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Motivation and Goals

The 2-sample regression test [Kim&Lee, 2016 ADA/CMU report; Kim/

Lei/Lee, EJS 2019] is closely related to the better known 2-
sample classification accuracy test [e.g., Kim et al 2021] but 
grew out of a different set of problems from astronomy 
and weather forecasting.


Let’s look at some examples that motivated our work…


two versions of 2-sample testing (ex1A&B)


two versions of GoF/consistency testing (ex2A&B)
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Ex 1A: Comparing Distributions of High-Dimensional Data

3

Morphologies of two galaxy populations


Can we answer the question if, and if so, how two populations 
are different beyond looking at low-dim summary statistics?

[Figure credit: Dalmasso et al, 2019]
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ADA Project: Simulations v. Reality

4 G.F. Snyder et al.

Figure 1. Example g-r-i images of z = 0 Illustris galaxies at
each of three stages of our image realism procedure, arranged
by increasing stellar mass from bottom (M⇤ ⇠ 1010M�) to top
(M⇤ ⇠ 1012M�) and selected based on their location in the G-
M20 plane (as in Section 3.3). For displaying, we pretend the
galaxy was observed in SDSS at z = 0.05 with a pixel size of
0.5 arcsec. Left: Ideal output image directly from Sunrise. Mid-
dle: We convolved the ideal image for each filter by a Gaussian
PSF with FWHM= 2.0 arcsec. Right: To the PSF-convolved im-
ages, we add random cutouts from SDSS DR10 (Ahn et al. 2014),
downloaded from data.sdss3.org/mosaics. The remainder of this
paper analyzes measurements of synthetic images that are most
like those in the middle column, as described in Section 2.2.

AB absolute zero-points, original camera distances and pixel
scales, and the new implied apparent magnitude at the cam-
era distance. We store these important metadata in the im-
age headers. Thus the conversion from the Sunrise output
can be uniquely specified, and synthetic image fluxes can be
recomputed for any assumed distance. From these FITS files,
we then create files containing colour-composite images.

Finally, we add sky shot noise such that the average
signal-to-noise ratio of each galaxy pixel is 25. We assume
this sky shot noise is a Gaussian random process indepen-

dently applied to each pixel. Thus we are assuming that each
model galaxy is strongly detected, eliminating biases from
potentially noisy morphology measurements.

For future visual classification projects, we also prepare
images for classification by the Galaxy Zoo project (GZ,
e.g., Lintott et al. 2008) in SDSS g, r, and i filters. Us-
ing our initial radius (rP ) measurements as defined in Sec-
tion 2.3, we re-bin our SDSS-like FITS images to a new pixel
scale (0.008⇥ rp) and create images with a fixed pixel count
(424⇥424). These choices are such that the galaxy extent de-
fined by 2rp always subtends ⇠ 2/3 of the linear image size,
enabling fair visual classifications as a complement to our
fixed-scale non-parametric measurements below. For such
visual classification projects, we also add real SDSS back-
ground images to create fully synthetic ugriz galaxy images.
To accomplish this, we first downloaded mosaics from the
SDSS DR10 (Ahn et al. 2014) Science Archive Server with
the mosaic web tool (data.sdss3.org/mosaics). From these,
we randomly select a region of an appropriate size for each
synthetic image, assuming the galaxies are at z = 0.05, and
add it to the simulated galaxy image. We demonstrate these
steps in Figure 1. This is a simplification from complete
image simulations of self-consistent lightcones drawn from
the simulation volume (e.g., Overzier et al. 2013; Henriques
et al. 2012). We have created several examples of these sim-
ulated fields from Illustris, and such techniques (Kitzbichler
& White 2007) will become very useful as the volumes of
such simulations grow.

