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To truly understand what are the main objects involved in our
analysis, we begin with the one-dimensional setting...
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Goodness-of-fit vs 2-Samples tests

Goodness-of-fit (GOF)

Inputs: A sample x1, . . . , xn from

P and a postulated distribution Q

Test:

H0 : P = Q vs H1 : P 6= Q

Test statistics: Functionals of the
empirical process

vn(x) =
√
n
[
P̂(x) − Q(x)

]
with P̂(x) = 1

n

∑n
i=1 1{xi≤x} .

Note: we can incorporate unknown
parameters through Q(x).

2-Samples

Inputs: Samples x11, . . . , x1n1 from

P1 and x21, . . . , x2n2 from P2

Test:

H0 : P1 = P2 = P vs H1 : P1 6= P2

Test statistics: Functionals of the
empirical process

vn(x) =
√

n1n
n2

[
P̂1(x) − P̂(x)

]
with P̂(x) = n1

n P̂1(x) + n2
n P̂2(x)

P̂j(x) = 1
nj

∑nj
i=1 1{xji≤x}, j = 1, 2,

and n = n1 + n2.
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A very famous example

Recall that our empirical process specifies as

vn(x) =
√
n
[
P̂(x) − Q(x)

]
, for GOF problems.

vn(x) =
√

n1n
n2

[
P̂1(x) − P̂(x)

]
, for 2-Samples problems.

Then the Kolmogorov-Smirnov statistic specifies as

KS = supx |vn(x)|. (1)

In the one-dimensional setting and if, in the context of GOF, Q does not
depend on unknown parameters, KS is asymptotically distribution-free.

Distribution-freeness in GOF

We have distribution-freeness whenever the null distribution of the test
statistic considered does depend on the distribution Q being tested.
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Another desirable property of GOF

Let’s keep in mind that distribution-freeness is not all we need.

We also want sensitivity (power) against “all” alternatives.

Note

The latter is essentially what differentiates GOF tests from tests of
hypotheses (e.g., Neyman-Pearson) where the power is concentrated

towards the specific alternative model specified under H1.

But what does “all” actually mean?

...there exist alternatives that cannot be detected even by
Neyman-Pearson, so there is no hope we can detect those via GOF.
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Power against (converging) contiguous alternatives

A more sensible criterion...

We require our GOF test to have some power against all (converging)
contiguous alternatives.

What is a (converging) contiguous alternative?

Heuristically...

They are alternatives that get progressively closer to the null as the
sample size increases.

They are detectable via Neyman-Pearson*.

In the limit, we can identify the direction from which they approach
the null.

*See “Oosterhoff J., van Zwet W.R. A note on contiguity and Hellinger distance.

Springer New York, 2012.”
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...a little more formally

Converging contiguous alternatives

Let Q be the null distribution postulated for the underlying continuous
data generating process, and let q be its density. We say that the
distribution P̃n is a contiguous alternative to Q if its density can be
specified as

p̃n(x) = q(x)

[
1 +

hn(x)
√
n

]
,

with || hn(x) ||2Q <∞ and || hn(x) − h ||2Q → 0. This last condition is

what makes them “converging” and the function h which corresponds to
the direction from which p̃n approaches q.
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An important note on data binning

Can’t we just bin the data and rely Pearson?

In multidimensional settings and/or when Q depends on unknown

parameters, it is common practice to bin the data and use Pearson X 2 (or
asymptotic equivalent) to perform GOF.

Warning

It can be shown* that Pearson (and many other similar statistics) have no
power against infinitely many converging contiguous alternatives

*See “Algeri S. and Khmaladze E.V. When Pearson χ2 and other divisible statistics are

not goodness-of-fit tests. In preparation.”
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First, let’s extend what we known for 1D...
1D

Sample: x1, . . . , xn . Each
observation xi is a scalar.

Distribution function under H0

evaluated at x :

Q(x) = P(X ≤ x |H0)

Empirical distribution function
under H0 evaluated at x :

P̂(x) = 1
n

∑n
i=1 1{xi≤x}

Empirical process:

vn(x) =
√
n
[
P̂(x) − Q(x)

]

multi-D

Sample: x1, . . . , xn . Each

observation xi = (x1i , . . . , xDi ) is a
vector.

Distribution function under H0

evaluated at x = (x1, . . . , xD):

Q(x) = P(X1 ≤ x1, . . . ,XD ≤ xD |H0)

Empirical distribution function under
H0 evaluated at x :

P̂(x) = 1
n

∑n
i=1 1{x1i≤x1,...,xDi≤xD}

Empirical process:

vn(x) =
√
n
[
P̂(x) − Q(x)

]
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...and then let’s get parametric...

