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To truly understand what are the main objects involved in our
analysis, we begin with the one-dimensional setting... J
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Goodness-of-fit vs 2-Samples tests

Goodness-of-fit (GOF) 2-Samples
@ Inputs: A sample xi,...,x, from @ Inputs: Samples x11,...,x1, from
P and a postulated distribution @ Prand Xp1,...,%2n, from P,
@ Test: @ Test:
H()ZP:Q VS H1P7éQ H0:P1:P2:P VS H1:P1§£P2
@ Test statistics: Functionals of the @ Test statistics: Functionals of the
empirical process empirical process

) = VA B) - Q)| volx) = /22 Pax) — [P |

with P(x) =157 Ty - with P(x) = @ Py(x) + 2 Py(x)
Note: we can incorporate unknown Pi(x) = n%z,"f:l Lig<xy J=1,2,
parameters through Q(x). and n= ny + n,.
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A very famous example

Recall that our empirical process specifies as

o vy(x)= ﬁ[ ,B(x) — Q(x) } , for GOF problems.

o vp(x) =, /%”[ Py(x) — ﬁ(x)] , for 2-Samples problems.

Then the Kolmogorov-Smirnov statistic specifies as

KS = sup, |va(x)]. (1)

In the one-dimensional setting and if, in the context of GOF, @ does not
depend on unknown parameters, KS is asymptotically distribution-free.

Distribution-freeness in GOF

We have distribution-freeness whenever the null distribution of the test
statistic considered does depend on the distribution @ being tested.
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|
Another desirable property of GOF

@ Let's keep in mind that distribution-freeness is not all we need.

e We also want sensitivity (power) against “all” alternatives.

Note

The latter is essentially what differentiates GOF tests from tests of
hypotheses (e.g., Neyman-Pearson) where the power is concentrated
towards the specific alternative model specified under Hj.

But what does “all” actually mean?

...there exist alternatives that cannot be detected even by
Neyman-Pearson, so there is no hope we can detect those via GOF.
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Power against (converging) contiguous alternatives

A more sensible criterion...

We require our GOF test to have some power against all (converging)
contiguous alternatives.

What is a (converging) contiguous alternative?
Heuristically...

@ They are alternatives that get progressively closer to the null as the
sample size increases.

@ They are detectable via Neyman-Pearson*.

@ In the limit, we can identify the direction from which they approach
the null.

*See “Oosterhoff J., van Zwet W.R. A note on contiguity and Hellinger distance.

Springer New York, 2012.”
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...a little more formally

Converging contiguous alternatives

Let Q be the null distribution postulated for the underlying continuous
data generating process, and let g be its density. We say that the
distribution P, is a contiguous alternative to @ if its density can be
specified as

hn(x
) = a0 [1+ ).
with || hp(x) ||%\) < oo and || hy(x) — h Hé — 0. This last condition is

what makes them “converging” and the function h which corresponds to
the direction from which p, approaches q.
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An important note on data binning

Can’t we just bin the data and rely Pearson?

In multidimensional settings and/or when @ depends on unknown

parameters, it is common practice to bin the data and use Pearson X2 (or
asymptotic equivalent) to perform GOF.

Warning

It can be shown* that Pearson (and many other similar statistics) have no
power against infinitely many converging contiguous alternatives

*See “Algeri S. and Khmaladze E.V. When Pearson x? and other divisible statistics are

not goodness-of-fit tests. In preparation.”
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First, let’s extend what we known for 1D...

multi-D
1D
@ Sample: xi,...,x, . Each
@ Sample: xg,...,x, . Each T .. .
. . observation x; = (x1j,...,xpi) is a
observation x; is a scalar.

vector.
@ Distribution function under Hy
evaluated at x:

@ Distribution function under Hy
evaluated at x = (x1,...,xp):

Qx) = PIX < xIFo) Q(x) = P(X1 < x1,...,Xp < xp|Hop)

@ Empirical distribution function .. . .
under Hp evaluated at x- @ Empirical distribution function under

Hy evaluated at x:

Plx) = 2270 Lins 5 ;
= P(X) = %Zi=1 IL{XliSXh-u,XDiSXD}

@ Empirical process:

@ Empirical process:

Va(x) =/n ﬁ(X) - Q(X)} va(x) = \/E[ ﬁ(x) - Qx) l
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...and then let’s get parametric...