2.3 Structural Measurements

We measure non-parametric morphologies by using code
originally developed for idealized merger simulations (Lotz
et al. 2008a, 2010a,b) and also applied to galaxy surveys
(Lotz et al. 2004, 2008b, 2011). From each image, we charac-
terize the light profile with a Petrosian radius rP , half-light
radius R1/2, Concentration (C), Gini (G), and M20 (Con-
selice et al. 2003; Lotz et al. 2004), defined below. Our code
also measures merger and disturbance indicators, Asymme-
try and the newly proposed MID merger statistics (Freeman
et al. 2013), but in this paper we focus on the above simple
estimates of galaxy structure. We will return to diagnostics
of mergers and disturbances in a future paper.

We define the Petrosian radius or semi-major axis rp

such that the mean surface brightness in an elliptical annulus
with semi-major axis rp equals 0.2 times the mean surface
brightness within this ellipse, following Lotz et al. (2004).
Here we also compute an elliptical half-light radius R1/2 to
characterize galaxy sizes, assuming that all of the galaxy’s
light is contained within an ellipse with semi-major axis 1.5⇥
rp.

We compute the concentration parameter C (Bershady
et al. 2000):

C = 5 log
10

r80

r20
, (1)

where r80 and r20 are circular apertures containing 80% and
20% of the total flux within the ellipse with semi-major axis
1.5rp (Conselice et al. 2003) of the galaxy center defined
by minimizing the Asymmetry parameter (Abraham et al.
1996).

Gini’s coe�cient, G, measures the inequality in flux

c� 0000 RAS, MNRAS 000, 000–000

Simulated Galaxy Morphologies at z = 0 5

Figure 2. Gini–M20 as a function of star formation as reflected by U � B colour for galaxies at z ⇠ 0.3. Left: data from the Extended
Groth Strip (EGS) survey compiled by Lotz et al. (2008b): roughly rest-frame B-band. Right: mock data from T15 at z = 0.33: rest-
frame r-band. Here we show simulated galaxies at z = 0.33 to roughly match the volume-limited EGS sample, but all other figures show
simulated galaxies at z = 0 only. Red (blue) contours encircle 68% and 95% of the galaxies with U � B > 1 (U � B < 1). We find that
simulated galaxies of a given colour have roughly the right optical shape, and Illustris produces a large population of early-type objects.

value among a galaxy’s pixels, varying from 0 (all pixels
equal flux) to 1 (one pixel contains all flux). First used by
Abraham et al. (2003) to characterize galaxy light profiles,
G correlates with C but does not depend on the location of
the brightest pixels. Hence it is sensitive not only to concen-
trated spheroids but also to galaxies with multiple bright
regions. For a discrete population, Glasser (1962) showed
that G can be computed as:

G =
1

¯|Ii|n (n� 1)

nX

i

(2i� n� 1) |Ii|, (2)

where we have n pixels with rank-ordered absolute flux val-
ues |Ii|, and ¯|Ii| =

P
i |Ii| /n, the mean absolute flux value.

We follow Lotz et al. (2004) in correcting G using abso-
lute values to mitigate the e↵ect of noise-induced negative
fluxes. This procedure recovers the true G when S/N & 3
per galaxy pixel, which is true by construction for all of the
galaxy images we prepared in Section 2.2.

M20 measures the second-order spatial moment of a
galaxy’s bright pixels contributing 20% of the total light,
relative to its total moment (Lotz et al. 2004):

M20 ⌘ log
10

P
i Mi

Mtot

, for
X

i

Ii < 0.2Itot, (3)

where

Mtot =
nX

i

Mi =
nX

i

Ii

⇥
(xi � xc)

2 + (yi � yc)
2
⇤
, (4)

and xc, yc are the 2-D spatial coordinates of the galaxy cen-
ter, defined to minimize Mtot. For computing G and M20,
we define a galaxy’s pixels following the segmentation pro-
cedure by Lotz et al. (2004).

