1} S_{1}\right| O_{q, u}\left|P_{2} S_{2}\right\rangle=\int_{-1}^{1} d x e^{i(x+\xi) P \cdot z_{1}-i(x-\xi) P \cdot z_{2}} \bar{u}\left(P_{1} S_{1}\right)\left[\mathbb{H}(x, \xi, t) \gamma^{t}+\mathbb{E}(x, \xi, t) \frac{i \sigma^{t \mu} \Delta_{\mu}}{2 M}\right] u\left(P_{2} S_{2}\right) \quad i=1,2
$$

$$
\begin{aligned}
& \text { LF correlation } \\
& \left\langle P_{1} S_{1}\right| O_{q, u}^{l . t .}\left|P_{2} S_{2}\right\rangle=\int_{-1}^{1} d x e^{i(x+\xi) P^{+} z_{1}^{-}-i(x-\xi) P^{+} z_{2}^{-}} \bar{u}\left(P_{1} S_{1}\right)\left[H(x, \xi, t) \gamma^{+}+E(x, \xi, t) \frac{i \sigma^{+\mu} \Delta_{\mu}}{2 M}\right] u\left(P_{2} S_{2}\right)
\end{aligned}
$$

where the light-cone quark operator is

$$
O_{q, u}^{l . t .}=\frac{1}{2}\left[\bar{\psi}\left(z_{1} n_{-}\right) \gamma^{+}\left[z_{1}, z_{2}\right] \psi\left(z_{2} n_{-}\right) \pm\left(z_{1} \leftrightarrow z_{2}\right)\right]
$$

\rightarrow They can be related by a factorization formula. The matching coefficients for the lightcone unpolarized quark GPDs $\mathrm{H}(\mathrm{x}, \xi, \mathrm{t})$ and $\mathrm{E}(\mathrm{x}, \xi, \mathrm{t})$ should be same. Liu etal, PRD 100 (2019), Ji et al, PRD 92 (2015)
I.t. stands for the leading-twist projection which acts as the generating function of leading-twist local operators.

Factorization formula (non-singlet):

$$
O_{q}^{n s}\left(z_{1}, z_{2}\right)=\int_{0}^{1} d \alpha \int_{0}^{\bar{\alpha}} d \beta \widetilde{C_{q q}^{n s}\left(\alpha, \beta, \mu^{2} z_{12}^{2}\right)} O_{q}^{\text {l.t.ns }}\left(z_{12}^{\alpha}, z_{21}^{\beta}\right)
$$

Factorization formula (singlet): Quark and gluon quasi-distributions can mix with each other,

$$
\begin{gathered}
\binom{O_{q}}{O_{g}}=\left(\begin{array}{c}
C_{q q} \\
C_{q q} \\
C_{g g}
\end{array}\right) \otimes\binom{O_{q}^{l . t .}}{O_{g}^{l . t .}} \\
O_{q}\left(z_{1}, z_{2}\right)=\int_{0}^{1} d \alpha \int_{0}^{\bar{\alpha}} d \beta\left[C_{q q}\left(\alpha, \beta, \mu^{2} z_{12}^{2}\right) O_{q}^{l . t .}\left(z_{12}^{\alpha}, z_{21}^{\beta}\right)+C_{q g}\left(\alpha, \beta, \mu^{2} z_{12}^{2}\right) O_{g}^{l . t .}\left(z_{12}^{\alpha}, z_{21}^{\beta}\right)\right] \\
O_{g}\left(z_{1}, z_{2}\right)=\int_{0}^{1} d \alpha \int_{0}^{\bar{\alpha}} d \beta\left[C_{g q}\left(\alpha, \beta, \mu^{2} z_{12}^{2}\right) O_{q}^{l . t .}\left(z_{12}^{\alpha}, z_{21}^{\beta}\right)+C_{g g}\left(\alpha, \beta, \mu^{2} z_{12}^{2}\right) O_{g}^{l . t .}\left(z_{12}^{\alpha}, z_{21}^{\beta}\right)\right]
\end{gathered}
$$

I.t. stands for the leading-twist projection which acts as the generating function of leading-twist local operators.

