

Transversity PDFs of the proton from lattice QCD with physical quark masses

In collaboration with X. Gao, A.D. Hanlon, N. Karthik, S. Mukherjee, P. Petreczky, S. Syritsyn and Y. Zhao

LaMET 2023, University of Regensburg July 24 - 26, 2023

Qi Shi CCNU & BNL

Motivation

2

- Lattice Setup
- Mellin Moments
- Transversity PDFs
- Summary

Outline

3 Collinear PDFs

4 Transversity PDFs

chiral-odd

JAM: Phys.Rev.D 106 (2022) 3, 034014

5 Transversity distribution

6 Lattice setup

- $64^3 \times 64$, a = 0.076 fm
- 2+1f HISQ gauge ensembles
- Clover-fermion, $m_{\pi} = 140 \text{ MeV}$
- 1-HYP smearing for Wilson line
- 4 momentum from 0 to 1.52 GeV using boosted smearing

Parton distribution functions

• Quasi-PDF, Large-Momentum Effective Theory

$$\begin{split} \tilde{q}(x, P_z, \mu) &= \int \frac{\mathrm{d}\lambda}{2\pi} e^{-ix\lambda} h^R(x, z, P_z, \mu) \\ q(x, \mu) &= \int \frac{\mathrm{d}y}{y} C^{-1} \left(\frac{x}{y}, \frac{\mu}{yP_z}\right) \tilde{q}(y, P_z, \mu) + \mathcal{O}\left(\frac{x}{y}, \frac{\mu}{yP_z}\right) \tilde{q}(y, P_z, \mu) \end{split}$$

Pseudo-PDF, Short Distance Factorization

. . .

Bare matrix elements 8

Ratio-scheme renormalization

 $h^B = e^{-\delta m z} Z(a) h^R$

Ratio scheme renormalization

$$\mathcal{M}(z, P_{z}, P_{z}^{0}) = \frac{h^{B}(z, P_{z}, a)}{h^{B}(z, P_{z}^{0}, a)} = \frac{h^{R}(z, P_{z}, \mu)}{h^{R}(z, P_{z}^{0}, \mu)}$$

• RG invariant double ratio.

$$\mathcal{M}(z^{2}, P_{z}, P_{z}^{0}) \equiv \left(\frac{h^{B}(z, P_{z})}{h^{B}(z, P_{z}^{0})}\right) \left(\frac{h^{B}(0, P_{z}^{0})}{h^{B}(0, P_{z})}\right) = \left(\frac{h^{R}(z, P_{z})}{h^{R}(z, P_{z}^{0})}\right) \left(\frac{h^{R}(0, P_{z}^{0})}{h^{R}(0, P_{z})}\right)$$

• The twist-2 OPE formula.

$$\mathcal{M}(z^{2}, P_{z}, 0) = \sum_{n=0}^{\infty} \frac{(-izP_{z})^{n}}{n!} \frac{C_{n}(z^{2}\mu^{2})}{C_{0}(z^{2}\mu^{2})} \frac{\langle x^{n} \rangle}{g_{T}}$$

X. Ji, J. H. Zhang and Y. Zhao, PRL120 (2018)J. Green, K. Jansen and F. Steffens, PRL121 (2018)T. Ishikawa, et al, PRD 96 (2017)

- A. V. Radyushkin, PRD 2017
- K. Orginos, et al, PRD 96, 2017
- B. Joó, et al, PRL125, 2020
- X. Gao, et al, PRD 102, 2020
- Z. Fan, et al, PRD 102, 2020

- Real part: even moments.
- Imaginary part: odd moments.

10 1. Mellin moments

11. Mellin moments

 $\operatorname{Re}[\mathscr{M}(\lambda, z^2, P_{z}, 0)]$

12 2. Transversity PDFs from model reconstruction

Leading twist factorizaiton:

$$h^{R}(z, P_{z}, \mu) = \int_{-1}^{1} d\alpha \mathscr{C}(\alpha, \mu^{2} z^{2}) \int_{-1}^{1} d\alpha \mathscr{C}(\alpha, \mu^{2}$$

