Optimal Transport Wasserstein distance and
 Hypothesis Testing

Larry Wasserman
larry@cmu.edu

Two Sample Testing

$$
\begin{aligned}
& X_{1}, \ldots, X_{n} \sim P \\
& Y_{1}, \ldots, Y_{m} \sim Q
\end{aligned}
$$

Two Sample Testing

$$
\begin{aligned}
& X_{1}, \ldots, X_{n} \sim P \\
& Y_{1}, \ldots, Y_{m} \sim Q
\end{aligned}
$$

$$
H_{0}: P=Q
$$

Two Sample Testing

$$
\begin{aligned}
& X_{1}, \ldots, X_{n} \sim P \\
& Y_{1}, \ldots, Y_{m} \sim Q
\end{aligned}
$$

$$
H_{0}: P=Q
$$

$$
H_{0}: W(P, Q)=0
$$

where $W(P, Q)$ is the Wasserstein distance.

Goodness of Fit

$$
X_{1}, \ldots, X_{n} \sim P
$$

Goodness of Fit

$$
X_{1}, \ldots, X_{n} \sim P
$$

$$
H_{0}: P=P_{0}
$$

Goodness of Fit

$$
X_{1}, \ldots, X_{n} \sim P
$$

$$
H_{0}: P=P_{0}
$$

$$
H_{0}: W\left(P, P_{0}\right)=0
$$

where $W(P, Q)$ is the Wasserstein distance.

Questions

Questions

1. What is Wasserstein distance?

Questions

1. What is Wasserstein distance?
2. Should we use it for testing?

The Wasserstein Distance

Assume that P has a density (but not really required). The distance $W(P, Q)$ is defined by

$$
W^{2}(P, Q)=\mathbb{E}\left[\|T(X)-X\|^{2}\right]
$$

where T is the optimal transport map.

The Wasserstein Distance

Assume that P has a density (but not really required). The distance $W(P, Q)$ is defined by

$$
W^{2}(P, Q)=\mathbb{E}\left[\|T(X)-X\|^{2}\right]
$$

where T is the optimal transport map.
But what is the optimal transport map?

Optimal Transport

Formal Definition

Given two distributions: P_{0} and P_{1}.

Formal Definition

Given two distributions: P_{0} and P_{1}. $X_{0} \sim P_{0} \quad\left(X_{0}\right.$ is a draw from $\left.P_{0}.\right)$

Formal Definition

Given two distributions: P_{0} and P_{1}. $X_{0} \sim P_{0} \quad\left(X_{0}\right.$ is a draw from $\left.P_{0}.\right)$
Find a map T that minimizes

$$
\mathbb{E}\left[\left\|X_{0}-T\left(X_{0}\right)\right\|^{2}\right]=\int\|x-T(x)\|^{2} d P_{0}(x)
$$

subject to: $T\left(X_{0}\right) \sim P_{1}$.

Formal Definition

Given two distributions: P_{0} and P_{1}. $X_{0} \sim P_{0} \quad\left(X_{0}\right.$ is a draw from $\left.P_{0}.\right)$
Find a map T that minimizes

$$
\mathbb{E}\left[\left\|X_{0}-T\left(X_{0}\right)\right\|^{2}\right]=\int\|x-T(x)\|^{2} d P_{0}(x)
$$

subject to: $T\left(X_{0}\right) \sim P_{1}$.
Can replace $(\cdots)^{2}$ with any cost.

What is T ? Four special cases

What is T ? Four special cases

1. One dimension.

$$
T(x)=F_{1}^{-1}\left(F_{0}(x)\right)
$$

where

$$
F_{0}(t)=P_{0}(X \leq t) \text { and } F_{1}(t)=P_{1}(X \leq t)
$$

What T?

2. If $P_{0}=N\left(\mu_{0}, \Sigma_{0}\right)$ and $P_{1}=N\left(\mu_{1}, \Sigma_{1}\right)$ then:

$$
T(x)=\mu_{1}+\Sigma_{1}^{1 / 2} \Sigma_{0}^{-1 / 2}\left(x-\mu_{0}\right)
$$

What T ?