- Sandwiched between quark or gluon external states (GPDs)

	$O_{q} / O_{q}^{l . t .}$	$O_{g} / O_{g}^{l . t .}$
	Quark in quark (Non-singlet case)	Gluon in quark

Quark in gluon: gluon matrix element of the quark quasi-GPD operator

- PDFs (forward) $\langle q| O_{q}|q\rangle$
- DAs $\left\langle q \bar{q}^{\prime}\right| O_{q}|0\rangle$ or $\langle 0| O_{q}\left|q \bar{q}^{\prime}\right\rangle$

Fourier transformation

$$
\begin{aligned}
& \mathscr{P}\left(\tau, \xi, \mu^{2} z_{12}^{2}\right)=N \int \frac{d z_{1}}{2 \pi} \int \frac{d z_{2}}{2 \pi} e^{-i(\xi+\tau) P \cdot z_{1}-i(\xi-\tau) P \cdot z_{2}} \tilde{\mathscr{H}}\left(z_{i}, P_{i}, \mu^{2} z_{12}^{2}\right) \\
& \mathbb{H}\left(x, \xi, \frac{\mu}{P_{z}}\right)=P_{z}^{2} \int_{-1}^{1} d \tau_{1} \int_{-1}^{1} d \tau_{2} \int \frac{d z_{1}}{2 \pi} \int \frac{d z_{2}}{2 \pi} e^{i P_{z}\left[\left(x_{1}-\tau_{1}\right) z_{1}+\left(x_{2}-\tau_{2}\right) z_{2}\right]} \mathscr{P}\left(\tau_{1}, \tau_{2}, \frac{\mu^{2} \zeta^{2}}{P_{z}^{2}}\right)
\end{aligned}
$$

Quasi-LF correlations $\tilde{\mathscr{H}}\left(z_{i}, P_{i}, \mu^{2} z_{12}^{2}\right)$

FT

$$
C\left(\alpha, \beta ; \mu^{2} z_{12}^{2}\right)=\left(\begin{array}{ll}
C_{q q} & C_{q g} \\
C_{g q} & C_{g g}
\end{array}\right)
$$

, Radyushkin, PRD 100 (2019)
Pseudo-GPDs $\mathscr{P}\left(\tau, \xi, \mu^{2} z_{12}^{2}\right)$ double FT

$\mathcal{C}\left(\tau_{1}, \tau_{2}, y_{1}, y_{2} ; \mu^{2} z_{12}^{2}\right)=\left(\begin{array}{ll}\mathcal{C}_{q q} & C_{q g} \\ \mathcal{C}_{g q} & e_{g g}\end{array}\right)$

$$
\text { Quasi-GPDs } \mathbb{H}\left(x, \xi, \frac{\mu}{P_{z}}\right)
$$

$$
\mathbb{C}\left(x_{1}, x_{2}, y_{1}, y_{2} ; \frac{\mu}{P_{z}}\right)=\left(\begin{array}{ll}
\mathbb{C}_{q q} & \mathbb{C}_{q g} \\
\mathbb{C}_{g q} & \mathbb{C}_{g g}
\end{array}\right)
$$

$$
\mathrm{X}_{1}=\xi+\mathrm{X}, \quad \mathrm{X}_{2}=\xi-\mathrm{X} \quad(\mathrm{X}=\tau, x, y)
$$

\rightarrow Quark in quark Cqq (In coordinate space)

