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How well do we understand the LHC data?

Experiment Simulation

Detector
malfunctioning ?

Can we trust our
simulations ?

Reconstruction
Bugs ?

See Raghav’s talk

Are two simulators
equivalent ?

Unexpected Physics

Beyond the
Standard Model ?
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Goodness of fit by Neyman-Pearson testing

How well do we understand the LHC data?

These are problems of Goodness of Fit:
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e Data: experimental measurements of the

natural process {xi}iDl

® Reference model: expected nominal

behaviour of the data

(Standard Model, normal operating condition
of a detector...).

Most of the times not known in close form:
Reference sample { yi}iRl — 2sample test

At LHC: multi-dimensional, large statistics samples — Machine Learning approaches
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Classifier-based GOF approaches

June 1, 2023

Friedman (2003): Training a classifier to tell apart two samples (data and reference samples).

Main features:

o Balanced problem (N = Ng)

o Train-test split (out of sample evaluation)
o Test:

e (lassification metrics: accuracy, AUC (Charkavarti et
al. (2021), Lopez et al. (2017) )

e Standard 1D GOF on the classifier output: classifier
for dimensionality reduction (Friedman (2003) )

o (Calibration and p-value:
¢ Toy experiments (training a new model each time)

e The single value of test statistic is not sufficient
without a fair comparison to the test statistic
distribution under the null
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Student-t versus Gaussian
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Goodness of fit by Neyman-Pearson testing

Neyman-Pearson testing

Comparing the null hypothesis (Reference) with an alternative.
Traditionally employed in BSM searches at the LHC.

o Choosing an alternative is mandatory

o The alternative defines the landscape ® True
signals that the test is sensitive to.

o Sensitivity (and optimality) are guaranteed
(according to Neyman and Pearson) only if
the data do follow the chosen alternative

Gaia Grosso
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= Standard Model




Goodness of fit by Neyman-Pearson testing

Neyman-Pearson testing

Comparing the null hypothesis (Reference) with an alternative.
Release the assumptions on the alternative

o Expand the family of alternatives to
increase the chance of containing the True W
data distribution

Gaia Grosso
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Neyman-Pearson testing
The problem of sensitivity

The specificity of the alternative
determines the sensitivity of the test.

o Too complex models are over-sensitive
to statistical fluctuations,
independently on the nature of the data

o Too simple models may not contain an
element that approximate the True
hypothesis well enough

Probability

A successtul GoF strategy based on
Neyman-Pearson testing should balance
between flexibility and regularisation.

Gaila Grosso
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Goodness of fit by Neyman-Pearson testing

Neyman-Pearson testing

Comparing the null hypothesis (Reference) with an alternative.

Release the assumptions on the alternative

NPLM algorithm

Universal approximator
(NN, kernel methods, ...)

Alternative = Data
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(The saturated model proposed by Baker and Cousins — Nucl.Instrum.Meth. 221 (1984) — is a binned

version of this approach)
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New Physics Learning Machine (NPLM)

Maximum Likelihood from Minimal Loss

Test statistic
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w: trainable parameters on the NN model
D: data sample

R: reference sample (built according to the
R, hypothesis); could be weighted (w)

Assumptions:

- Ng > N, the statistical fluctuations of
the reference sample are negligible.

- the weights of the reference sample (w)
are such that the reference sample is
normalised to match the data sample
luminosity
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New Physics Learning Machine (NPLM)

Likelihood ratio from Binary Cross Entropy

Test statistic

t(D) = 2maxlog

rcD
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w: trainable parameters on the NN model
D: data sample

R: reference sample (built according to the
R, hypothesis); could be weighted (w)

Assumptions:

- Ng > N, the statistical fluctuations of
the reference sample are negligible.