In Figures 2 and 3, we divide the G-M20 plane into
three regions corresponding to early types, late types, and

mergers, based on comparisons with low-redshift visual clas-
sifications (Lotz et al. 2004). These classifications are meant
to be loose guidelines and are not to be strictly inter-
preted. For future reference, we define aG-M20 “bulge statis-
tic”, which depends on an object’s location in this diagram
and correlates with optical bulge strength. This will serve
as a rough automated assessment of morphological type.
Specifically, we define F as five times the point-line dis-
tance from a galaxy’s morphology point to the line pass-
ing through (G0,M20,0) = (0.533,�1.75) and parallel to the
Lotz et al. (2004) early-type/late-type separation line, which
has a slope m = 0.14 in the space of (G,M20). We chose the
scaling factor 5 so that the resulting values occupy a con-
venient range (�2 . F . 1). Starting from the point-line
distance formula in two dimensions:

d =
|aM20 + bG+ c|
(a2 + b2)1/2

, (5)

where d is the distance from a point to the line G =
�(a/b)M20 � (c/b). We let b = 1 and set a =
�m = �0.14, allowing us to solve for c = �b(G0 +
aM20,0) = �0.778, which defines the desired line. We set
the sign of F so that positive (negative) values indicate
bulge-dominated (disc-dominated) galaxies. Thus, |F | =
|�0.693M20 + 4.95G� 3.85|, and

F (G,M20) =

(
|F | G > 0.14M20 + 0.778

� |F | G < 0.14M20 + 0.778
(6)

corresponding to the “G-M20 bulge statistic” annotation to
Figure 3 and shown in panel (d) of Figure 4. For most galax-
ies, this diagnostic adds little new information beyond M20

(or C or Sérsic index). However, F is less sensitive to dust,
mergers, and other disturbances that move galaxies in a
roughly perpendicular direction away from the main G-M20

locus. F traces quenched galaxies similarly well, if not a lit-
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Problem Statement

Suppose we have two sets of data of size m and n sampled from distributions F and G:
{x

F
1 , x

F
2 , · · · , x

F
m} ≥ F and {x

G
1 , x

G
2 , · · · , x

G
n } ≥ G .

x
F
i could be a set of summary statistics for the i

th galaxy of a catalog constructed from,
e.g., a simulated H-band catalog, while x

G
j could be those same statistics extracted from

j
th galaxy image in an HST WFC3 H-band catalog. The number of statistics, and thus the

dimensionality of our sample space, is d π p, and the density functions associated with the
distributions F and G are f(x) and g(x), respectively.

With regard to our first statistical aim, we wish to identify regions in the sample space
where the distributions F and G are significantly di�erent and to use this information,
e.g., to infer redshift evolution (given two observed samples) or to inform improvements in
simulation codes (by comparing simulation output at one wavelength to HST data at that
same wavelength), etc.

With regard to our second statistical aim, suppose that x ≥ F represents the summary
statistics for a population of simulated galaxies, while y represents the stellar masses, star-
formation rates, etc., for those same galaxies. Given {(x1, y1), . . . , (xn, yn)} for a set of n

galaxies, we wish to learn the relationship between x and y; for example, we may want to
estimate the conditional density

f(y|x) = f(Mı,SFR, . . . | C,A,G,M20,M,I,D) ,

for the whole population of simulated galaxies, where the symbol | indicates that the quan-
tities to the right are fixed.Observing Galaxy Assembly in Simulations
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Hδ absorption [O II] emission D4000

Figure 4: Maps derived using radiative transfer 
from a hydro simulation. This shows how stars 
and star formation are distributed after a major 
merger. Spatially resolved spectra, including 
ionization, doppler shifting, and dust, can now 
be created from suites of cosmological 
simulations and studied alongside IFU surveys 
to constrain dynamical histories of galaxies.

first passage final merger

Figure 3: Mock image analysis of a merger in a high-resolution simulation (Snyder et al. 2014). 
Diagnostics have varying sensitivity: multiple nuclei indicated by G-M20 for a long period 
during first passage; lopsidedness (D statistic) more strongly peaked at 4.5 Gyr. Bottom panel 
shows rate of change in mass via star formation, gas flows, and mergers (“ex-situ stars”). These 
quantities are elevated during first passage and final merger. The goal is to use synthetic data to 
translate between this physical mass assembly and measurements from surveys (upper panels). 
Both large volumes and high space and time resolution are essential to accumulate robust 
statistics on these rare, subtle, and heterogeneous signposts of galaxy formation.  

