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Basics of Model Building

2

•What is the Lagrangian of Nature?

•Rules:


•Gauge symmetries of the Lagrangian

•Representations of fermions and scalars under symmetries

• Pattern of spontaneous symmetry breaking


•Assumptions:

• Poincare invariance

•QFT


• SM tested to high accuracy; still many deficiencies


•Goals: Address deficiencies of SM with (hidden) Symmetries



The Plan
• Part I: Primer - Standard Model and its 

Deficiencies 
• Symmetries, Particle content, and 

Lagrangian

• Why Go beyond the SM?


• Part II: Flavor Symmetries 
• Flavor Puzzle


• Problem of fermion masses and 
mixing


• Neutrino mass generation

• Froggatt-Nielsen Mechanism

• Non-Abelian Discrete Symmetries

• CP Violation ⇔ outer automorphism
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• Part III: GUT Symmetries (Michael 
Ratz)

• Motivations for GUTs

• GUTs in 4D

• Problems of GUTs in 4D

• Orbifold GUTs

• Modular Flavor Symmetries



The Plan
• Part I: Primer - Standard Model and its 

Deficiencies 
• Symmetries, Particle content, and 

Lagrangian

• Why Go beyond the SM?


• Part II: Flavor Symmetries 
• Flavor Puzzle


• Problem of fermion masses and 
mixing


• Neutrino mass generation
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• Part III: GUT Symmetries (Michael 
Ratz)

• Motivations for GUTs

• GUTs in 4D

• Problems of GUTs in 4D

• Orbifold GUTs

• Modular Flavor Symmetries

Tools of symmetries can 
be applied to problems 

beyond Flavor and GUTs.
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Standard Model 
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•Gauge Symmetries


                


• Three Fermion Generations          


(I: gauge interaction eigenstates; flavor index )

GSM = SU(3)C × SU(2)L × U(1)Y

i = 1,2,3

3 3 3 1 1
2 1 1 2 1

1/6 2/3 -1/3 -1/2 -1-1

QI
Li

SU(3)C

SU(2)L

U(1)Y

UI
Ri

DI
Ri

ℓI
Li

EI
Ri



Group Work: Warm Up
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How many degrees of freedom 
are there for one generation of 
fermions in the Standard Model?



Standard Model 
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•Higgs Sector and Spontaneous Electroweak Symmetry Breaking


     ,    


     

ϕ(1,2)+1/2 ⟨ϕ⟩ = (
0

υ/ 2)
GSM → SU(3)C × U(1)EM

higgs-mecanisme.gif (GIF Image, 327x212 pixels) http://www.fys.uio.no/~farido/higgs-mecanisme.gif

1 of 1 11/27/07 10:31 PM



Standard Model - Kinetic Terms
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• Standard Model Lagrangian


     


Kinetic Terms: covariant derivative


    


     8 gluons


 3 weak gauge bosons


 1 hypercharge boson


ℒSM = ℒkinetic + ℒHiggs + ℒYukawa

Dμ = ∂μ + igsG
μ
a La + igWμ

b Tb + ig′ BμY

Gμ
a :

Wμ
b :

Bμ :

 generators of  
 generators of  

La : SU(3)
Tb : SU(2)



Standard Model - Kinetic Terms
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• Examples: 


 

 


 

ℒkinetic(QL) = iQI
Li

γμ(∂μ +
i
2

gsG
μ
a λa +

i
2

gWμ
b τb +

i
6

g′ Bμ)QI
Li

ℒkinetic(ℓL) = iℓI
Li

γμ(∂μ +
i
2

gWμ
b τb −

i
2

g′ Bμ)ℓI
Li



Standard Model - Higgs Sector
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Higgs Potential: 


         


• Two parameters:    


• Vacuum stability ⇒ 


• Spontaneous symmetry breaking ⇒ 


• W and Z gauge bosons acquire masses; gluons, photons remain 
massless


−ℒHiggs = V(ϕ) = μ2(ϕ†ϕ) + λ(ϕ†ϕ)2

μ2, λ ↔ mH, υ

λ > 0

μ2 < 0

higgs-mecanisme.gif (GIF Image, 327x212 pixels) http://www.fys.uio.no/~farido/higgs-mecanisme.gif

1 of 1 11/27/07 10:31 PM



Standard Model - Yukawa Sector
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Yukawa interactions: 


         


         


Upon electroweak symmetry breaking:     


    ⟹ charged lepton and quark masses


Non diagonal Yukawa matrices  and  ⇒ mismatch between 

quark mass eigenstates and weak gauge eigenstates

−ℒlepton
Yukawa = Ye

ij ℓI
Li

ϕ EI
Rj

+ h.c.