- the weights of the reference sample (w)
are such that the reference sample is
normalised to match the data sample
luminosity
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Goodness of fit by Neyman-Pearson testing

New Physics Learning Machine (NPLM)

INPUT MODEL f( - ,w) OUTPUT

Kernel method (FALKON)
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“Learning New Physics from a Machine” Phys. Rev. D
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Goodness of fit by Neyman-Pearson testing

New Physics Learning Machine (NPLM)

Frequentist p-value (aka calibration):

1. Run NPLM on toy
experiments to
simulated the
response under the
null hypothesis

2. Run NPLM the data
of interest and check
where the test
outcome falls to
compute an
exclusion p-value

Gaia Grosso
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Collection of trainings
(with pseudo-data)
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New Physics Learning Machine (NPLM)

Controlling type I errors: NN model regularisation

Weight clipping parameter:

Upper boundary to the magnitude that each
trainable parameter can assume during the training.

—

June 1, 2023

For a chosen NN architecture, tuning the weight clipping
allows to recover a good agreement of the empirical
distribution of r under R, with a target )(I2W| distribution.

Weight clipping: 1.8 | Weight clipping: 1.9 ||| Weight clipping: 2.0 | | Weight clipping: 2.15
Example:
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New Physics Learning Machine (NPLM)

109

Controlling type I errors: Kernel Method regularisation
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is selected as the 90th percentile of
the pairwise distance between reference-distributed
data points (after standardisation).
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Regularisation parameter A: is kept as small as possible
while keeping training stable, i.e. avoiding large

training times or non-numerical outputs.
7

“Learning New Physics Efficiently with non-parametric models” Eur. Phys. |. C
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NPLM: NN vs. Kernel methods

Falkon vs. NN: sensitivity performance

Benchmarks:

e 8D problem: (SUSY dataset™)

Signal | Backgi;ound
e 21D problem: (HIGGS dataset™™)

g w b
t
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Signal Background

* SUSY dataset: https:/ /archive.ics.uci.edu/ml/datasets /SUSY

May 31, 2023
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Falkon vs. NN: execution time
Model | SUSY HIGGS
FLK | (18.2 £ 1.2)s (22.7 &+ 0.4) s
(73.1 £10) h (112+9) h

** HIGGS dataset: https:/ /archive.ics.uci.edu/ml/datasets /HIGGS
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Learning new physics efficiently with nonparametric methods. [Fur. Phys. J. €, 82(10)]
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NPLM with Kernel methods

Efficient GOF computation on GPUs with Falkon

Example: Online Data Quality monitoring of a Drift Tube Chamber

5D input data
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® Reference sample: long run in optimal conditions

No =2000, N; =500

e Anomalous samples: short runs acquired in presence of a controlled ~ **° == Reforence
anomaly in the value of the threshold tension of the DT chamber 0.025- | | — Thr s0%
0.020 x2(83) 0
M =2000,0 =4.5,4 = 10~/ =
A4 0.015] Rl
N(D) = 500, N..; = 2000 |
Execution time: ~ 0.5 s 0010 |
0.0051 & \
More about this in our recent preprint arXiv:2303.05413 0 000 &q | |
100 200 300 400 500
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Neyman-Pearson testing with NPLM for GOF

Comparing the null hypothesis (Reference) with an alternative.
Release the assumptions on the alternative (Alternative = Data)

Peculiar aspects due to the nature of the test:

o Unbalanced problem (ideally Ny << Ny)

o Regularisation scheme to control type I errors (no need for train-test splitting)
o In-sample evaluation of the test

How do we compare to other GOF methods?

Gaia Grosso

June 1, 2023




Goodness of fit by Neyman-Pearson testing June 1, 2023

NPLM vs. C2ST

__Student-t versus Gaussian (v=3)

Classifier 2 Sample Test (C2ST, Lopez et al. (2017)): 1.0f o0 CISTACC, N(R)/Ar—1
o Train-testsplit R=R,UR_ ,and D=D, UD,, 0l @ e NPLMMLR, N(/NA =02
o Metric: s | |
— i
o The original C2ST uses the accuracy (ACC) i’ e
o We replace it with a modified version of the balanced accuracy (BAL- b 04
ACC) which is sensitive to normalization effects and accounts for z .
unbalanced samples |
0.0¢ _
2 N(R) 0 500 1000 1500 2000
trce = Ilew(z) < 1/2] 4+ [lew(z) > 1/2 No
BACE N(R) + Np | Ng mEZR: [ w(@) <1/ ] m; [ w(@)>1/ ] Student-t versus Gaussian (N(R) =2000)
- te ke B 1 ol ©© C2STACC, N(R)/Nr=1
@=0 C2ST BAL-ACC, N(R)/Nr=0.2 o
o Out of sample test statistic g T MR NS0
o p-value from empirical test statistic distribution under the null =
O 0.6}
Comments: D 0.4
o Unbalanced problem (Ni > Np): performance improvement Z
o additional improvement NPLM wrt C2ST, why? .
o train-test splitting vs. in-sample ? 0 5 10 5 20
o ACCvs.LRT? Y
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NPLM vs. C2ST