Merger 
seen from 
3 angles

Images as 
in HST- 
CANDELS

Figure 2. A merger observed in a high-resolution simulation (Snyder et al. 2014). Multiple nuclei are
indicated by heightened values of G and M20 over a long period during first passage, while lopsidedness
is indicated by D, which strongly peaks at 4.5 Gyr. The bottommost panel shows rate of change in
mass via star formation, gas flows, and mergers (“ex-situ stars”), quantities that are elevated during
the first passage and final merger. One goal of our work would be to learn the relationship between
physical mass assembly and observed summary statistics like G, M20, and D.
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Ex 1B: Detecting Distributional Differences in 
Labeled “D.I.D” Sequences of Images

Are the 24h sequences of satellite imagery preceding a rapid intensity 
change event (Y=1) vs a non-event (Y=0) different, and if so how?

5

Ref: McNeely et al; 
AOAS 2023



6 [Dalmasso, Vincent, Hammerling and Lee 2020]

Ex 2A: Quality Assurance of Simulations by Ensemble 
Consistency Testing (ECT) for Climate Models
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Simulate weak lensing data to constrain parameters of the 
Lambda CDM model in “Big Bang” cosmology.

[Image credit: Lin & Kilbinger, 2018]

Ex 2B: Validation of Approximate Likelihood Models 
 fit to Computationally Intensive SimulationŝL(x; θ)



Two-Sample and GoF Tests for I.I.D Data

(today’s talk)

[Dalmasso et al; AISTATS 2020] 

https://arxiv.org/abs/2010.04051 (NeurIPS Workshop 2020) 

[Freeman, Kim & Lee; MNRAS 2017]

[Kim, Lee & Lei; EJS 2019]

http://proceedings.mlr.press/v108/dalmasso20a.html
https://arxiv.org/abs/2010.04051
https://doi.org/10.1093/mnras/stx1807
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-13/issue-2/Global-and-local-two-sample-tests-via-regression/10.1214/19-EJS1648.full


Basic Setting: Two-Sample Testing
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1. We are looking for regions in the state space where 
the two populations have significantly different densities

10 [Figure credit: Ilmun Kim 2016]



2. We are searching for differences in high-
dimensional space (e.g., each data point could 
represent an image or a sequence of images)

11 [Figure credit: Ilmun Kim 2016]
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3. We are Targeting Model Independent Searches

12

Source: Ben Nachman, 
“Landscape of model-
independent Searches”
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Two-Sample Test via Regression 

[Freeman/Kim/Lee MNRAS 2017; Kim/Lee/Lei EJS 2019]

13



Two-Sample Test via Regression 

[Freeman/Kim/Lee MNRAS 2017; Kim/Lee/Lei EJS 2019]
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Convert 2-samples testing to a regression problem

15



Convert 2-samples testing to a regression problem

16



Compute p-values by permutations (b=1,…B)

17

Both full (top) and half (bottom) 
permutation yield finite-n validity      
[Heinerik and Gorman, 2018; Kim et al, 2021]


[Adapted from: Chakravarati 

@BanffSystematics2023]

permute 𝒟(b)

ν(b)

𝒟

ν ν(b)

𝒟



Why Two-Sample Test via Regression?

18

Can adapt to any structure in X for which there is a suitable 
regression technique


The power of the regression test is directly related to the the 
MISE of the chosen regression estimator [Kim et al, 2019]


The regression test tells you not only if, but also how, the two 
samples are different in the state space



Why Two-Sample Test via Regression?

