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Two-Sample Testing

Two-sample testing refers to the following hypothesis testing problem:

Let X1, . . . ,Xn
i.i.d.∼ p1 and Y1, . . . ,Ym

i.i.d.∼ p2

Test H0 : p1 = p2 vs. H1 : p1 6= p2

Lots of classical tests in the univariate case (Kolmogorov–Smirnov,
Anderson–Darling, Cramér–von Mises,...)

New in recent years: use classifiers to perform the test in high-dimensional
spaces (e.g., Kim et al. (2019, 2021))

• Basic idea: train a classifier to separate X1, . . . ,Xn from Y1, . . . ,Ym

• If the classifier is able distinguish between the two samples, then that
provides evidence against H0
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Model-independent searches of new physics

In our recent work (Chakravarti et al., 2023), we approach the problem of
model-independent searches of new physics using classifier-based two-sample
testing

→ Provides sensitivity for unexpected or misspecified signals

Available datasets:

Training background: X = {X1, . . . ,Xmb
}, Xi ∼ pb

Experimental data: W = {W1, . . . ,Wn}, Wi ∼ q = (1− λ)pb + λps ,

where pb is a simulator for Standard Model background events and ps is an
unspecified signal distribution with unknown signal strength λ

We only have access to X and W; i.e., no direct access to pb, q, ps or λ

Task 1: We want to understand if W shows evidence for the presence of ps

Task 2: We want to understand what λ and ps look like
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Model-independent search using a semi-supervised classifier

To test for the presence of ps , we want to carry out the test

H0 : λ = 0 vs. H1 : λ > 0

without pre-specifying ps

This can be achieved by performing the two-sample test

H0 : pb = q vs. H1 : pb 6= q

using the data Xi ∼ pb and Wi ∼ q

To do this in high dimensions, we train a classifier h to separate the
background data X from the experimental data W
• Under H0, the classifier should not be able to separate X from W
• So if the classifier is able to differentiate between these two samples,

then that provides evidence for the presence of ps

This approach has close connections to the work by D’Agnolo and Wulzer
(2019), D’Agnolo et al. (2021) and D’Agnolo et al. (2022)
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Overview of the approach
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Classifier-based test statistics

Test statistics based on a classifier ĥ that is trained to separate the experimental
data W from the background data X :

1 Likelihood Ratio Test Statistic:

LRT = 2
∑
i

log ψ̂(Wi ),

where ψ̂(z) = mb

n
ĥ(z)

1−ĥ(z)
is a classifier-based estimate of the density ratio

ψ = q/pb

2 Area Under the Curve (AUC) Test Statistic:

θ̂ =
1

mb n

∑
i

∑
j

I
{
ĥ(Wj) > ĥ(Xi )

}
Test H0 : θ = 0.5 versus H1 : 0.5 < θ < 1.

3 Misclassification Error (MCE) Test Statistic:

M̂CE =
1

2

[ 1

mb

∑
i

I
{
ĥ(Xi ) > π

}
+

1

n

∑
j

I
{
ĥ(Wj) < π

}]
, π = n/(n+mb)

Test H0 : MCE = 0.5 versus H1 : MCE < 0.5.
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Calibration of the tests

In order to control the Type I error, we need to obtain the distribution of
the test statistics under the null H0 : λ = 0

Notice that under the null both X and W are samples from pb

Three approaches:

1 Asymptotics: Can derive the asymptotic distribution for each of the
test statistics; for example, for AUC, Newcombe (2006) showed that

θ̂ − 0.5√
V0(θ̂)

 N(0, 1),

for certain V0(θ̂) under the null

2 Nonparametric bootstrap: Sample with replacement from X ∪W and
randomly label as either X ’s or W ’s

3 Permutation: Randomly permute the class labels in X ∪W
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In-sample vs. out-of-sample evaluations

In practice, we need to be careful with in-sample vs. out-of-sample
evaluation of the classifier ĥ

• For each calibration method, we use half of the data to train the
classifier and the other half to evaluate and calibrate the test
statistics (sample splitting)

• For the permutation method, we also consider a variant where the
classifier is evaluated in-sample, which requires retraining the classifier
for each permutation cycle
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Power of detecting a signal

