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Motivation and Goals

@ The 2-sample regression test [Kim&Lee, 2016 ADA/CMU report; Kim/
Lei/Lee, EJS 20191 IS closely related to the better known 2-
sample classification accuracy test [e.g., kim et al 20211 but
grew out of a different set of problems from astronomy
and weather forecasting.

@ Let'’s look at some examples that motivated our work...

@ two versions of 2-sample testing (ex1A&B)

@ two versions of GoF/consistency testing (ex2A&B)

N



Ex 1A: Comparing Distributions of High-Dimensional Data

Figure 7: Examples of galaxies from (a) the low-SFR sample &y versus (b) the high-SFR sample S;.

@ Morphologies of two galaxy populations

@ Can we answer the question if, and if so, how two populations
are different beyond looking at low-dim summary statistics?

<l [Figure credit: Dalmasso et al, 2019]
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With regard to our first statistical aim, we wish to identify regions in the sample space
where the distributions F' and G are significantly different and to use this information,

e.g., to infer redshift evolution (given two observed samples) or to inform improvements in
simulation codes (by comparing simulation output at one wavelength to HST data at that
same wavelength), etc.
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Ex 1B: Detecting Distributional Ditferences in
Labeled “D.I1.D" Sequences of Images

@ Are the 24h sequences of satellite imagery preceding a rapid intensity
change event (Y=1) vs a non-event (Y=0) different, and if so how?

Category =— TS — 1-2

Ref: McNeely et al;
AOAS 2023
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Ex 2A: Quality Assurance of Simulations by Ensemble
Consistency Testing (ECT) for Climate Models

State of the art:
PCA-based
testing

Initial condition
uncertainty

'

Analysis

HECT:
High-dimensional
goodness-of-fit test

uncertaint £ % leveraging
Y o probabilistic classifiers

[Dalmasso, Vincent, Hammerling and Lee 2020]




Ex 2B: Validation of Approximate Likelihood Models
z(x; 0) fit to Computationally Intensive Simulations

@ Simulate weak lensing data to constrain parameters of the
Lambda CDM model in “Big Bang” cosmology.

Explored parameter regions

MRLens

[Image credit: Lin & Kilbinger, 2018]
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Basic Setting: Two-Sample Testing

Suppose we have two samples:

X% ..., X ~P and Xi,....X, ~P

A two sample-test would ask whether Py and P, are the same; i.e., it would
test the null hypothesis

Hy: f(x]Y =0)=f(x|Y =1), forallx e X

Ne)



1. We are looking for regions in the state space where
the two populations have signiticantly different densities

Local significant differences

Decision

f(x)=g(x)
= (x)>g(x)

f(x) = f(x)<g(x)

7

10 [Figure credit: llmun Kim 2016]
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2. We are searching for differences in high-
dimensional space (e.g., each data point could
represent an image or a sequence of images)

e Populationi

e Population2

Al [Figure credit: llmun Kim 2016]




3. We are Targeting Model Independent Searches

Some many
searches new

(train signal | .
versus data) ideas!

Most Train data
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Two-Sample Test via Regression
[Freeman/Kim/Lee MNRAS 2017; Kim/Lee/Lei EJS 2019]

Suppose we have two samples:

Xy ..., X ~P and Xj,...,X) ~P

n

A two sample-test would ask whether P, and P; are the same; i.e., it would
test the null hypothesis

Hy: f(x|]Y =0)=f(x|]Y =1), forall x e X




Two-Sample Test via Regression
[Freeman/Kim/Lee MNRAS 2017; Kim/Lee/Lei EJS 2019]

Suppose we have two samples:

Xy ..., X ~P and Xj,...,X) ~P

n

A two sample-test would ask whether P, and P; are the same; i.e., it would
test the null hypothesis

Hy: f(x|]Y =0)=f(x|]Y =1), forall x e X

By Bayes rule, this is equivalent to testing

Hy:P(Y =1X=x)=P(Y =1) |forallx e X




Convert 2-samples testing to a regression problem

Our null and alternative hypotheses are

Hy: P(Y=1X=x) = P(Y=1), forallxe X
H:PY=1X=x) # P(Y=1), for somex € X

Define the regression function(m(x) = P(Y = 1|X = x).
Let m(x) be an estimate of m(x) based on a train set D = {(X;,Y;)}l», C X.
Let @1 = = Y o I(Y; = 1).