19

Can adapt to any structure in X for which there is a suitable 
regression technique


The power of the regression test is directly related to the the 
MISE of the chosen regression estimator [Kim et al, 2019]


The regression test tells you not only if, but also how, the two 
samples are different in the state space



If the chosen regression estimator has a small 
MISE, the power of the test is large over a 
wide region of the alternative hypothesis

20 Ref: Kim, Lee & Lei; EJS 2019

https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-13/issue-2/Global-and-local-two-sample-tests-via-regression/10.1214/19-EJS1648.full


21

Practical implication: We should choose a regression 
method that predicts the “class membership” Y well 



What about Classification Accuracy Tests?

22

Regression tests are very similar to the better known 
classification accuracy tests [Kim et al 2021].



Classification Accuracy Tests Usually Have 
Similar or Slightly Lower Power

Consider e.g. a normal means problem where we test for 
mean differences between two multivariate normals:

23

The classification accuracy test with Fisher’s LDA is typically 
underpowered compared to Hotelling’s T2 test [Ramdas et al 

2016; Rosenblatt et al 2016]. In contrast, a regression test with 
Fisher’s LDA has optimal asymptotic power [Kim et al 2019]. 



Power comparisons for finite n0=n1=100 (D=5, 20): 

The regression test based on Fisher’s LDA has comparable 

power to Hotelling’s T2 test. Accuracy Tests have less power.

24 Ref: Kim, Lee & Lei; EJS 2019

https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-13/issue-2/Global-and-local-two-sample-tests-via-regression/10.1214/19-EJS1648.full


Why Two-Sample Test via Regression?

25

Can adapt to any structure in X for which there is a suitable 
regression technique


The power of the regression test is directly related to the the 
MISE of the chosen regression estimator [Kim et al, 2019]


The regression test tells you not only if, but also how, two 
distributions are different in state space



Let’s return to the galaxy morphology example (ex1A)

Divide 2736 galaxies from the CANDELS program into two 
populations based on SFR: “Low SFR” vs “High SFR” sample


Consider seven morphology summary statistics jointly 


Are the morphologies the same or not (compared to chance) for the 
two populations?

26



Regression Test to Identify If and How Two 
Distributions Differ in 7-Dim Feature Space

27



Back to Example 2A: Validation of 
Approximate Likelihood Models for Weak 

Lensing Data

28

Use CAMELUS [Lin & Kilbinger 
2015] to simulate weak lensing 
convergence maps                       
⇒ binned peak counts x ∈ ℕ7


Batch of 200 train + 200 test 
simulations at 50 different 
cosmologies/parameter settings.


Fit 3 different approximate 
likelihood models: Gaussian, 
Poisson, Masked Autoregressive 
Flows (MAFs)



29

Our framework can help answer:


IF one needs to improve the emulator model 


WHERE in parameter space ϴ the fit might be poor


HOW the distributions of emulated and high-fidelity simulated data 
may differ in observable space χ

We can use the regression test to validate 
approximate likelihood (emulator) models for 

computationally intensive simulations



30

Our framework can help answer:


IF one needs to improve the emulator model 


WHERE in parameter space ϴ the fit might be poor


HOW the distributions of emulated and high-fidelity simulated data 
may differ in observable space χ

We can use the regression test to validate 
approximate likelihood (emulator) models for 

computationally intensive simulations



Two-Step Procedure: 2-Sample Test at Each Parameter.

 (IF) Global test of Uniformity of Local p-Values

31

For the local test, our regression test 
allows us to accommodate any data type 
with interpretable diagnostics.


Global test is consistent against all 
alternatives if the local test is consistent.



WHERE: Do we need more simulations to fit the 
data well? If so, where in parameter space?