1D toy model: Reference model n(z|R) = N(R)e ™"

104 Peak in the tail Excess in the tail Excess in the tail (shape only) Peak in the bulk Deficit in the tail
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NPLM vs. C2ST

5D uu final state:

10‘: R F Y I F1c]! — REFERERNCE
8 182 182"'— 1T 10%} === /' scenario
S 1o 101 10° 10° —  EFT scenario
° 100 100 100 100

10! 101 10 10" NOTE:

Prp M " M, is not given as an input to the algorithm!
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Train-tESt Splitting up-100 —— w/split —— NPLM-NN

Z'-2-a Z'-2-b /Z'-3-a Z'-3-b
o T I/
: 0.8}
o With the NPLM method, out of sample 3ol
evaluation is almost equivalent to {0
. Ay
using half of the data sample. 0.2
0.0+
. . . -100 —+—half —+— NPLM-NN
o NPLM is regularised to “overfit” the S . e .
Speciﬁc fluctuations of the tralnlng 10b L | | L | | A ‘
data. By construction, the learnt model o8
. N 0.6f
does not generalise well to a new data S 0.4]
sample. " 02|
0.0+ | 1
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
o (D,,) is negative: the alternative learnt ” ” ” -
from Dtr 1S worst than the Reference Default NPLM (all data) In-sample (half data) Out-sample (half data)
g.ggi: R B H, — x% p[D]>0.002 R W H, — x3% p[D,]=0.09 R B H, — xj DP[Dw]=0.06
. . . . . %0.0ZS—
Train-test splitting is disadvantageous 2 02|
for NPLM g oo *
A 0.010} »
0.005¢ j‘ %.IQI.EI("
0.000 . a — :

120 40 40 120 200 280 -120 40 40 120 200 280 -120 -40 40 120 200 280
t(D) t(Dy,) t(Dye)

Gaia Grosso



Goodness of fit by Neyman-Pearson testing June 1, 2023

Classifier-inspired variants of the test statistics in NPLM

Replace LRT with other 1D GOF tests

ACC,/s-NN  —+— ACC,,,rNN —— AUC-NN —+— NPLM-NN

o Classifer-based tests L0/
o Modified™ Balanced Accuracy Sos| &
(ACC) =204
o Modified* Area Under the ROC 00|
Curve (AUC)
1.0} m
* sensitive to n normalisation effects <ol
N 0.4]

0.2}
0.0t

ACC,/»-NN —¢— ACC,.-NN —+— AUC-NN —+— NPLM-NN
EFT

1.0}
0.8
0.6l X
/\
N 0.4]
0.2/
0.0/
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Classifier-inspired variants of the test statistics in NPLM

- AN/v/N(R) X%, Nps =200 (OUT)  —F— 2, Ny =20 (OUT)
. Expo e 2, Nps =400 (OUT)  —F— x2, Ny =40 (OUT) —— NPLM-NN
Replace LRT with other 1D GOF tests . i, - - -
1.0 _ g f | I ——
0.8t
o Classifer-based tests: N 06/ §
. N 0.4
o Modified Balanced Accuracy (ACC) =,
o Modified Area Under the ROC 0.0} e | e |
—+— X% Nps =200 (OUT)  —+— 7, Ny =20 (OUT)
Curve (AUC) % Nijs =400 (OUT)  —+— 2 Ny =40 (OUT) ~ —— NPLM-NN
1.0}
o Standard 1D GoF tests: 0.8}
2 N 0.6] 4
O
X~ tests 8 ol
A
o EDF tests 0.2}
. 0.0t
© KOlmOgorOV_SmlrnOV (KS) - AN/v/N(R) b X%, Npis =200 (OUT)  —4— 2, Ny =20 (OUT)
o Cramer-von Mises (CvM) X" Ny =400 (OUT) == 5%, Niyps =40 (OUT) =+ NPLM-NN
. ' Z'-2-b EFT
o Anderson-Darling (AD) o[ — ‘
o Spacing statistics: S
T\ 0.6}
o Moran (M) S o)
. . 0.2}
o Recursive Product Spacing (RPS) | ™= | | s o> W T
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Classifier-inspired variants of the test statistics in NPLM