Convert 2-samples testing to a regression problem

Our null and alternative hypotheses are

forall x e X

for some x € X

Define the regression function(m(x) = P(Y = 1|X = x).
Let m(x) be an estimate of m(x) based on a trainset D = {(X;,Y;)}}, C X.
Let @1 = = Y o I(Y; = 1).

Compute the “local posterior difference” (LPD) at evaluation points ¥V C A’
A(x) :=m(x) — 7

We define our global test statistic as




Compute p-values by permutations (b=1,...B)

Train
permute @(b) Classifier

. Resample y(b) Permutation
without replacement Statistic

[Adapted from: Chakravarati

9 Tran @BanffSystematics2023]
2 /(saa——
Data

Both full (top) and half (bottom)

y(b) permutation yield finite-n validity
[Heinerik and Gorman, 2018; Kim et al, 2021]
Statistic
Resample

without replacement




Why Two-Sample Test via Regression?

Hy: fx|Y =0)=f(x|]Y =1), forallx e X
H,: f(x|Y =0)# f(x|]Y =1), for some x € X

@ Can adapt to any structure in X for which there is a suitable
regression technique



Why Two-Sample Test via Regression?

Hy: fx|Y =0)=f(x|]Y =1), forallx e X
H,: f(x|Y =0)# f(x|]Y =1), for some x € X

@ Can adapt to any structure in X for which there is a suitable
regression technique

@ The power of the regression test is directly related to the the
MISE of the chosen regression estimator [Kim et al, 2019]



It the chosen regression estimator has a small
MISE, the power of the test is large over a
wide region of the alternative hypothesis

Theorem 1. Suppose that the regression estimator m(X) is
a linear smoother satisfying

sup E / (A(x) — m(x))2 dPx (x) < Codn, ) (2)
meM X

where Cy is a positive constant, 6, = o(1), 6, > n~?,
and M is a class of regressions m(x) containing constant
functions. Let t}, be the upper o quantile of the permuta-
tion distribution of the test statistic T" on validation data.'
Then for any o, B € (0,1/2), there exists a universal con-
stant Cy such that

e Type I error: Py (’7" > t}‘;) <a, and

e Type II error: sup P (?’ < t;) <pB
mEJ\A(ClcSn)

against the class of alternatives M(C14,,) defined by

{mem: [ (me)—m) aPx(0 > Cuéu},

for n sufficiently large.



https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-13/issue-2/Global-and-local-two-sample-tests-via-regression/10.1214/19-EJS1648.full

Practical implication: We should choose a regression
method that predicts the “class membership” Y well

Our null and alternative hypotheses are

1), forallxe X
1

), for some x € X

Define the regression function m(x) = P(Y = 1|X = x).
Let m(x) Be an estimate of m(x) based on a train set D = {(X;,Y:)}i.; C X.
Letm =Y, IYi=1).




What about Classification Accuracy Tests?

@ Regression tests are very similar to the better known
classification accuracy tests [Kim et al 2021].

1 ifP(Y =1X=x)>aq,
0 otherwise

Hy: P({h(X) £Y}) =

Tace = |%| Z I (/};(Xz) # Yz')

X;eV




Classitication Accuracy Tests Usually Have
Similar or Slightly Lower Power

@ Consider e.g. a normal means problem where we test for
mean differences between two multivariate normals:

X|Y =0~ N(up, %), X|Y =1~ N(ui,%)

Hy: pg = 1 versus Hy : py # 14

@ The classification accuracy test with Fisher's LDA is typically
underpowered compared to Hotelling's T2 test [Ramdas et al
2016; Rosenblatt et al 2016]. In contrast, a regression test with
Fisher's LDA has optimal asymptotic power [Kim et al 2019].

5]
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Power comparisons for finite nO=n1=100 (D=5, 20):

The regression test based on Fisher's LDA has comparable
power to Hotelling’s T2 test. Accuracy Tests have less power.

Fisher's LDA (D=5) Fisher's LDA (D=20)
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Fig 2: Power comparisons between Hotelling’s 72 (Hotelling), ”7\10,\ (Reg), the in-
sample accuracy (Acc-Resub), and the cross-validated accuracy (Acc-CV) via Fisher’s
LDA. Ref: Kim, Lee & Lei; EJS 2019



https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-13/issue-2/Global-and-local-two-sample-tests-via-regression/10.1214/19-EJS1648.full

Why Two-Sample Test via Regression?