Power of detecting a well-specified signal in the Kaggle Higgs boson data

Signal Strength (λ)

Model Method 0.15 0.1 0.07 0.05 0.03 0.01 0

Supervised LRT Asymptotic 100 100 96 62 18 18 6
Bootstrap 100 96 78 58 6 0 0

Permutation 100 98 98 86 28 6 0

Supervised Score Bootstrap 64 66 74 50 18 0 0
Permutation 94 92 100 92 80 24 12

Semi-Supervised LRT Asymptotic 100 98 74 38 16 6 2
Bootstrap 100 98 48 10 2 2 0

Permutation 100 98 72 38 16 6 2
Slow Perm 82 8 0 4 2 0 4

Semi-Supervised AUC Asymptotic 100 96 78 32 14 4 2
Bootstrap 100 98 70 32 20 6 2

Permutation 100 98 68 32 20 4 2
Slow Perm 100 100 94 56 20 8 4

Semi-Supervised MCE Asymptotic 100 92 60 28 14 2 2
Bootstrap 100 96 52 28 16 6 4

Permutation 100 96 52 30 14 6 6
Slow Perm 100 98 86 58 16 6 2
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Power of detecting a signal

Power of detecting a misspecified signal in the Kaggle Higgs boson data

Signal Strength (λ)

Model Method 0.15 0.1 0.07 0.05 0.03 0.01 0

Supervised LRT Asymptotic 2 10 2 8 8 6 4
Bootstrap 0 0 0 0 0 0 0

Permutation 0 0 0 0 0 2 0

Supervised Score Bootstrap 0 0 0 0 0 0 0
Permutation 0 0 0 0 0 2 8

Semi-Supervised LRT Asymptotic 100 100 100 82 18 4 4
Bootstrap 100 100 100 60 4 2 0

Permutation 100 100 100 82 18 4 2
Slow Perm 100 100 78 22 2 4 6

Semi-Supervised AUC Asymptotic 100 100 100 78 16 8 4
Bootstrap 100 100 100 82 20 10 0

Permutation 100 100 100 80 20 8 2
Slow Perm 100 100 100 100 34 10 4

Semi-Supervised MCE Asymptotic 100 100 100 66 24 6 4
Bootstrap 100 100 100 62 16 6 4

Permutation 100 100 100 62 14 6 4
Slow Perm 100 100 100 98 22 8 2

Signal misspecified by transforming tau pt∗ = tau pt− 0.7 (tau pt−min(tau pt))
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Power as a function of sample size

Power of the asymptotic model-independent tests for increasing
sample sizes
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Interpreting the semi-supervised classifier

We may want to be able to analyze the trained semi-supervised classifier ĥ to
learn about the properties of the potential signal

Signal strength

We estimate the signal strength
λ from the classifier ĥ using the
Neyman–Pearson quantile
transform

Variable importance

We use the active subspace of
the classifier to identify variable
combinations that help separate
the signal from the background

See the backups or Chakravarti et al. (2023) for more on these two approaches
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Incorporating systematics

The aforementioned approaches assume that the training background
sample X comes from the true background pb

However, in practice the simulator for X is likely to be systematically
misspecified

So the “signals” found might simply be due to background mismodeling

It would probably be possible to parameterize the systematics so that
pb = pb(γ), where γ ∈ Γ is a nuisance parameter

We would then want to test

H0 : q ∈ {pb(γ) : γ ∈ Γ} vs. H1 : q /∈ {pb(γ) : γ ∈ Γ}

D’Agnolo et al. (2022) is an important first contribution toward this
direction, but it is not immediately clear how to incorporate the nuisance
parameters into the classifier-based test statistics discussed here

→ Will require developing new statistical methodology
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Comparison of the two proposed approaches

Our LRT test is closely related to the approach of D’Agnolo et al.
(D’Agnolo and Wulzer, 2019; D’Agnolo et al., 2021, 2022)

Let’s try to understand what some of the differences are

I find it instructive to focus on the case where we test for the equivalence
of two probability densities instead of the equivalence of two Poisson point
process intensity functions