What T?

3. Data clouds: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n}. Then $T\left(X_{i}\right)=Y_{\pi(i)}$ where π is the permutation that minimizes

$$
\sum_{i}\left\|X_{i}-Y_{\pi(i)}\right\|^{2}
$$

Hungarian algorithm: $O\left(n^{3}\right)$.

What T?

3. Data clouds: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n}. Then $T\left(X_{i}\right)=Y_{\pi(i)}$ where π is the permutation that minimizes

$$
\sum_{i}\left\|X_{i}-Y_{\pi(i)}\right\|^{2}
$$

Hungarian algorithm: $O\left(n^{3}\right)$.

What T ?

4. Convex optimization.

What T?

4. Convex optimization.

Brenier's theorem: $T=\nabla \phi$ where ϕ is the convex function that maximizes

$$
\int \phi(x) d P_{0}(x)+\int \phi^{*}(x) d P_{1}(x)
$$

where $\phi^{*}(x)=\sup _{u}\{\langle x, u\rangle-\phi(u)\}$.

What T?

4. Convex optimization.

Brenier's theorem: $T=\nabla \phi$ where ϕ is the convex function that maximizes

$$
\int \phi(x) d P_{0}(x)+\int \phi^{*}(x) d P_{1}(x)
$$

where $\phi^{*}(x)=\sup _{u}\{\langle x, u\rangle-\phi(u)\}$.
Now parameterize ϕ_{θ} using a (convex) neural net.

What if there is no such T ?: More General Definition

The distance $W(P, Q)$ is defined by

$$
W^{2}(P, Q)=\inf _{\pi} \mathbb{E}_{\pi}\|X-Y\|^{2}
$$

where

$$
\begin{aligned}
& X \sim P \\
& Y \sim Q
\end{aligned}
$$

and the infimum is over all joint distributions π with marginals P and Q.

Optimal Transport

Joint distribution π with a given X marginal and a given Y marcinal Imaro crodit. M/ikinodia

Wasserstein Distance

$$
P=Q \quad \text { iff } \quad W^{2}(P, Q)=0 \quad \text { iff } \quad T(x)=x
$$

Wasserstein Distance

$$
P=Q \quad \text { iff } \quad W^{2}(P, Q)=0 \quad \text { iff } \quad T(x)=x
$$

We can test $H_{0}: P=Q$ using an estimate of $W(P, Q)$. i.e. reject H_{0} if

$$
\widehat{W}>t
$$

for some t.

Wasserstein Distance

$$
P=Q \quad \text { iff } \quad W^{2}(P, Q)=0 \quad \text { iff } \quad T(x)=x
$$

We can test $H_{0}: P=Q$ using an estimate of $W(P, Q)$. i.e. reject H_{0} if

$$
\widehat{W}>t
$$

for some t.
Why use Wasserstein?
It has nice properties ...

Wasserstein versus $\int|p-q|^{2}$ (image from Santambrogio)

Wasserstein Distance has Nice Properties

Wasserstein distance is geometry sensitive.

Wasserstein Distance has Nice Properties

Wasserstein distance is geometry sensitive.
Let P be a point mass x. Let Q be a point mass y.

Wasserstein Distance has Nice Properties

Wasserstein distance is geometry sensitive.
Let P be a point mass x. Let Q be a point mass y. $K S(P, Q)=1$.

Wasserstein Distance has Nice Properties

Wasserstein distance is geometry sensitive.
Let P be a point mass x. Let Q be a point mass y.
$K S(P, Q)=1$.
$W(P, Q)=|x-y|$

Wasserstein Distance has Nice Properties

Wasserstein distance is geometry sensitive.
Let P be a point mass x. Let Q be a point mass y.
$K S(P, Q)=1$.
$W(P, Q)=|x-y|$
Suggests that this may have more power for certain deviations from the null.