Hy: fx|Y =0)=f(x|]Y =1), forallx e X
H,: f(x|Y =0)# f(x|]Y =1), for some x € X

@ Can adapt to any structure in X for which there is a suitable
regression technique

@ The power of the regression test is directly related to the the
MISE of the chosen regression estimator [Kim et al, 2019]

@ The regression test tells you not only if, but also how, two
distributions are different in state space

2>
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Let's return to the galaxy morphology example (ex1A)

Figure 7: Examples of galaxies from (a) the low-SFR sample &y versus (b) the high-SFR sample §;.

@ Divide 2736 galaxies from the CANDELS program into two
populations based on SFR: “Low SFR" vs “High SFR” sample

@ Consider seven morphology summary statistics jointly

@ Are the morphologies the same or not (compared to chance) for the

two populations?
26



Regression Test to |dentity If and How Two
Distributions Ditter in 7-Dim Feature Space

JHighSFR > fLowSFR

Local significant differences

Decision

f(x)=g(x)
= f(x)>g(x)
= f(x)<g(x)

fHighSFR < fLowSFR

Figure 9: Results of two-sample testing of point-wise differences between high- and low-SFR galaxies in a seven-dimensional
morphology space. The red color indicates regions where the density of low-SFR galaxies are significantly higher, and the

blue color indicates regions that are dominated by high-SFR galaxies. The test points are visualized via a two-dimensional
diffusion map. Figure adapted from [49].




Back to Example 2A: Validation of
Approximate Likelihood Models for Weak
Lensing Data

@& Use CAMELUS [Lin & Kilbinger

2015] to simulate weak lensing

Peak Count Simulation — Parameter Grid

convergence maps
= binned peak counts x € N

@ Batch of 200 train + 200 test
simulations at 50 different
cosmologies/parameter settings.

@ Fit 3 different approximate
likelihood models: Gaussian,

Poisson, Masked Autoregressive
Flows (MAFs)



We can use the regression test to validate
approximate likelihood (emulator) models for
computationally intensive simulations

Test Hy: L(x;0) = L(x;0) for every x € X and § € ©

~~

versus Hi : L(x;0) # L(x;0) for some x € X and § € ©

@ Our framework can help answer:
@ |F one needs to improve the emulator model
@ WHERE in parameter space © the fit might be poor

@ HOW the distributions of emulated and high-fidelity simulated data
may differ in observable space x

)
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We can use the regression test to validate
approximate likelihood (emulator) models for
computationally intensive simulations

Test Hy: L(x;0) = L(x;0) for every x € X and § € ©

~~

versus Hi : L(x;0) # L(x;0) for some x € X and § € ©

@ Our framework can help answer:
@ |F one needs to improve the emulator model
@ WHERE in parameter space © the fit might be poor

@ HOW the distributions of emulated and high-fidelity simulated data
may differ in observable space x
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Two-Step Procedure: 2-Sample Test at Each Parameter.
(IF) Global test of Uniformity of Local p-Values

Algorithm 1 Local Test

Input: parameter value 6, two-sample testing procedure, num-
ber of draws from the true model, ngm o and from the estimated
model, ngm 1

-

Output: p-value pg, for testing if L(x;60)=L(x;6,) for every
x

/ Sample Sp = {X%°, ... , X%} from L(x;6p).

: Sample S; = {X1,..., X}, }from L(x;6p).
}: Compute p-value py, for the comparison between Sy
and 81 .
4: return pg,

Algorithm 3 Global Test
Input: reference distribution (), B, uniform testing procedure
- Output: p-value p for testing if L(x;0) = L(x;6) for every x
@ Forthe local test, our regression test and 9

allows us to accommodate any data type
with interpretable diagnostics.

@ Global test is consistent against all
alternatives if the local test is consistent.

1
2
3:
4
5

: fori e {1,...,
sample 6; ~ r(0)
compute py, using Algorithm 1

- end far

: Compute p-value p for testing if (py, )2, has a uniform
distribution.
: rewarnp



WHERE: Do we need more simulations to fit the
data well? It so, where in parameter space?

