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Y1, . . . ,Ym ∼ Q

H0 : P = Q

H0 : W (P,Q) = 0
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The Wasserstein Distance

Assume that P has a density (but not really required). The
distance W (P,Q) is defined by

W 2(P,Q) = E

[
||T (X )− X ||2

]

where T is the optimal transport map.

But what is the optimal transport map?
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Formal Definition

Given two distributions: P0 and P1.

X0 ∼ P0 (X0 is a draw from P0.)

Find a map T that minimizes

E
[
||X0 − T (X0)||2

]
=

∫
||x − T (x)||2dP0(x)

subject to: T (X0) ∼ P1.

Can replace (· · · )2 with any cost.
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What is T? Four special cases

1. One dimension.
T (x) = F−1

1 (F0(x))

where
F0(t) = P0(X ≤ t) and F1(t) = P1(X ≤ t).
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What T?

2. If P0 = N(µ0,Σ0) and P1 = N(µ1,Σ1) then:

T (x) = µ1 +Σ
1/2
1 Σ

−1/2
0 (x − µ0).



What T?

3. Data clouds: X1, . . . ,Xn and Y1, . . . ,Yn. Then T (Xi ) = Yπ(i)

where π is the permutation that minimizes∑
i

||Xi − Yπ(i)||2.

Hungarian algorithm: O(n3).

Image from Peyre, Cuturi (2019).
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What T?

4. Convex optimization.

Brenier’s theorem: T = ∇ϕ where ϕ is the convex function that
maximizes ∫

ϕ(x)dP0(x) +

∫
ϕ∗(x)dP1(x)

where ϕ∗(x) = supu{⟨x , u⟩ − ϕ(u)}.
Now parameterize ϕθ using a (convex) neural net.
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What if there is no such T?: More General Definition

The distance W (P,Q) is defined by

W 2(P,Q) = inf
π
Eπ||X − Y ||2

where
X ∼ P

Y ∼ Q

and the infimum is over all joint distributions π with marginals P
and Q.



Optimal Transport

Joint distribution π with a given X marginal and a given Y
marginal. Image credit: Wikipedia.



Wasserstein Distance

P = Q iff W 2(P,Q) = 0 iff T (x) = x

We can test H0 : P = Q using an estimate of W (P,Q). i.e. reject
H0 if

Ŵ > t

for some t.

Why use Wasserstein?
It has nice properties · · ·
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Wasserstein versus
∫
|p − q|2 (image from Santambrogio)



Wasserstein Distance has Nice Properties

Wasserstein distance is geometry sensitive.

Let P be a point mass x . Let Q be a point mass y .

KS(P,Q) = 1.

W (P,Q) = |x − y |
Suggests that this may have more power for certain deviations
from the null.
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Wasserstein Distance has Nice Properties

What is the average of N(−3, 1) and N(3, 1)?

Euclidean average is

1

2
N(−3, 1) +

1

2
N(3, 1)

The Wasserstein average (barycenter): B minimizes

W 2(P1,B) +W 2(P2,B)

The solution is
B = N(0, 1)
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Connection to Fluid Dynamics

W 2(P,Q) = min
v

∫ 1

0

∫
||v(x , t)||2ρt(x)dx dt

where

ρ0 = P0

ρ1 = P1

and

∂tρt +∇(ρtvt) = 0



Negative Sobolov Norm

c ||p − q||Ḣ−1 ≤ W (P,Q) ≤ C ||p − q||Ḣ−1

where

||f ||Ḣ−1 = sup

{∫
gf :

∫
|∇g |2 ≤ 1

}



How Do We Estimate W (P ,Q)?

Plugin estimator: Estimate W (P,Q) with

Ŵ = W (Pn,Qn)

where Pn is the empirical distribution of the data that puts mass
1/n at each Xi . Qn is the empirical distribution of the data that
puts mass 1/n at each Yi .

Then use the Hungarian algorithm O(n3).

Two problems:

1. This is slow.

2. Ŵ is a poor estimate of W :

Ŵ −W = O(n−1/d)

where d = the dimension of X .
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2. Ŵ is a poor estimate of W :
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Better estimator

Use W (p̂, q̂)
where p̂ is a smooth estimate of the density of P and q̂ is a
smooth estimate of the density of Q.

Then

Ŵ −W ≈
(
1

n

) 2α
2(α−1)+d

where T ∈ Holder(α).

If α+ 1 > d/2 then

√
n(Ŵ 2 −W 2)⇝ N(0, σ2)

which can simplify inference.
(Manole et al arXiv:2107.12364)
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n(Ŵ 2 −W 2)⇝ N(0, σ2)

which can simplify inference.
(Manole et al arXiv:2107.12364)



Better estimator

Use W (p̂, q̂)
where p̂ is a smooth estimate of the density of P and q̂ is a
smooth estimate of the density of Q.

Then
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Computation

Speeding up computations is a very active area.

1. Regularized (entropic) transport can be computed in O(n2).

2. Can use neural net, convex optimization?

3. Mini-batch. Take subsamples of size k and average.

Many others ...
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Is This Useful?

Pro’s:
1. Get a transport map T̂ .

2. Wasserstein distance is a meaningful distance.

3. Might have good power?

Con’s:

1. Expensive.

2. Getting the rejection threshold is not easy.

THE END
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