So as before, we have two samples

Training background: X = {X1, . . . ,Xmb
}, Xi

i.i.d.∼ pb

Experimental data: W = {W1, . . . ,Wn}, Wi
i.i.d.∼ q

and we want to perform the test

H0 : pb = q vs. H1 : pb 6= q
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Comparison of the two proposed approaches

The starting point for both Chakravarti et al. and D’Agnolo et al. is the
likelihood ratio

LRT = 2 log

( ∏n
i=1 q(Wi )∏n
i=1 pb(Wi )

)
= 2 log

(
n∏

i=1

q(Wi )

pb(Wi )

)

The challenge here is that we don’t know q and pb so we need to
somehow learn the test statistic from the data, and this is where the two
groups differ

Chakravarti et al. train a classifier h to separate X from W and use the
mathematical fact (see Ben’s talk yesterday) that h relates to the ratio
q/pb by

q(z)

pb(z)
=

mb

n

h(z)

1− h(z)

This effectively corresponds to deriving the alternative hypothesis q using
the data and then performing a simple vs. simple test
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Comparison of the two proposed approaches

D’Agnolo et al., on the other hand, proceed as follows1:

Let’s write down some flexible parametric form for q so that
q(z) = q(z ; θ) for some parameter vector θ

Specifically, let’s use

q(z ; θ) =
pb(z) exp(f (z ; θ))∫
pb(x) exp(f (x ; θ))dx

,

where f (z ; θ) is a neural network and θ are the parameters of that neural
network

To obtain the test statistic, one would maximize over θ to find the most
likely alternative model

LRT = 2 log

(
maxθ

∏n
i=1 q(Wi ; θ)∏n

i=1 pb(Wi )

)
1I have adapted here their method to probability densities instead of Poisson point

process intensity functions
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Comparison of the two proposed approaches

Plugging in the assumed form for q allows us to cancel the denominator
which gives

LRT = 2 log

(
max
θ

∏n
i=1 exp(f (Wi ; θ))[∫

pb(x) exp(f (x ; θ))dx
]n
)

= 2 max
θ

[
n∑

i=1

f (Wi ; θ)− n logEX∼pb [exp(f (X ; θ))]

]

D’Agnolo et al. then replace the expectation by an empirical average based
on the background sample

LRT ≈ 2 max
θ

[
n∑

i=1

f (Wi ; θ)− n log

(
1

mb

mb∑
i=1

exp(f (Xi ; θ))

)]

The neural network f is trained by using the negative of the expression
inside the brackets as the loss function and this yields the test statistic
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Comparison of the two proposed approaches

Some remarks:

• Chakravarti et al. use a simple vs. simple likelihood ratio with a
data-derived alternative, while D’Agnolo et al. use a simple vs. composite
likelihood ratio with maximization over the alternative model parameters

• The test statistics are learned in a fundamentally different way by the
two groups

• Chakravarti et al. fit a classifier (output in [0, 1]), while D’Agnolo et al.
fit a neural network regression function (output in R)

• For D’Agnolo et al., the NN is evaluated in-sample, while Chakravarti et
al. had trouble getting the in-sample LRT tests working reliably (but
in-sample AUC and MCE tests worked well)
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Comparison of the two proposed approaches

Some more remarks:

• For D’Agnolo et al., the two samples X and W play an asymmetric role
in the training (X is only used to constrain the normalization), while for
Chakravarti et al. the two samples have a symmetric role in the training

• D’Agnolo et al. require mb � n, while Chakravarti et al. took mb ≈ n

• If the classifier h(z) converges to the true class probability for all z , then
Chakravarti et al. consistently estimate the true LRT, while it’s not
immediately clear to me at least what can be said about the consistency
of D’Agnolo et al.

• How does each approach perform with increasing data dimension?
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Comparison of the two proposed approaches

Ultimately what matters the most is how these approaches perform on
realistic HEP two-sample testing problems

Grosso et al. (2023) have started to investigate this question

• They find that the D’Agnolo et al. approach has more power than a
variant of the classifier approach (different from Chakravarti et al., as
far as I understand)

One should note that the results here depend also on what classifier is
used, what test statistic is used, training hyperparameters, calibration
method, in-sample vs. out-of-sample evaluation, sample sizes for X
and W, dimension of the data,...