@ Based on the KL loss we would choose the Gaussian likelihood
model — but our local test p-values reveal that the Gaussian

model is rejected at all parameter values

V. .. ¢
Gaussian Poisson Poisson

o

log(KL) = -8.092 log(KL) = -8.076 log(KL) = - 5.824
o T ‘ - Pgiobal < 1€—06 Pglobal < 1€—-06 Pglobal = 0.001

02 04 06 08,/ 02 04 06 08 02 04 06 08
Qum

|
p-valuey, o5 10
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Pglobal < 1€-06 O Pglobal = 0.124

] ] ] ] ] ] ] ] ] ] ] ] ] ]
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HOW: Even it it's not feasible to simulate more data,
our regression test provides valuable diagnostics...

Hy: f(x]Y =0)=f(x|]Y =1), forallx e X
H,: f(x|Y =0)# f(x|]Y =1), for some x € X

o the difference |m(x) — 71| provides information on how well the
emulator fits the simulator in feature space: we can test whether
|m(x) — 71| is statistically significantly higher!




Emulator diagnostics: Our regression test tells us
how the two samples are different in N7

@ According to our random forest regression, bins with low counts (e.g.
bin X7) contribute the most to the rejection of the Gaussian model.

Partial dependence
plot for variable X5.
The regression test is . |
distinguishing | S Test|r?1(X)-n“1
between the discrete y -~ Significant
true distribution and
the approximate
Gaussian continuous
distribution.




Summary: Validation of Emulators Fit to
Slow Ensemble Simulations

@ |F one needs to run more computationally intensive simulations
to better fit an emulator to the simulations, or if the fit is close
enough (answered by our fully consistent global procedure)

@ WHERE in parameter space one, if needed, should propose
the next batch of simulations (answered by our local procedure)

@ HOW emulated and high-resolution simulated data are
different in high-dimensional observable space (answered by
our 2-sample test via regression)



Open Problems: 2-Sample and GoF Testing

@ Q1: What it we don't have an ensemble/batch setting?

Test Hy: L(x;0) = L(x;0) for every x € X and § € ©

~~

versus Hi : L(x;0) # L(x;0) for some x € X and § € ©

@ Q2: Is the regression 2-sample test locally valid?

® Q3: Can we increase power of a GoF test via MC sampling
from the emulator model (reference distribution) to check
consistency with a sample from the “trusted” model?



Q1. What it we don’t have an ensemble setting?

Like%od

Data Generating Input Output Observable Data

Forward Simulator

Parameters of

Image credit: Nic Dalmasso

), (02, X5),...,(0,,X,)}, wWhere 0 ~ r(0), X|0 ~ L(x;0)
), (05, X5), ..., (0, , X! )Y, where 6 ~ (0), X|¢ ~ L(x;6')

Hy: L(x;60) = L£(x;6), for every x € X at fixed 6 € ©




Regress Y on Both x and 6

' ) Li ke%od - N

Parameters of

Data Generating Input ‘ Output Observable Data
Process 6 — .‘ —

\_ Y, \_ y

Forward Simulator

Hy(0) : L(x;0) = L(x;6), for every x € X at fixed 6 € ©
)

Vv

Hy(0) : 1|x,60) =P(Y = 1]0), \for every x € X at fixed 0 € ©

~ 1 N R 9
T = v > (M(x,0) — 71(6))°

xey




Q2. Is the regression 2-sample test valid locally?

fi(x), at fixed x € X
fi(x), at fixed x € X




Approximate Validity of Local p-Values

Assumption 1 (Local regression estimator). There exists € > 0 such that
m only uses the sample points in {X;, Y;}, with X; € B(x;¢), where B(x;e¢)
1s a ball in X of radius € centered at x.

Theorem 1. Under the null hypothesis

H§(x) : fo(x) = f1(X) for all x" € B(x;¢)

and under Assumption

1

, forany 0 < a <1

lim P (proca(x) < a) = a.

B— 00 o




Q3. Can we increase the power by MC sampling?

Suppose we have i.i.d. sample
Xi,...,. X, ~P

from some unknown distribution P with density f.

Collective anomaly detection: Want to detect whether the collection of these

data points deviate from what is anticipated under the assumed model F,
with density fy.

Hy: f(x) = fo(x), forallxe X




Suppose we have i.i.d. sample
Xi,...,. X, ~P

from some unknown distribution P with density f.

Collective anomaly detection: Want to detect whether the collection of these
data points deviate from what is anticipated under the assumed model F,

with density fy.