KS (OUT) —+— CvM (OUT) —— AD (OUT) —— NPLM-NN
H), H, H,

Replace LRT with other 1D GOF tests

1.0f
0.8/

o Classifer-based tests: N 0.6f
o Modified Balanced Accuracy (ACC) = |
o Modified Area Under the ROC 0.0
Curve (AUC)

KS (OUT) ~—+— CvM (OUT) —+— AD (OUT) —— NPLM-NN
Z'-3

o Standard 1D GOF tests: ;:Z:
O )(2 tests 232

@) EDF tests Eo.z

0.0}

o Kolmogorov-Smirnov (KS)
o Cramer-von Mises (CvM)

KS (OUT) —+— CvM (OUT) —+— AD (OUT) =—+— NPLM-NN
Z'-3-b

o Anderson-Darling (AD) 1.0f

: . 0.8l N

o Spacing statistics: P\
o Moran (M) S 0.4

o Recursive Product Spacing (RPS) o) \
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Classifier-inspired variants of the test statistics in NPLM

Replace LRT with other 1D GOF tests o o0 AN/VNR)  —— Moran (OUT)  —— RPS(OUT)  —— NPLM-NN
1.0} 1 | | L. 2 | | il — | ‘ I : ‘ ‘ -1 :
A0.8 |
o (lassifer-based tests S 0] §
o Modified Balanced Accuracy (ACC) =,
o Modified Area Under the ROC 0.0}
Curve (AUC) -- AN/\/W —+— Moran (OUT) —+— RPS (OUT) —4+— NPLM-NN
1.0 -
o Standard 1D GOF tests: _og
0 )(2 tests Zgz
o EDF tests 02l
0.0f

o Kolmogorov-Smirnov (KS)

o Cramer-von Mises (CVM) ~—4— Moran (OUT) —+— RPS (OUT) —4— NPLM-NN

o Anderson-Darling (AD) R z3a 00073 00000 FEFT
o Spacing statistics ol N

o Moran (M) § 0.4l

o Recursive Product Spacing (RPS) .|
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NPLM vs. standard 1D GOF tests

Comparison with standard 1D GoF tests

11—
103 - RO - RN - RO = R} == R
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o Anderson-Darling (AD) » . "

The likelihood-ratio test has, on average,
the highest power against the list of
considered anomalies 10] .
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Goodness of fit by Neyman-Pearson testing June 1, 2023

Summary

NPLM as a general tool for GOF, beyond New Physics searches.
o Signal-agnostic test
o Global p-value: one test to detect them all

o Multivariate: allow to look at the data in a more inclusive way, no need to compress the
information in one variable and hence to make assumptions on which observables are relevant

e for “imperfect” Reference models Eur. Phys. |. C 82, 275 (2022) (crucial
for LHC analysis)

o Fast execution: kernel methods on GPUs
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https://doi.org/10.1140/epjc/s10052-022-10226-y

Goodness of fit by Neyman-Pearson testing June 1, 2023

Summary

NPLM as a general tool for GOF, beyond New Physics searches.

o Comparisons with a classifier-based approach (C25T) show on average better performances of
NPLM.

e Strong advantages in NPLM come from:
- in-sample evaluation of the test
- LRT as the test statistic
e Comparisons to other ML-based approaches to be done
o Comparisons with standard 1D GOF show on average better performances of NPLM.

o Choice of benchmarks:
e defines the figure of merit for the comparison.
® never going to be exhaustive, but we should aim at the bast possible representation of the
landscape of possible anomalies

® QOur selected benchmarks are biased by the initial problem of BSM searches and should be
extended (DQM use case is a first step in that direction)

Gaia Grosso