$$
\begin{aligned}
& C_{q q}^{\overline{\mathrm{MS}}}\left(\alpha, \beta, \mu^{2} z_{12}^{2}\right)=\delta(\alpha) \delta(\beta)+2 a_{s} C_{F}\left\{\left(A_{2}+[\bar{\alpha} / \alpha]_{+} \delta(\beta)+[\bar{\beta} / \beta]_{+} \delta(\alpha)\right)\left(\mathrm{L}_{\mathrm{z}}-1\right)+\mathrm{A}_{3}\right. \\
& \left.-2[\ln (\alpha) / \alpha]_{+} \delta(\beta)-2[\ln (\beta) / \beta]_{+} \delta(\alpha)\right\}+2 a_{s} C_{F}\left(-2 \mathrm{~L}_{\mathrm{z}}+2\right) \delta(\alpha) \delta(\beta), \\
& \mathrm{L}_{\mathrm{z}}=\ln \frac{4 \mathrm{e}^{-2 \gamma_{\mathrm{E}}}}{-\mu^{2} \mathrm{z}_{12}^{2}} \\
& A_{2, u}=1, \quad A_{2, h}=1, \quad A_{2, t}=0 \\
& A_{3, u}=2, \quad A_{3, h}=4, \quad A_{3, t}=0
\end{aligned}
$$

The matching coefficients are consistent with Ref. [Radyushkin, PRD 100 (2019)].
\& Applicable both to quark flavor non-singlet case and to DA case (the difference lies in the phase structure).

\rightarrow Quark in gluon Cqg (In coordinate space)

$$
\begin{gathered}
C_{q g}^{\overline{\mathrm{MS}}}\left(\alpha, \beta, \mu^{2} z_{12}^{2}\right)=4 i a_{s} T_{F} N_{f} \mathbf{z}_{12} B_{3} \mathrm{~L}_{\mathrm{z}} \\
B_{3, u}=\bar{\alpha} \bar{\beta}+3 \alpha \beta \quad B_{3, h}=\bar{\alpha} \bar{\beta}-\alpha \beta
\end{gathered}
$$

\rightarrow Gluon in quark Cgq (In coordinate space)

$$
\begin{gathered}
C_{g q}^{\overline{\mathrm{MS}}}\left(\alpha, \beta, \mu^{2} z_{12}^{2}\right)=\frac{-2 i a_{s} C_{F}}{\mathrm{z}_{12}}\left\{\left(\delta(\alpha) \delta(\beta)+D_{3}\right)\left(\mathrm{L}_{\mathrm{z}}+1\right)+D_{4}-2(\delta(\alpha)+\delta(\beta))\right\} \\
D_{3, u}=2, \quad D_{3, h}=-2, \quad D_{4, u}=6, \quad D_{4, h}=4 .
\end{gathered}
$$

\approx Note that the operator defining the quark transversity is chiral-odd and thus does not mix with gluons.
\& Mixing terms should ensure dimension consistency.

$>$ Gluon in gluon Cgg (In coordinate space)

$$
C_{g g}^{\overline{\mathrm{MS}}}\left(\alpha, \beta, \mu^{2} z_{12}^{2}\right)=\delta(\alpha) \delta(\beta)+2 a_{s} C_{A}\left\{\left(E_{1}+\left[\bar{\alpha}^{2} / \alpha\right]_{+} \delta(\beta)+\left[\bar{\beta}^{2} / \beta\right]_{+} \delta(\alpha)\right)\left(\mathrm{L}_{\mathrm{z}}-1\right)+E_{2}\right.
$$

$$
\left.-2[\ln (\alpha) / \alpha]_{+} \delta(\beta)-2[\ln (\beta) / \beta]_{+} \delta(\alpha)\right\}+2 a_{s} C_{A}\left(-3 \mathrm{~L}_{\mathrm{z}}+2\right) \delta(\alpha) \delta(\beta)
$$

$$
E_{1, u}=4(1-\alpha-\beta+3 \alpha \beta), \quad E_{1, h}=4(1-\alpha-\beta), \quad E_{1, t}=0,
$$

$$
E_{2, u}=\frac{5}{2} E_{1, u}+6 \alpha \beta, \quad E_{2, h}=\frac{3}{2} E_{1, h}, \quad E_{2, t}=2(1+\alpha+\beta-2 \alpha \beta) .
$$

The evolution kernels are all consistent with Ref. [Belitsky and Radyushkin, Phys.Rept. 418 (2005)].
\Rightarrow Fourier transform to pseudo space

$$
\mathcal{C}\left(\tau_{1}, \tau_{2}, y_{1}, y_{2} ; \mu^{2} z_{12}^{2}\right)=\int_{0}^{1} d \alpha \int_{0}^{1} d \beta C\left(\alpha, \beta, \mu^{2} z_{12}^{2}\right) \delta\left(\tau_{1}-\bar{\alpha} y_{1}-\bar{\alpha} \beta y_{2}\right) \text { Ji and Belitsky, NPB } 894 \text { (2015) }
$$