Future work will hopefully shed more light on the similarities and
differences between D’Agnolo et al. and the classifier-based approaches
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Discussion and Conclusions

• Classifiers provide a powerful tool for high-dimensional two-sample testing
• To fully specify the test, one needs to also specify:

What test statistic is used?
How is the test statistic learned?
How is the null distribution obtained?
Is the classifier evaluated in-sample or out-of-sample?
What classifier is used?

• Different choices above will lead to different two-sample tests with
different properties
• An interesting common feature of these tests is that the alternative

hypothesis is adaptively learned from the data during classifier training
• Here we focused on using classifier-based two-sample tests for

model-independent searches of new physics
Such approaches may be able to increase the sensitivity of LHC for
unexpected or misspecified signals

• Other use cases: DQM, validation of simulators / generative models,...
• Important avenue for future work: incorporating systematics into the

classifier-based tests
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Hypothesis testing for discovery of new physics

Discovery of new phenomena at the LHC
usually boils down to testing for the presence
of a signal distribution over a background of
known Standard Model physics:

• Known physics: pb(z)

• New signal: ps(z)

• Nature: q(z) = (1− λ)pb(z) + λps(z)

Want to test H0 : λ = 0 vs. H1 : λ > 0

If one rejects H0 at high enough significance
level, then one would proceed to claim
discovery of new physics
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Model-dependent classifier-based tests

Most of these tests are done in the model-dependent mode, where the test
statistic is optimized to have high power for detecting a specific signal

Relevant datasets:

Training background: X = {X1, . . . ,Xmb
}, Xi ∼ pb

Training signal: Y = {Y1, . . . ,Yms}, Yi ∼ ps

Experimental data: W = {W1, . . . ,Wn}, Wi ∼ q = (1− λ)pb + λps

Basic idea: use X and Y to find the optimal test for detecting ps in W

When the data space is high-dimensional, this is usually done using
classifiers:

1 Train a supervised classifier to separate X from Y
2 Use the classifier output to test for the presence of signal in W
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Classifier training
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Testing when the signal is misspecified

To perform this test, we need to assume that we can reliably simulate data
from both pb and ps

However, when either or both of these simulators are systematically
misspecified, the test may not behave as desired

Specifically, if the test is optimized for a misspecified ps , it may have little
to no power for an actual signal
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Systematically misspecified signal

⇒ How to obtain an omnibus test that would have power for a wide range
of signals, even in high-dimensional situations?
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Systematically misspecified signal

⇒ How to obtain an omnibus test that would have power for a wide range
of signals, even in high-dimensional situations?
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Related problems in statistics and ML

The model-independent search problem is closely related to a number of
problems studied in statistics and machine learning

Specifically, it can be seen as an example of:

1 Two-sample testing (e.g., Kim et al. (2019, 2021)):

Xi
iid∼ p1, Yi

iid∼ p2, is p1 = p2?

2 Collective anomaly detection (e.g., Chandola et al. (2009)):
Is there a collection of data points which taken together deviate
from the anticipated data?

Notice that

model independent search 6= outlier detection

Each signal event is typically indistinguishable from the background on its
own; it is the collection of many signal events that defines the excess
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Model-independent searches in low-dimensional spaces

In Kuusela et al. (2012) and Vatanen et al. (2012), we used Gaussian mixture
models to first fit the background sample and then, given the background model,
fit any anomalous signal present in the experimental sample
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This approach works fine in 2–3 dimensions but does not really scale to higher
dimensions
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Our contributions

Our work (Chakravarti et al., 2023) makes the following contributions:

1 We investigate various ways of obtaining a test statistic from the
trained classifier ĥ as well as various ways of calibrating the tests

2 We propose a way to estimate the signal strength λ based on ĥ

3 We propose a way to interpret ĥ using active subspaces
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Kaggle Higgs boson data

We explore the performance of these methods using the Kaggle Higgs
boson challenge dataset2

• Simulated H → ττ events in ATLAS

• Select events with two jets and only consider primitive features
(transverse momenta, MET, angles,...)