Given a set of n observations from an unknown cumulative distribution
function (cdf) P(x) = P(X1 ≤ x1, . . . ,Xd ≤ xd), we are interested in
testing

H0 : P(x) = Q(x ,θ) versus H1 : P(x) 6= Q(x ,θ)

for some postulated distribution Q(x ,θ). To perform the test above, we
consider the parametric empirical process vQ(x ,θ)

vQ(x ,θ) =
√
n
[
P̂(x) − Q(x ,θ)

]
(2)
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...we now have access to an entire family of tests!

Recall that our empirical process is vn(x ,θ) =
√
n
[
Pn(x)−Q(x ,θ)

]
and let θ̂ be the

Maximum Likelihood Estimate (MLE) of θ ⇒ we can construct tests statistics as

functionals of vn(x , θ̂). E.g.,

Kolmogorov-Smirnov statistic: KS = supx vn(x , θ̂) .

Cramer-von Mises statistic: CvM =

∫
|vn(x , θ̂))|2dQ(x , θ̂)) .

Anderson-Darling statistic: AD =

∫ ∣∣∣ vn(x,θ̂)√
Q(x,θ̂))(1−Q(x,θ̂)))

∣∣∣2dQ(x , θ̂)) .

(where all the integrals are multivariate).
They are not distribution-free but we can simulate their distribution via the parametric
bootstrap.

Cons: Computational complexity may be high + simulations must be

repeated on a case-by-case basis.

⇓
In the remaining of the talk we will see two approaches which will help us to

overcome these two limitations.
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Estimated and projected empirical process

We can approximate our estimated empirical process via

vQ(x , θ̂)︸ ︷︷ ︸
Empirical
process

at θ̂

= vQ(x ,θ)︸ ︷︷ ︸
Empirical
process
at θ

−
p∑

j=1

∫
[−∞,x]

bj (t,θ)︸ ︷︷ ︸
j-th normalized

score
function

dt 1√
n

n∑
i=1

bj (xi ,θ) + op(1)

where [−∞, x ] = [−∞, x1]× · · · × [−∞, xD ]

We denote the right hand side with ṽQ(x ,θ) . It is a projection of vQ(x ,θ)

orthogonal to the normalized score functions bj (x ,θ) , i.e., the components of

b(x ,θ) = Γ
−1/2
θ︸ ︷︷ ︸

Inverse sqrt of
the Fisher info

∂

∂θ
log q(x ,θ)︸ ︷︷ ︸
Score
vector

. (3)

The projected empirical process* does not depend on θ̂!

* See “Khmaladze, E.V. (1980). The use of ω2 tests for testing parametric hypotheses.

Theory of Probability & Its Applications.”
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A toy example to assess the computational gain

We draw a sample of n = 100 observations from

q(x ,θ) ∝ e
− 1

2θ3

[
(x1−θ1)

2+(x2−θ2)
2
]

x ∈ [1, 20]× [1, 25], (4)

θ = (−2, 5, 25) and its MLE is θ̂obs = (−0.77, 6.32, 22.02).

We proceed by simulating the distribution of the KS statistic, i.e.,

1. We simulate supx |vQ(x , θ̂)| by sampling from Q(x , θ̂obs) via the
parametric bootstrap.

2. We simulate supx |ṽQ(x ,θ)| by sampling from Q(x , θ̂obs) via the
parametric bootstrap.
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Simulated distributions of the KS statistic
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But what if we want to test another model, F (x ,β)
for which all of this is not at all feasible?

(Can we somehow retrieve distribution-freeness?)
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A useful (re-)formulation

We rewrite our empirical process as,

ṽQ(x ,θ) =
1√
n

n∑
i=1

{ [
1{x1i≤x1,...,xDi≤xD} −Q(x ,θ)

]
−bT (xi ,θ)

∫
[−∞,x] b(t,θ)dt

}

Setting everything in the curly brackets equal to ψx(xi ,θ) , we have

ṽQ(x ,θ) =
1√
n

n∑
i=1

ψx(xi ,θ) . (5)

One can show that the limit of ṽQ(x ,θ) is Gaussian.

its mean and covariance are EQ

[
ψx
]

=0 and EQ

[
ψxψx ′

]
⇒ the ψx fully characterize the limiting distribution of ṽQ(x ,θ) .
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Towards (asymptotic) distribution-freeness

Can we construct another process whose limit, under F (x ,β), will
be the same as that of ṽQ(x ,θ) under Q?

The key here is to “play” with our ψx(xi ,θ) functions so that, by taking

a suitable transformation of them, we can construct a new process that ,

under F , will have the same limiting distribution as ṽQ(x ,θ) , under Q.

This can be done by means of the Khmaladze-2 (K-2) transform*.

*See “Khmaladze, E.V. (2016). Unitary transformations, empirical processes and

distribution free testing. Bernoulli, 2016.”
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The K-2 transform in a nutshell

The K-2 transform applied to the functions ψx(xi ,θ) is

φx(xi ,θ,β) = U
[
K
[
lθ,β(xi )︸ ︷︷ ︸

K-2 transform

ψx(xi ,θ)
]]

The isometry lθ,β(x) =
√

q(x,θ)
f (x,β)

ensures EF

[
(lθ,βψx )(lθ,βψx′)

]
= EQ

[
ψxψx′

]
.