\rightarrow Fourier transform to momentum space

$$
\mathbb{C}\left(x_{1}, x_{2}, y_{1}, y_{2} ; \frac{\mu}{P_{z}}\right)=P_{z}^{2} \int_{-1}^{1} d \tau_{1} \int_{-1}^{1} d \tau_{2} \int \frac{d z_{1}}{2 \pi} \int \frac{d z_{2}}{2 \pi} e^{i P_{z}\left[\left(x_{1}-\tau_{1}\right) z_{1}+\left(x_{2}-\tau_{2}\right) z_{2}\right]} C\left(\tau_{1}, \tau_{2}, y_{1}, y_{2} ; \frac{\mu^{2} \zeta^{2}}{P_{z}^{2}}\right)
$$

e.g. the matching coefficient of quark GPDs

$$
\mathbb{C}_{q q}^{\overline{\mathrm{MS}}}\left(x_{1}, x_{2}, y_{1}, y_{2} ; \frac{\mu}{P_{z}}\right)=\delta\left(x_{1}-y_{1}\right)+a_{s} C_{F} \mathbb{C}_{q q}^{(1)}\left(x_{1}, x_{2}, y_{1}, y_{2} ; \frac{\mu}{P_{z}}\right)
$$

with

$$
\begin{array}{ll}
\mathbb{C}_{q q, u}^{(1)}=\left\{\left(\frac{\left|x_{1}\right|}{y_{1}\left(y_{1}+y_{2}\right)}\left(\mathrm{\Xi}_{x}-1\right)+\left(x_{1} \leftrightarrow x_{2}, y_{1} \leftrightarrow y_{2}\right)\right)-\frac{\left|x_{1}-y_{1}\right|}{y_{1} y_{2}}\left(\mathrm{\Xi}_{x y}-1\right)\right\}+\mathbb{C}_{q q, t}^{(1)}, & \mathrm{E}_{x}=\ln \frac{4 P_{z}^{2} x_{1}^{2}}{\mu^{2}} \\
\mathbb{C}_{q q, h}^{(1)}=\mathbb{C}_{q q, u}^{(1)}+2\left\{\frac{\left|x_{1}\right|}{y_{1}\left(y_{1}+y_{2}\right)}+\frac{\left|x_{2}\right|}{y_{2}\left(y_{1}+y_{2}\right)}-\frac{\left|x_{1}-y_{1}\right|}{y_{1} y_{2}}\right\}, & \mathrm{E}_{x y}=\ln \frac{4 P_{z}^{2}\left(x_{1}-y_{1}\right)^{2}}{\mu^{2}} \\
\mathbb{C}_{q q, t}^{(1)}=\left\{\left(\frac{\left|x_{1}\right|}{y_{1}\left(y_{1}-x_{1}\right)}\left(\mathrm{£}_{x}-1\right)+\left(x_{1} \leftrightarrow x_{2}, y_{1} \leftrightarrow y_{2}\right)\right)+\left(\frac{x_{1}}{y_{1}}+\frac{x_{2}}{y_{2}}\right) \frac{1}{\left|x_{1}-y_{1}\right|}\left(\mathrm{Ł}_{x y}-1\right)\right\} . &
\end{array}
$$

Having same results in Ref. [Ma et al, JHEP 08 (2022)], they calculate directly in momentum space.
\rightarrow Fourier transform to pseudo space

$$
C\left(\tau_{1}, \tau_{2}, y_{1}, y_{2} ; \mu^{2} z_{12}^{2}\right)=\int_{0}^{1} d \alpha \int_{0}^{1} d \beta C\left(\alpha, \beta, \mu^{2} z_{12}^{2}\right) \delta\left(\tau_{1}-\bar{\alpha} y_{1}-\bar{\alpha} \beta y_{2}\right) \text { Ji and Belitsky, NPB } 894 \text { (2015) }
$$