Hy: f(x) = fo(x), forallxe X

@ Suppose we can sample from Pg As suggested by Friedman
(2004), may achieve higher power than the 2-sample permutation
test by repeated MC sampling from the reference distribution Po,

@ See Dalmasso (2019, Appendix D) for procedure and theory
https://http://proceedings.mlr.press/v108/dalmasso20a.html/abs/1905.11505

42
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Take Away

@ We can leverage regression methods (probabilistic classitiers) to
identity if and how two samples ditter.

Explored parameter regions
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MRLens

Figure 9: Results of two- aunpl( testing of point-wise differences be tween high- and low-SFR g s in a seven-dimensional
m(npllol()s\ olor indicz regions where the ; v-S g antly higher, and the
blue color indic ons that are dominated by high-SFR ,.,llL\l(\ The test points are visualized via a two-dimensional
diffusion map. Fig dapted from [49)].
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Open Problems

@ Local test: validity and power

@ GoF tests and MC sampling: how to best simulate (best
statistical performance at lowest computational cost)

JHighSFR > fLowSFR

v 2 i X »

4 Explored parameter regions
488 ° : .

6, [arcmin

SHighSFR < fLowSFR
MRLens

Figure 9: Results of two-sample testing of point-wise differences between high- and low-SFR es in a seven-dimensional
morpholog ce. The red color indicates regions where the density of low-SFR. g: g ‘antly higher, and the
blue color indicates regions that are dominated by high-SFR galaxies. The test points are visualized via a two-dimensional

diffusion map. Figure adapted from [49].
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EXTRA SLIDES



2-Sample Regression Test via Permutations

Algorithm 1: Two-Sample Regression Testing via Permutations

Input: two i.i.d. samples &y and 8: from distributions with resp. densities fy and
f1; number of permutations B; a regression method m
Output: p-value for testing if fy(x) = fi(x) for every x € A

: Define an augmented sample {X;, Y;}iL,, where {X;}L, =8y U &), and
Y, =I1(X; € §,).
: Calculate the global test statistic Tji06a: (by, €.g., training the regression

on the first half of the sample, and then evaluating the test statistic on the
second half)

: Randomly permute {Y7,...,Y,}. Refit m and calculate the test statistic on
the permuted data (again by, e.g., training the regression on the first half
of the sample and evaluating the test statistic on the second half)

-~

1: Repeat the previous step B times to obtain { 1 ba[ 7;‘15,)’“!
5: Approximate the permutation p-value by

(1 + Z 1 ( global > 7:ﬂuba!))

: return p

DOI: 10.1214/19-EJ51648
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GoF Regression Test via MC Sampling

Algorithm 2: Goodness-of-Fit Regression Testing via MC Sampling
Input: i.i.d. sample S of size n from distribution with density f: reference model

with density f;: size of Monte Carlo sample ny; number of additional Monte Carlo
samples M; a regression method m
Output: p-value for testing if f(x) = fo(x) for every x € A

1: Let nyor = n + np.
: Sample Sp = {X7,..., X} } from f.
3: Define an augmented sample {X;, Y;}'y, where {X;}7 =8 U Sy, and
Y; = I(X; € §).

4: Calculate the global test statistic T in Equation@

5: for be {1,...,B} do
Sample S®) = {X[lb),...,X§lb)} from f, under the null hypothesis Hj :
I = Jo.
Sample §; " = {X'lb) Xr, } from fo.
Define a new augmented sample (X, i}, where {X; )} ,=8® us”,
and Y; = I(X; € 8Y).
Refit m _and calculate the test statistic on the new augmented sample to
obtain 7 from the null distribution f = fo.

10: end for

11: Compute the MC p-value by p = B_+1 (1 + Zb 1 I(T® > 'T))

12: return p

https://http://proceedings.mlr.press/v108/dalmasso20a.html/abs/1905.11505
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Detecting Distributional Differences in Labeled
“"DID" Sequences of Images Ref: McNeely et al

0O HOW TU0

(a) Setting A: {(S<¢,Y:)}t>0 (b) Setting B: Y; conditionally  (c) Setting C: Y; conditionally
with no temporal dependence independent of Y;_; given dependenton Y;_1 given Scy;
between pairs (S<¢,Y:) for Sc¢; Sy is autocorrelated. S: and Y; are each autocor-

different ¢. related.

Fig 2: Dependence settings. Directed acyclic graphs (DAGs) illustrating the three dependence struc-
tures we explore. Note that each variable S—; can itself represent a temporal sequence of high-

dimensional functions or images, as in Figure 3.
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