−ℒquark
Yukawa = Yd

ij QI
Li

ϕ DI
Rj

+ Yu
ij QI

Li
ϕ̃ UI

Rj
+ h.c.

⟨ϕ⟩ = (
0

υ/ 2)
Yu Yd



Standard Model - Counting Parameters
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Yukawa Sector has many parameters, but not all physical


Symmetry argument for parameter counting:


Ex. Hydrogen Atom in uniform magnetic field (along )


 :  symmetry ⇒ 3 degenerate energy eigenvalues


 :  symmetry


1 unbroken generator ⇾ 2D rotation on xy plane


2 broken generators ⇾ allow to align 


̂z

B = 0 SO(3)

B ≠ 0 SO(3) → SO(2)

B ∥ ̂z

OxzOyz(Bx, By, Bz) = (0, 0, B′ z)



Standard Model - Accidental Symmetries
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Standard Model has the following accidental global symmetries


                   


  


     baryon number


      lepton number


      lepton number


      lepton number

U(1)B × U(1)e × U(1)μ × U(1)τ

U(1)B :

U(1)e : Le

U(1)μ : Lμ

U(1)τ : Lτ

Total lepton number 
L = Le + Lμ + Lτ



Standard Model - Counting Parameters
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• Gauge theory w/ matter content: 


• Gauge kinetic terms: global symmetries 


• Potential respecting gauge symmetries may break 
 (global symmetry of the entire model)


• Breaking of  allow freedom to rotate away unphysical 
parameters


                


                number of broken generators

Gf

Gf → Hf

Gf

Nphys = Ngeneral − Nbroken

Nbroken :
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• General complex  matrices


• How many real parameters?


• How many phases?


• For Hermitian Matrices


• How many real parameters?


• How many phases?


• For Unitary Matrices


• How many real parameters?


• How many phases?

n × n

Group Work: Counting Parameters
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• General complex  matrices


•  Real parameters


•  Phases


• For Hermitian Matrices


•  Real parameters


•  Phases


• For Unitary Matrices


•  Real parameters


•  Phases

n × n

n2

n2

n(n + 1)/2

n(n − 1)/2

n(n − 1)/2

n(n + 1)/2

Group Work: Counting Parameters



Standard Model - Counting Parameters
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• Applying to Standard Model Quark Sector


• Gauge Kinetic terms:


        


• : 9 generators (3 real, 6 imaginary)


• Total number of generators of  = 27


• Yukawa Interactions,  : complex  matrices 

Gf = U(3)Q × U(3)U × U(3)D

U(3)

Gf

Yu, Yd 3 × 3
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• How many general parameters do  have?


• What is the global symmetry of the entire model (quark sector 
only)?


• How many broken generators?


• How many physical parameters?

Yu, Yd

Group Work: Counting Parameters
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• General parameters in  = 36


• Global symmetry: 


 : 1 generator (1 phase)











Yu, Yd

U(3)Q × U(3)U × U(3)D → U(1)B

U(1)B

Nbroken = 27 − 1 = 26

Nphysical = Ngeneral − Nbroken = 36 − 26 = 10

Nr
physical = 18 − 9 = 9

Ni
physical = 18 − 17 = 1

Group Work: Counting Parameters
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• General parameters in  = 36


• Global symmetry: 


 : 1 generator (1 phase)








  ⇒ 6 masses, 3 angles


 ⇒ 1 CP phase

Yu, Yd

U(3)Q × U(3)U × U(3)D → U(1)B

U(1)B

Nbroken = 27 − 1 = 26

Nphysical = Ngeneral − Nbroken = 36 − 26 = 10

Nr
physical = 18 − 9 = 9

Ni
physical = 18 − 17 = 1

Group Work: Counting Parameters



Standard Model - Discrete Symmetries
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• Any local Lorentz invariant QFT respect CPT


• CPT invariance: T violation ⬄ CP violation


• In SM: C, P maximally violated


• Violation independent of parameters


• SM can violate CP, depending on values of Yukawa couplings





Under CP transformation: 


 ,      unchanged


• CP invariant?