• 15 variables after accounting for rotational symmetry in φ

• 80,806 background events; 84,221 signal events

• Generate 50 “replicates” by sampling without replacement
mb = 40,403 background events, ms = 20,403 signal events and
n = 40,403 experimental events from the original samples

• We use Random Forest as the classifier h throughout

2https://www.kaggle.com/c/higgs-boson
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Classifier output

Some options for the test:

• Counting experiment in
the highest purity output
bin

• Cut on the classifier
output; test using the
resulting signal-enriched
sample

• LRT: Use the connection
of the classifier output to
the likelihood ratio

• ...
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p-value distributions for the semi-supervised tests
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Estimating the signal strength

Given a trained semi-supervised classifier ĥ, how can we estimate the
signal strength λ?

If we know that ps(z) = 0 for some known z , then this is simple

Since

ψ(z) =
q(z)

pb(z)
=

(
1− π
π

)(
h(z)

1− h(z)

)
,

we obtain

λ̂ = 1−
(

1− π
π

)(
ĥ(z)

1− ĥ(z)

)
,

for any z with ps(z) = 0

However, in the model-independent setting, we may not know when
ps(z) = 0 → What to do?
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Estimating the signal strength

Need to assume infz ps(z)/pb(z) = 0 for identifiability; assume also pb, q > 0
everywhere, for simplicity

Define the Neyman–Pearson Quantile Transform of z as:

ρ(z) = PX∼pb

(
q(X )

pb(X )
≥ q(z)

pb(z)

)
= PX∼pb (ψ(X ) ≥ ψ(z)) = PX∼pb (h(X ) ≥ h(z))

Let gq be the density function of ρ(Z ) when Z ∼ q

Then it can be shown that gq is monotonically decreasing and

gq(1) = 1− λ

which allows us to estimate λ using λ̂ = 1− ĝq(1)

→ We need to estimate a monotone density at its boundary
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Estimating the signal strength

In practice, we form a histogram of ρ(Wi ) and estimate gq(1) using a
Poisson regression on bins close to 1
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Estimating the signal strength

Estimated λ vs. true λ with various uncertainty estimates
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Active subspaces for interpreting the classifier

The fitted classifier surface ĥ contains information about how the
experimental data W differs from the background data X

How do we extract this information from ĥ?

Could look at ĥ as a function of each input variable

But this might not reveal information contained in variable dependencies

We propose to look at the active subspace of ĥ instead

Basic idea: perform PCA on the gradients ∇ĥ(z) to reveal those directions
in which the classifier surface changes the most
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Active subspaces for interpreting the classifier

(a) X1 versus X2, ĥ(X1,X2) versus X1 and ĥ(X1,X2) versus X2

(b) Smoothed
Classifier Surface

(c) PCA of the

Standardized Gradients
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Active subspaces for interpreting the classifier

In practice, we look at the gradients of

H(z) := logit(ĥ(z)) = log
(
ĥ(z)/(1− ĥ(z))

)
which are estimated by fitting a local linear regression on H(Zi ) where
Zi ∈ X ∪W

Furthermore, we standardize the gradients by their estimated standard

errors: G (z) = ∇̂H(z)√
V̂ar(∇̂H(z))

We then perform PCA on G (Zi ): the mean of G (Zi ) describes the slope of
H(z) and the principal components of G (Zi ) capture the variation of H(z)
around the slope

Uncertainty estimates using bootstrapping
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Active subspaces for interpreting the classifier

(a) Mean Gradient (b) First Eigenvector (c) Second Eigenvector
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Density Ratios and Classifiers

In general, given two densities p and q and samples

X1, . . . ,Xn ∼ p

Y1, . . . ,Yn ∼ q

Give labels:
X1 . . . Xn Y1 . . . Yn

Z 1 . . . 1 0 . . . 0

Classifier ψ:

ψ(u) = P(Z = 1|u) =
p

p + q

and so
p

q
=

ψ

1− ψ
.
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p-value distributions for the supervised tests

Asymptotic Bootstrap Permutation
LR

T
S

core

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Value

E
m

pi
ric

al
 D

is
tr

ib
ut

io
n

lambda

0.15

0.1

0.07

0.05

0.03

0.01

0

N/A

45 / 21


	References
	Appendix