\rightarrow Fourier transform to momentum space

$$
\mathbb{C}\left(x_{1}, x_{2}, y_{1}, y_{2} ; \frac{\mu}{P_{z}}\right)=P_{z}^{2} \int_{-1}^{1} d \tau_{1} \int_{-1}^{1} d \tau_{2} \int \frac{d z_{1}}{2 \pi} \int \frac{d z_{2}}{2 \pi} e^{i P_{z}\left[\left(x_{1}-\tau_{1}\right) z_{1}+\left(x_{2}-\tau_{2}\right) z_{2}\right]} \mathcal{C}\left(\tau_{1}, \tau_{2}, y_{1}, y_{2} ; \frac{\mu^{2} \zeta^{2}}{P_{z}^{2}}\right)
$$

e.g. the matching coefficient of quark GPDs

$$
\begin{aligned}
\mathbb{C}_{q q}^{(1)}(x, y, \xi)=\frac{1}{y} & {\left[G_{1}(x, y, \xi) \theta(x<-\xi) \theta(x<y)+G_{2}(x, y, \xi) \theta(-\xi<x<\xi) \theta(x<y)\right.} \\
& +G_{3}(-x,-y, \xi) \theta(-\xi<x<\xi) \theta(x>y)+G_{3}(x, y, \xi) \theta(x>\xi) \theta(x<y) \\
& \left.-G_{1}(x, y, \xi) \theta(x>\xi) \theta(x>y)\right]
\end{aligned}
$$

where the region $\theta(-\xi<x<\xi) \theta(x>y)$ is missing in the kinematic setup in Refs. [Ji et al, PRD 92 (2015)], [Xiong et al, PRD 92 (2015)], [Liu et al, PRD 100 (2019)] (switching to the notation of these references).

	MSbar scheme	Ratio scheme
Coordinate space	$C\left(\alpha, \beta ; \mu^{2} z_{12}^{2}\right)$	$C^{\text {ratio }}\left(\alpha, \beta, \mu^{2} z_{12}^{2}\right)$ $=C^{\overline{\mathrm{Ms}}}\left(\alpha, \beta, \mu^{2} z_{12}^{2}\right)-Z^{(1)}\left(\mu^{2} z_{12}^{2}\right) \delta(\alpha) \delta(\beta)$ Z represents the same operator matrix element at zero momentum.
Pseduo space	$C\left(\tau_{1}, \tau_{2}, y_{1}, y_{2} ; \mu^{2} z_{12}^{2}\right)$	$C^{\text {ratio }}\left(\tau_{1}, \tau_{2}, y_{1}, y_{2} ; \mu^{2} z_{12}^{2}\right)$ $=e^{\overline{\mathrm{MS}}}\left(\tau_{1}, \tau_{2}, y_{1}, y_{2} ; \mu^{2} z_{12}^{2}\right)-Z^{(1)}\left(\mu^{2} z_{12}^{2}\right) \delta\left(\tau_{1}-y_{1}\right)$
Momentum space	$\mathbb{C}\left(x_{1}, x_{2}, y_{1}, y_{2} ; \frac{\mu}{P_{z}}\right)$	$\mathbb{C}^{\text {ratio }}\left(x_{1}, x_{2}, y_{1}, y_{2} ; \frac{\mu}{P_{z}}\right)$ $=\mathbb{C}^{\mathrm{MS}}\left(x_{1}, x_{2}, y_{1}, y_{2} ; \frac{\mu}{P_{z}}\right)-T_{L} \frac{1}{\left\|x_{1}-y_{1}\right\|}$

Ratio-hybrid scheme

$$
\begin{aligned}
C^{\text {hybrid }}\left(\alpha, \beta, \mu^{2} z_{12}^{2},\right. & \left., \frac{z_{12}^{2}}{z_{s}^{2}}\right)=C^{\text {ratio }}\left(\alpha, \beta, \mu^{2} z_{12}^{2}\right) \\
& -T_{L} \ln \frac{z_{12}^{2}}{z_{s}^{2}} \delta(\alpha) \delta(\beta) \theta\left(\left|z_{12}\right|-z_{s}\right)
\end{aligned}
$$

where z_{S} denotes a truncation point and T_{L} is anomalous dimension.