Wasserstein Distance has Nice Properties

Wasserstein Distance has Nice Properties

What is the average of $N(-3,1)$ and $N(3,1)$?

Wasserstein Distance has Nice Properties

What is the average of $N(-3,1)$ and $N(3,1)$?
Euclidean average is

$$
\frac{1}{2} N(-3,1)+\frac{1}{2} N(3,1)
$$

Wasserstein Distance has Nice Properties

What is the average of $N(-3,1)$ and $N(3,1)$?
Euclidean average is

$$
\frac{1}{2} N(-3,1)+\frac{1}{2} N(3,1)
$$

The Wasserstein average (barycenter): B minimizes

$$
W^{2}\left(P_{1}, B\right)+W^{2}\left(P_{2}, B\right)
$$

Wasserstein Distance has Nice Properties

What is the average of $N(-3,1)$ and $N(3,1)$?
Euclidean average is

$$
\frac{1}{2} N(-3,1)+\frac{1}{2} N(3,1)
$$

The Wasserstein average (barycenter): B minimizes

$$
W^{2}\left(P_{1}, B\right)+W^{2}\left(P_{2}, B\right)
$$

The solution is

$$
B=N(0,1)
$$

Connection to Fluid Dynamics

$$
W^{2}(P, Q)=\min _{v} \int_{0}^{1} \int\|v(x, t)\|^{2} \rho_{t}(x) d x d t
$$

where

$$
\begin{aligned}
& \rho_{0}=P_{0} \\
& \rho_{1}=P_{1}
\end{aligned}
$$

and

$$
\partial_{t} \rho_{t}+\nabla\left(\rho_{t} v_{t}\right)=0
$$

Negative Sobolov Norm

$$
c\|p-q\|_{\dot{H}^{-1}} \leq W(P, Q) \leq C\|p-q\|_{\dot{H}^{-1}}
$$

where

$$
\|f\|_{\dot{H}^{-1}}=\sup \left\{\int g f: \int|\nabla g|^{2} \leq 1\right\}
$$

How Do We Estimate $W(P, Q)$?

Plugin estimator: Estimate $W(P, Q)$ with

$$
\widehat{W}=W\left(P_{n}, Q_{n}\right)
$$

where P_{n} is the empirical distribution of the data that puts mass $1 / n$ at each $X_{i} . Q_{n}$ is the empirical distribution of the data that puts mass $1 / n$ at each Y_{i}.

How Do We Estimate $W(P, Q)$?

Plugin estimator: Estimate $W(P, Q)$ with

$$
\widehat{W}=W\left(P_{n}, Q_{n}\right)
$$

where P_{n} is the empirical distribution of the data that puts mass $1 / n$ at each $X_{i} . Q_{n}$ is the empirical distribution of the data that puts mass $1 / n$ at each Y_{i}.
Then use the Hungarian algorithm $O\left(n^{3}\right)$.

How Do We Estimate $W(P, Q)$?

Plugin estimator: Estimate $W(P, Q)$ with

$$
\widehat{W}=W\left(P_{n}, Q_{n}\right)
$$

where P_{n} is the empirical distribution of the data that puts mass $1 / n$ at each $X_{i} . Q_{n}$ is the empirical distribution of the data that puts mass $1 / n$ at each Y_{i}.
Then use the Hungarian algorithm $O\left(n^{3}\right)$.
Two problems:

How Do We Estimate $W(P, Q)$?

Plugin estimator: Estimate $W(P, Q)$ with

$$
\widehat{W}=W\left(P_{n}, Q_{n}\right)
$$

where P_{n} is the empirical distribution of the data that puts mass $1 / n$ at each $X_{i} . Q_{n}$ is the empirical distribution of the data that puts mass $1 / n$ at each Y_{i}.
Then use the Hungarian algorithm $O\left(n^{3}\right)$.
Two problems:

1. This is slow.

How Do We Estimate $W(P, Q)$?