The unitary operator K ensures that EF

[
Klθ,βψx

]
= EQ

[
ψx
]
= 0.

The unitary operator U ensures orthogonality w.r.t. to the normalized score
functions under F (x ,β).
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A new family of test statistics

Recall that

ṽF (x ,θ,β) = 1√
n

∑n
i=1 φx(xi ,θ,β) and ṽQ(x ,θ) = 1√

n

∑n
i=1 ψx(xi ,θ)

We can now construct our K-2 transformed test statistics as

KSF |Q = sup
x
| ṽF (x ,θ,β) |, CvMF |Q =

∫
ṽ2
F (x ,θ,β) dQ(x ,θ),

and ADF |Q =

∫ ṽ2
F (x ,θ,β)

Q(x ,θ)[1− Q(x ,θ)]
dQ(x ,θ),

(6)

which have the same limiting distribution as

KSQ = sup
x
| ṽQ(x ,θ) |, CvMQ =

∫
ṽ2
Q(x ,θ) dQ(x ,θ),

and ADQ =

∫ ṽ2
Q(x ,θ)

Q(x ,θ)[1− Q(x ,θ)]
dQ(x ,θ),

(7)
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Requirements on F and Q

Can we use any F (x ,β) and any Q(x ,θ)?

Let f (x ,β) and q(x ,θ) be the densities of F (x ,β) and Q(x ,θ). We
require that:

f (x ,β) = 0 iff q(x ,θ) = 0 (they have the same support).
θ, β are both of size p (the have the same size).

These are rather general criteria! ⇒ Q(x ,θ) can be chosen to be
arbitrarily simple to ease the computations.

We call Q(x ,θ) “reference distribution” because, for any F1, . . . ,FM
satisfying these criteria, we can construct a process ṽFm ,
m = 1, . . . ,M with the same distribution as ṽQ .
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An illustrative example

Data: a sample of n = 100 observations generated from

p(x) ∝ (2π)−1|Σ|−1/2
[
1 + (x − µ)TΣ−1(x − µ)

]−3/2
, (8)

where µ = (0, 3)T , Σ =

[
20 10
10 20

]
, x ∈ [1, 20]× [1, 25].

Null models we aim to test:

f1(x ;β) ∝ x
(β1−1)
1 x

(β2−1)
2 exp

{
−β3(x1 + x2)

}
,

f2(x ;β) ∝ β3
2π

[(x1 − β1)2 + (x2 − β2)2 + β3]−3/2,

f3(x ;β) ∝ e
− 1

200

[(
x1
β1
−1
)2

+
(

x2
β2
−1
)2
−β3

(
x1
β1
−1
)(

x2
β2
−1
)]
,

(9)

Reference distribution: q(x ,θ) ∝ e
− 1

2θ3

[
(x1−θ1)2+(x2−θ2)2

]
.

S. Algeri (UMN) PHYSTAT 2-Samples 21 / 27



Classical KS, CvM and AD: null distribution

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c

P
(K

S
≤

c)

KSQ

KSF1
KSF2
KSF3

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c

P
(C

vM
≤

c)

CvMQ

CvMF1
CvMF2
CvMF3

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c

P
(A

D
≤

c)

ADQ

ADF1
ADF2
ADF3

Each simulation involves
100,000 bootstrap replicates,
100 observations, and the
process is evaluated at 2000
grid points.

S. Algeri (UMN) PHYSTAT 2-Samples 22 / 27



Rotated KS, CvM and AD: null distribution
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What about the power?

α = 0.05

H0 KS CvM AD KS CvM AD
(K-2 rotated)

Q .9331 .9817 .9382 - - -

F1 .8623 .9529 .9092 .6971 1 1

F2 .1078 .1019 .1237 .1336 .2422 .2541

F3 .9528 .9820 .6356 .9153 .9746 .9470

Each simulation involves 100,000 bootstrap replicates, 100 observations, and the process

is evaluated at 2000 grid points.

Note: We should NOT expect the K-2 rotated statistics to always
dominate their classical counterparts or vice-versa!
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Key take-home ideas

When testing one continuous distribution which is multidimensional
and/or depends on unknown parameters

and we can simulate from it/evaluate it reasonably fast

⇒ we can reduce substantially the computational effort by simulating
for the projected empirical process .

but we cannot simulate from it/evaluate it reasonably fast

⇒ we can construct asymptotically distribution-free tests by means of
the K-2 transform .

When testing M > 1 continuous distributions, F1, . . . ,FM , which are
multidimensional and/or depend on unknown parameters

⇒ we can avoid M different simulations and run just one by
performing goodness-of-fit via K-2 transform .
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Thank you all for your time.
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