Given a set of n observations from an unknown cumulative distribution
function (cdf) P(x) = P(X1 < x1,...,Xq < Xg4), we are interested in
testing

Ho: P(x) = Q(x,0) versus Hi: P(x) # Q(x,0)

for some postulated distribution Q(x,8). To perform the test above, we
consider the parametric empirical process vg(x, 6)

vo(x,0) = Vi P(x) - Q(x.0) | )
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...we now have access to an entire family of tests!

Recall that our empirical process is vi(x,0) = /n[Ps(x) — Q(x,0)] and let 6 be the
Maximum Likelihood Estimate (MLE) of @ = we can construct tests statistics as
functionals of vs(x,0). E.g.,

@ Kolmogorov-Smirnov statistic: KS = sup, va(x,0) .

@ Cramer-von Mises statistic: CvM = f |vn(x,§))|2dQ(x,§)) .

2 ~
@ Anderson-Darling statistic: AD = f’\/ : A‘;")((X’e)( ) dQ(x,0)) .
Q(x,0))(1—Q(x,0

(where all the integrals are multivariate).
They are not distribution-free but we can simulate their distribution via the parametric
bootstrap.

Cons: Computational complexity may be high + simulations must be

repeated on a case-by-case basis.

In the remaining of the talk we will see two approaches which will help us to
overcome these two limitations.
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Estimated and projected empirical process

We can approximate our estimated empirical process via

n

va(x.0) 8) — vo(x,0) 72/ b(t,0) dt— 3" b(x,0) +o0p(1)

o0,x] Vi~
Empmcal Empmcal J- th normalized
process process score
at o at @ function

where [—00, x] = [—00, x1] X -+ X [—00, Xp]
@ We denote the right hand side with vg(x, 8) . It is a projection of vg(x,0)
orthogonal to the normalized score functions bj(x,0) , i.e., the components of

_ 9
b(x,0) = T,'? 55108 a(x,6) . 3)

—_——
Inverse sqrt of

> k S
the Fisher info Vec&:)er

@ The projected empirical process* does not depend on 0!

* See “Khmaladze, E.V. (1980). The use of w? tests for testing parametric hypotheses

Theory of Probability & Its Applications.”
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A toy example to assess the computational gain

We draw a sample of n = 100 observations from

4(x,0) o e 7 (=0 +C==0:F] 1y o0]  [1,25], (4)
6 = (—2,5,25) and its MLE is Oops = (—0.77,6.32,22.02).
We proceed by simulating the distribution of the KS statistic, i.e.,

1. We simulate sup, |vQ(x,§)| by sampling from Q(x,éobs) via the
parametric bootstrap.

2. We simulate sup, |vg(x,8)| by sampling from Q(x,é\obs) via the
parametric bootstrap.
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Simulated distributions of the KS statistic

S
— P(suppvo(x, 8)|<c o
— P(sup\VZ(x, 0)<c) //
[ee] 7/
o /
/
o | /
o /
/
/

< {
S /

/
N /
o /

/
/
o | ________ S/
© T T T T
0.0 0.5 1.0 1.5
C
sup, [vo(x,0)| | sup, [vo(x,0)|
CPU time 9.429 mins 12.198 hrs

S. Algeri (UMN)

B=10,000 n=100 R=2000

PHYSTAT 2-Samples

14 /27



But what if we want to test another model, F(x,3)
for which all of this is not at all feasible?
(Can we somehow retrieve distribution-freeness?)
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A useful (re-)formulation

We rewrite our empirical process as,
- 1 «
VQ(Xv 9) = ﬁ Z{ [:“-{Xl,-gxl,...,xu,-SXD} - Q(X, 9)] _bT(Xl'v 0) f[—oo,x] b(tv e)dt }
i=1

Setting everything in the curly brackets equal to 1x(x;, @) , we have
vo(x,0) Z Yx(x;, 0) . (5)

@ One can show that the limit of vg(x, @) is Gaussian.

@ its mean and covariance are Eg [wx] =0and Eg [T/fxl/fx']
= the 1y fully characterize the limiting distribution of vg(x,8) .
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Towards (asymptotic) distribution-freeness

Can we construct another process whose limit, under F(x, 3), will
be the same as that of vg(x,0) under Q?

The key here is to “play” with our 1x(x;,8) functions so that, by taking
a suitable transformation of them, we can construct a new process that ,

under F, will have the same limiting distribution as vg(x, @) , under Q.

This can be done by means of the Khmaladze-2 (K-2) transform*.