$$
\begin{aligned}
& \mathbb{C}^{\text {hybrid }}\left(x_{1}, x_{2}, y_{1}, y_{2} ; \frac{\mu}{P_{z}}\right)=\mathbb{C}^{\text {ratio }}\left(x_{1}, x_{2}, y_{1}, y_{2} ; \frac{\mu}{P_{z}}\right) \\
& -T_{L}\left[-\frac{1}{\left|x_{1}-y_{1}\right|}+\frac{2 \operatorname{Si}\left(\left(\mathrm{x}_{1}-\mathrm{y}_{1}\right) \lambda_{\mathrm{s}}\right)}{\pi\left(x_{1}-y_{1}\right)}\right]_{+}
\end{aligned}
$$

Chou and Chen, PRD 106 (2022), See Chen's talk
\rightarrow Ratio scheme introduce undesired IR effects at large distances in LaMET.

Radyushkin, PRD 98 (2018), Balitsky et al, PLB 808 (2020)

	GPDs	Reduction to PDFs (forward limit)	Reduction to DAs
Coordinate space	$C\left(\alpha, \beta ; \mu^{2} z_{12}^{2}\right)$	Factorization formula: $\tilde{h}\left(z_{12}, p_{z}, \mu\right)=\int_{0}^{1} d \alpha \boldsymbol{C}\left(\alpha, \mu^{2} z_{12}^{2}\right) h^{\text {l.t. }}(\bar{\alpha}, \mu)$ Integrating one of Feynman parameters, $\begin{aligned} & \boldsymbol{C}\left(\alpha^{\prime}, \mu^{2} z_{12}^{2}\right) \\ & \quad=\int_{0}^{1} d \alpha \int_{0}^{\bar{\alpha}} d \beta \delta\left(\alpha^{\prime}-\alpha-\beta\right) C\left(\alpha, \beta, \mu^{2} z_{12}^{2}\right) \end{aligned}$	Factorization formula: $\begin{aligned} & \widetilde{M}\left(z_{i}, p_{i}, \mu\right) \\ & \quad=\int_{0}^{1} d \alpha \int_{0}^{\bar{\alpha}} C\left(\alpha, \beta, \mu^{2} z_{12}^{2}\right) M^{\text {l.t. } .}\left(z_{i}, p_{i}, \mu\right) \end{aligned}$ The matching coefficient is same as the GPDs.
Momentum space	$\mathbb{C}\left(x_{1}, x_{2}, y_{1}, y_{2} ; \frac{\mu}{P_{z}}\right)$	Factorization formula: $\tilde{q}\left(x, P_{z}\right)=\int_{-1}^{1} d y F\left(x, y ; \frac{\mu}{P_{z}}\right) q(y, \mu)$ Taking the zero-skewness limit $\xi \rightarrow 0$, $F\left(x, y ; \frac{\mu}{P_{z}}\right)=\mathbb{C}\left(x,-x, y,-y ; \frac{\mu}{P_{z}}\right)$	Factorization formula: $\tilde{\phi}\left(x, P_{z}\right)=\int_{0}^{1} d y V\left(x, y ; \frac{\mu}{P_{z}}\right) \phi(y, \mu)$ Taking limit, $V\left(x, y ; \frac{\mu}{P_{z}}\right)=\mathbb{C}\left(x, 1-x, y, 1-y ; \frac{\mu}{P_{z}}\right)$