32

Based on the KL loss we would choose the Gaussian likelihood 
model — but our local test p-values reveal that the Gaussian 
model is rejected at all parameter values

log(KL) = −8.092
pglobal < 1e−06

log(KL) = −8.095
pglobal < 1e−06

log(KL) = −8.076
pglobal < 1e−06

log(KL) = −8.079
pglobal < 1e−06

log(KL) = −5.824
pglobal = 0.001

log(KL) = −5.832
pglobal = 0.124

Gaussian Poisson MAF
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HOW: Even if it’s not feasible to simulate more data, 
our regression test provides valuable diagnostics…

33

Local Test – Test Statistic
Given a regression method ‚m, empirical proportion ‚fi1 = 1

n

qn
i=1 I(Yi = 1):

‚T = 1
n

nÿ

i=1
( ‚m(Xi) ≠ ‚fi1)2

we determine p-value by permutation test, so the test is general and
does not rely on asymptotic distributions
we can accommodate any data type X for which a regression method
exists
the di�erence | ‚m(x) ≠ ‚fi1| provides information on how well the
emulator fits the simulator in feature space: we can test whether
| ‚m(x) ≠ ‚fi1| is statistically significantly higher!

Theorem
If ‚m achieves a small MISE, then regression test yield high power over a

wide region of the alternative hypothesis.
Nic Dalmasso (Carnegie Mellon University) 8 / 14



Emulator diagnostics: Our regression test tells us 
how the two samples are different in ℕ7

34

Partial dependence 
plot for variable X7. 
The regression test is 
distinguishing 
between the discrete 
true distribution and 
the approximate 
Gaussian continuous 
distribution.

According to our random forest regression, bins with low counts (e.g. 
bin X7) contribute the most to the rejection of the Gaussian model.

0.40

0.45

0.50

0.55

0.60

80 90 100
X7

P(
Y=

1|
X) Test m̂(X) − π1̂

Significant

P(Y=1|X)

P(Y=1)



Summary: Validation of Emulators Fit to 
Slow Ensemble Simulations 

IF one needs to run more computationally intensive simulations 
to better fit an emulator to the simulations, or if the fit is close 
enough (answered by our fully consistent global procedure)


WHERE in parameter space one, if needed, should propose 
the next batch of simulations (answered by our local procedure)


HOW emulated and high-resolution simulated data are 
different in high-dimensional observable space (answered by 
our 2-sample test via regression)

35



Open Problems: 2-Sample and GoF Testing

36

Q1: What if we don’t have an ensemble/batch setting?

Q2: Is the regression 2-sample test locally valid?

Q3: Can we increase power of a GoF test via MC sampling 
from the emulator model (reference distribution) to check 
consistency with a sample from the ``trusted’’ model?



Q1. What if we don’t have an ensemble setting?

37

Image credit: Nic Dalmasso



Regress Y on Both x and θ

38



Q2. Is the regression 2-sample test valid locally?

39



Approximate Validity of Local p-Values

40



Q3. Can we increase the power by MC sampling?

41



42

Suppose we can sample from P0. As suggested by Friedman 
(2004), may achieve higher power than the 2-sample permutation 
test by repeated MC sampling from the reference distribution P0. 


See Dalmasso (2019, Appendix D) for procedure and theory
https://http://proceedings.mlr.press/v108/dalmasso20a.html/abs/1905.11505

http://proceedings.mlr.press/v108/dalmasso20a.html


Take Away

43

We can leverage regression methods (probabilistic classifiers) to 
identify if and how two samples differ.



Open Problems

44

Local test: validity and power


GoF tests and MC sampling: how to best simulate (best 
statistical performance at lowest computational cost) 



EXTRA SLIDES
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2-Sample Regression Test via Permutations

46 DOI: 10.1214/19-EJS1648

https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-13/issue-2/Global-and-local-two-sample-tests-via-regression/10.1214/19-EJS1648.full
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GoF Regression Test via MC Sampling

https://http://proceedings.mlr.press/v108/dalmasso20a.html/abs/1905.11505

http://proceedings.mlr.press/v108/dalmasso20a.html


Detecting Distributional Differences in Labeled 
“DID” Sequences of Images

48

Ref: McNeely et al; 
AOAS 2023