Model

$$q(x) = Ax^{\alpha}(1-x)^{\beta}(1 + \text{suble})$$

Deep neural network (DNN)

$$q(x; \alpha, \beta, \theta) \equiv Ax^{\alpha}(1-x)^{\beta} \{1$$

 $\frac{dye^{-iy\lambda}q(y,\mu)}{1} + \mathcal{O}(z^2 \Lambda_{QCD}^2)$

eading terms)

+ $\epsilon(x) \cdot \sin[f_{\text{DNN}}(x; \theta)]$ } BNL-ANL, Phys.Rev.D 107 (2023) 7, 074509

13 2. Transversity PDF from model reconstruction

Hidden layers

Hidden layer: Linear transformation: input

Activation:

outpu

Loss function:

 $J \equiv \frac{\gamma_{0}}{2}$

$$z_{i}^{(l)} = b_{i}^{(l)} + \sum_{j} W_{ij}^{(l)} a_{j}^{(l-1)}$$

at
$$a_i^{(l)} = \sigma_{\text{elu}}^{(l)}(z_i^{(l)}) = \theta(-z)(e^z - 1) + \theta(z)z$$

$$\frac{\partial}{\partial z} \mathcal{O}(b, W) \cdot \mathcal{O} + \frac{1}{2}\chi^2(\mathcal{O}, \alpha, \beta)$$

14 2. Transversity PDF from model reconstruction

Anti-quark distributions are negligible.

15 2. Transversity PDF from model reconstruction

16 Hybrid renormalization $h^{B} = e^{-\delta}$

Hybrid scheme renormalization

• Short distance $z \in [0, z_s], z_s \ll \Lambda_{OO}$

$$h^{R} = \frac{h^{B}(z, P_{z}, a)}{h^{B}(z, 0, a)}$$

 $\delta m' = \delta m + \bar{m}_0$

 $h^{B}(z, p_{z} = 0) = Z(a)e^{-\delta m z}e^{-\bar{m}_{0}z}C_{0}(z^{2}\mu^{2}),$

$$e^{-\delta mz}Z(a)h^R$$

• Long distance
$$z \in [z_s, +\infty]$$
:

$$h^R = e^{\delta m |z-z_s|} \frac{h^B(z, P_z, a)}{h^B(z_s, 0, a)}$$

Renormalon ambiguity

$$\frac{h^{B}(z, p_{z} = 0)}{h^{B}(z - a, p_{z} = 0)} = e^{-\delta m a} e^{-\bar{m}_{0}a} \frac{C_{0}(z^{2}\mu^{2})}{C_{0}((z - a)^{2}\mu^{2})}$$

THY Hybrid renormalization

R. Zhang, et al, PLB, 844, 2023

Bare transversity matrix elements of iso-vector and iso-scalar.

- The first few Mellin moments, ratio-scheme.
- Reconstruct the PDF using DNN, ratio-scheme.
- Quasi-PDF, hybrid-scheme. The NLO+LRR+RG matching in on going.

Summary

Thanks for your attention!

Backup

2D Transversity PDF from model reconstruction

$$\mathcal{M}(\lambda, z^{2}, P_{z}, 0) = \sum_{n=0}^{\infty} \frac{(-izP_{z})^{n}}{n!} \frac{C_{n}(z^{2}\mu^{2})}{C_{0}(z^{2}\mu^{2})} \frac{\langle x \rangle}{g}$$

Real part:

$$q^{-}(x) \equiv q^{q}(x) - q^{\overline{q}}(x)$$

Imaginary part:

$$q^+(x) \equiv q^q(x) + q^{\bar{q}}(x)$$

The difference:

 $q^+(x) - q^-(x) \equiv 2q^{\bar{q}}(x)$

Anti-quark distribution negligible.

22 LaMET factorization and hybrid renormalization

$$\begin{split} \tilde{q}(x, P_z, \mu) &= \int \mathrm{d}z e^{ixP_z z} h^R(x, z, P_z, \mu) \\ q(x, \mu) &= \int \frac{\mathrm{d}y}{y} C^{-1} \left(\frac{x}{y}, \frac{\mu}{yP_z}\right) \tilde{q}(y, P_z, \mu) + \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^2}{x^2 P_z^2}, \frac{\Lambda_{\mathrm{QCD}}^2}{(1-x)^2 P_z^2}\right) \end{split}$$