Plugin estimator: Estimate $W(P, Q)$ with

$$
\widehat{W}=W\left(P_{n}, Q_{n}\right)
$$

where P_{n} is the empirical distribution of the data that puts mass $1 / n$ at each $X_{i} . Q_{n}$ is the empirical distribution of the data that puts mass $1 / n$ at each Y_{i}.
Then use the Hungarian algorithm $O\left(n^{3}\right)$.
Two problems:

1. This is slow.
2. \widehat{W} is a poor estimate of W :

$$
\widehat{W}-W=O\left(n^{-1 / d}\right)
$$

where $d=$ the dimension of X.

Better estimator

Use $W(\widehat{p}, \widehat{q})$
where \widehat{p} is a smooth estimate of the density of P and \widehat{q} is a smooth estimate of the density of Q.

Better estimator

Use $W(\widehat{p}, \widehat{q})$
where \widehat{p} is a smooth estimate of the density of P and \widehat{q} is a smooth estimate of the density of Q.
Then

$$
\widehat{W}-W \approx\left(\frac{1}{n}\right)^{\frac{2 \alpha}{2(\alpha-1)+d}}
$$

where $T \in \operatorname{Holder}(\alpha)$.

Better estimator

Use $W(\widehat{p}, \widehat{q})$
where \widehat{p} is a smooth estimate of the density of P and \widehat{q} is a smooth estimate of the density of Q.
Then

$$
\widehat{W}-W \approx\left(\frac{1}{n}\right)^{\frac{2 \alpha}{2(\alpha-1)+d}}
$$

where $T \in \operatorname{Holder}(\alpha)$.
If $\alpha+1>d / 2$ then

$$
\sqrt{n}\left(\widehat{W}^{2}-W^{2}\right) \rightsquigarrow N\left(0, \sigma^{2}\right)
$$

which can simplify inference.
(Manole et al arXiv:2107.12364)

Computation

Speeding up computations is a very active area.

Computation

Speeding up computations is a very active area.

1. Regularized (entropic) transport can be computed in $O\left(n^{2}\right)$.

Computation

Speeding up computations is a very active area.

1. Regularized (entropic) transport can be computed in $O\left(n^{2}\right)$.
2. Can use neural net, convex optimization?

Computation

Speeding up computations is a very active area.

1. Regularized (entropic) transport can be computed in $O\left(n^{2}\right)$.
2. Can use neural net, convex optimization?
3. Mini-batch. Take subsamples of size k and average.

Computation

Speeding up computations is a very active area.

1. Regularized (entropic) transport can be computed in $O\left(n^{2}\right)$.
2. Can use neural net, convex optimization?
3. Mini-batch. Take subsamples of size k and average.

Many others ...

Is This Useful?

Pro's:

1. Get a transport map \widehat{T}.

Is This Useful?

Pro's:

1. Get a transport map \widehat{T}.
2. Wasserstein distance is a meaningful distance.

Is This Useful?

Pro's:

1. Get a transport map \widehat{T}.
2. Wasserstein distance is a meaningful distance.
3. Might have good power?

Is This Useful?

Pro's:

1. Get a transport map \widehat{T}.
2. Wasserstein distance is a meaningful distance.
3. Might have good power?

Con's:

Is This Useful?

Pro's:

1. Get a transport map \widehat{T}.
2. Wasserstein distance is a meaningful distance.
3. Might have good power?

Con's:

1. Expensive.

Is This Useful?

Pro's:

1. Get a transport map \widehat{T}.
2. Wasserstein distance is a meaningful distance.
3. Might have good power?

Con's:

1. Expensive.
2. Getting the rejection threshold is not easy.

Is This Useful?

Pro's:

1. Get a transport map \widehat{T}.
2. Wasserstein distance is a meaningful distance.
3. Might have good power?

Con's:

1. Expensive.
2. Getting the rejection threshold is not easy.