Complete matching for PDFs in MSbar scheme [Wang et al, EPJC 78 (2018)] and RI/MOM scheme [Liu et al, 100 (2019)]. Matching for non-singlet the meson DAs in Ref. [Liu et al, PRD 99 (2019)].
\rightarrow The discrepancy in gluon PDFs (unpolarized)

$$
\begin{gathered}
x \tilde{g}\left(x, P_{z}\right)=\int_{-1}^{1} \frac{d y}{|y|} F_{g q}\left(\frac{x}{y}, \frac{\mu}{P_{z}}\right) q(y, \mu)+\int_{-1}^{1} \frac{d y}{|y|} F_{g g}\left(\frac{x}{y}, \frac{\mu}{P_{z}}\right) y g(y, \mu) \\
F_{g g}^{(1)}\left(t, \frac{P_{z}}{\mu}\right)=2 a_{s} C_{A} \begin{cases}\frac{2\left(t^{2}-t+1\right)^{2}}{t-1} \ln \frac{t-1}{t}+2 t^{2}-t+\frac{8}{3}+1 \\
\frac{2\left(t^{2}-t+1\right)^{2}}{t-1} \ln \frac{\mu^{2}}{4 t(1-t) P_{z}^{2}}+\frac{10 t^{4}-16 t^{3}+21 t^{2}-15 t+6}{3(t-1)}+\frac{4}{3}+1 & 0<t<1 \\
-\frac{2\left(t^{2}-t+1\right)^{2}}{t-1} \ln \frac{t-1}{t}-2 t^{2}+t-\frac{8}{3}-1 & t<0\end{cases}
\end{gathered}
$$

\& The discrepancy in F_{gq} affect the matching process, while that of F_{gg} does not.
\& The contributions in unphysical region are completely determined by the evolution kernel (ratio scheme),

$$
\mathscr{K}_{g g}(\alpha)=2\left[\frac{(1-\alpha \bar{\alpha})^{2}}{1-\alpha}\right]_{+}, \int_{0}^{1} d \alpha \frac{\mathscr{K}_{g g}(\alpha)}{t-\alpha}=2 \frac{(1-t \bar{t})^{2}}{t-1} \ln \frac{t-1}{t}+\frac{11}{6} \frac{1}{t-1}+t(2 t-1)+\frac{11}{3}
$$

There is similar discrepancy between Ref. [Balitsky et al, PLB 808 (2020)] and Ref. [Wang et al, PRD 100 (2019)], while our results in the ratio scheme are completely consistent with the former

E GPD plays an important role in the detailed understanding of the inner 3D structure of nucleon.

I Lattice QCD calculations can provide great help to extract GPDs.
I We provide a unified framework for perturbative matching connecting Euclidean to lightcone correlations.
\& Both for non-singlet and singlet (GPDs, PDFs, DAs).
\& In coordinate and momentum space.
\& In a state-of-the-art scheme (ratio and hybrid scheme).
I Follow-up:
\& Studying the discrepancy.
\& Two-loop level.

Thank you fak listening !

DVCS

Integration in ERBL (left) and DGLAP (right) regions: The singularities are denoted by cross

$$
\mathrm{eA} \rightarrow \mathrm{e}^{\prime} \mathrm{Ay}
$$

$>$ Extracting nucleon GPDs using lattice QCD (LaMET)

Lin, PRL 127 (2021) 18, 182001

Unpolarized nucleon GPD

Lin, PLB 824 (2022) 136821
Helicity nucleon GPD

$$
\begin{aligned}
\tilde{F}(x, \xi, t) & =\int \frac{d z^{-}}{4 \pi} e^{-i x p^{+} z^{-}}\left\langle p^{\prime \prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \gamma_{5} L\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p^{\prime}\right\rangle_{z^{+}=0, z_{\perp}=0} \\
& =\frac{1}{2 p^{+}}\left[\tilde{H}(x, \xi, t) \bar{u}\left(p^{\prime \prime}\right) \gamma^{+} \gamma_{5} u\left(p^{\prime}\right)+\tilde{E}(x, \xi, t) \bar{u}\left(p^{\prime \prime}\right) \frac{\gamma_{5} \Delta^{+}}{2 M} u\left(p^{\prime}\right)\right]
\end{aligned}
$$

$\xi=0, P_{z} \approx 2.2 \mathrm{GeV}$ at the physical pion mass, $\mathrm{Q}^{2} \in\{0,0.19,0.39,0.77,0.97\} \mathrm{GeV}^{2}$.