*See “Khmaladze, E.V. (2016). Unitary transformations, empirical processes and
distribution free testing. Bernoulli, 2016.”
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The K-2 transform in a nutshell

The K-2 transform applied to the functions ,(x;, @) is

ox(50.8) = 0| K [lnp(x) x(x.6) |

K-2 transform

@ The isometry lg g(x) = ?7(% ensures Er [(lg, g¢x)(lp, g% )| = EqQ[¥xtx].
@ The unitary operator K ensures that Ef [Klgﬂwx]: Eq [wx]: 0.

@ The unitary operator U ensures orthogonality w.r.t. to the normalized score
functions under F(x,3).
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-
A new family of test statistics

Recall that
VF(X,07,3) = \%22;1 ¢X(Xi707ﬁ) and VQ(X,O) = \/Lﬁz;;lwx(xho)

We can now construct our K-2 transformed test statistics as

KSri@ = sup| vr(x,0,8) |, CVMF|Q:/ VE(x,0,8) dQ(x,0),

6
d AD Ve(x,6,5) dQ(x,0 ©
ane AtFe = /Q (<. O — Qx, 8)]* )
which have the same limiting distribution as
KSq = sup | a(x,0) |, cvMQ:/ 7(x,0) dQ(x, 0),
v(x,0) (7)

and ADQ/QX’B) Q(X’B)]dQ(x,G),
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Requirements on F and Q

Can we use any F(x,3) and any Q(x,0)? J

o Let f(x,3) and g(x, @) be the densities of F(x,3) and Q(x,8). We
require that:

o f(x,B)=0iff g(x,0) =0 (they have the same support).
e 0, (3 are both of size p (the have the same size).
e These are rather general criteria!l = Q(x, 0) can be chosen to be
arbitrarily simple to ease the computations.

o We call Q(x,8) “reference distribution” because, for any F1,...,Fy
satisfying these criteria, we can construct a process Vg, ,
m=1,..., M with the same distribution as vq.
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An illustrative example

e Data: a sample of n = 100 observations generated from

p(x) o (2m) STV 14 (x — ) TS (x - )], (8)
where ;1 = (0,3)7, £ = Eg %8] x € [1,20]  [1,25].
@ Null models we aim to test:
fi(x; B) x Xl(ﬁlfl)xéﬂzfl) exp{—ﬁ3(x1 +X2)}7
f(x; B) %[(Xl — B1)? + (32 — B2)* + Bs] /2, (9)
foi ) o e ) (B () ()]

o Reference distribution: g(x,0) x e ~ a3 (=00 +(=62)]
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Classical KS, CvM and AD: null distribution
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Each simulation involves
100,000 bootstrap replicates,
100 observations, and the
process is evaluated at 2000
grid points.
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N
Rotated KS, CvM and AD: null distribution

° g4 < E
a z
\X/ b 6 b
o o Z °
S S — Cwq
- CWMeyg
- CWrag
= = — CVMg3q
0.‘0 U.‘S l.‘O 1‘.5 0.60 0.65 0.‘10 0.‘15 0.‘20
Cc
g Each simulation involves
= e 100,000 bootstrap replicates,
v © .
= 100 observations, and the
& ° process is evaluated at 2000
& grid points.
T @ b i
[
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-
What about the power?

a = 0.05
Ho KS CvM AD KS (K-2C¥Mated)AD

Q | 9331 9817  .9382 - - -
F | 8623 9520 9092 | .6971 1 1
F | .1078 1019 1237 | 1336 .2422  .2541
F3 ] 9528 .9820  .6356 | .9153 9746  .9470

Each simulation involves 100,000 bootstrap replicates, 100 observations, and the process
is evaluated at 2000 grid points.
Note: We should NOT expect the K-2 rotated statistics to always
dominate their classical counterparts or vice-versa!
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Key take-home ideas

When testing one continuous distribution which is multidimensional
and/or depends on unknown parameters
@ and we can simulate from it/evaluate it reasonably fast
e = we can reduce substantially the computational effort by simulating
for the projected empirical process .
@ but we cannot simulate from it/evaluate it reasonably fast

e = we can construct asymptotically distribution-free tests by means of
the K-2 transform .

When testing M > 1 continuous distributions, F1,..., Fy, which are
multidimensional and/or depend on unknown parameters

@ = we can avoid M different simulations and run just one by
performing goodness-of-fit via K-2 transform .
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Thank you all for your time. J
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