Yij ψLi
ϕ ψRj

+ Y*ij ψRj
ϕ† ψLi

𝒪 → 𝒪†, c → c

ψLi
ϕψRj

→ ψRj
ϕ†ψLi

Yij, Y*ij



Standard Model - Discrete Symmetries
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• Any local Lorentz invariant QFT respect CPT


• CPT invariance: T violation ⬄ CP violation


• In SM: C, P maximally violated


• Violation independent of parameters


• SM can violate CP, depending on values of Yukawa couplings





Under CP transformation: 


 ,      unchanged


• CP invariant if 

Yij ψLi
ϕ ψRj

+ Y*ij ψRj
ϕ† ψLi

𝒪 → 𝒪†, c → c

ψLi
ϕψRj

→ ψRj
ϕ†ψLi

Yij, Y*ij
Yij = Y*ij



Standard Model - Discrete Symmetries
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• SM can violate CP, depending on values of Yukawa couplings





• CP invariant if 


• 1 CP phase in quark sector


• More precisely, CP is violated in the SM quark sector, iff


Yij ψLi
ϕ ψRj

+ Y*ij ψRj
ϕ† ψLi

Yij = Y*ij

ℑ(det[YdYd†, YuYu†]) ≠ 0



Standard Model - CKM Matrix 
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• Most measurements done in mass basis: Higgs acquiring VEV 





     


Yukawa interactions ⇾ mass terms


 ,  


• Mismatch between weak eigenstates and mass eigenstates

ℜ(ϕ0) → (υ + H0)/ 2

QI
Li

= (
UI

Li

DI
Li

)

−ℒq
M = (Md)ij

DI
Li

DI
Rj

+ (Mu)ij
UI

Li
UI

Rj
+ h.c. Mq =

υ

2
Yq



Group Work: Normal Modes of Coupled Pendulums
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7/5/2018 hooke's law formula - Google Search

https://www.google.com/search?q=hooke%27s+law+formula&source=lnms&tbm=isch&sa=X&ved=0ahUKEwi15p-hlYjcAhUMG6wKHVu7BBgQ_AUICigB&bi… 5/14
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Standard Model - CKM Matrix 
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• Interaction → Mass basis: diagonal mass matrices


       


• Diagonalization: bi-unitary transformation


          


        

−ℒq
M = DI

Li (Md)ij
DI

Rj
+ UI

Li (Mu)ij
UI

Rj
+ h.c.

VuL
MuV†

uR
= Mdiag

u , VdL
MdV†

dR
= Mdiag

d

qLi
= (VqL)ij

qI
Lj

, qRi
= (VqR)ij

qI
Rj

, q = u, d



Standard Model - CKM Matrix 
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• Weak Charged Current Interactions: 


      


       


       


Cabibbo-Kobayashi-Maskawa (CKM) Matrix


                              ,    

qLi
= (VqL)ij

qI
Lj

, qRi
= (VqR)ij

qI
Rj

, q = u, d

−ℒq
W± =

g

2
uI

Li
γμ dI

Li
W+

μ + h.c.

=
g

2
uLi

γμ(VuL
V†

dL
)ij

dLj
W+

μ + h.c.

V = VuL
V†

dL
VV† = 𝕀



Standard Model - CKM Matrix
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Cabibbo-Kobayashi-Maskawa (CKM) Matrix   


•  not diagonal ⇒  gauge bosons couple to mass eigenstates of 

quarks of different generations


• SM: Only flavor-changing quark interactions


• Elements of CKM matrix:       


             


V = VuL
V†

dL

V W±

V =
Vud Vcd Vtd

Vus Vcs Vts

Vub Vcb Vtb



Standard Model - CKM Matrix
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Parametrization not unique:


PDG convention


V =
c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13
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Standard Model - CKM Matrix

PDG convention



Standard Model - CKM Matrix

32

Parametrization not unique:


Wolfstein Rapametrization 


V =

1 − 1
2 λ2 λ Aλ3(ρ − iη)

−λ 1 − 1
2 λ2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

+ 𝒪(λ4)

λ ∼ 0.22



Standard Model - CKM Matrix
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Different parametrizations: freedom of phase rotation


Parametrization independent measure for CPV


Jarlskog invariant


         


In terms of explicit parametrizations given above


         

ℑ(VijVklV*il V*kj) = JCKM

3

∑
m, n=1

ϵikmϵjln, (i, j, k, l = 1, 2, 3)

JCKM = c12c23c2
13s12s23s13 sin δ ≈ λ6A2η



34

• In terms of flavor parameters, sufficient conditions for CPV in 
SM quark sector: 


        


Requirements on SM for CPV?

Δm2
ij = m2

i − m2
j

Δm2
tcΔm2

tuΔm2
cuΔm2

bsΔm2
bdΔm2

sdJCKM ≠ 0

Group Work: CP Violation
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• In terms of flavor parameters, sufficient conditions for CPV in 
SM quark sector: 


        


Requirements on SM for CPV


• Within each quark sector, no mass degeneracy


• None of the mixing angles should be 0 or 


• Phase should be neither 0 or 

Δm2
ij = m2

i − m2
j

Δm2
tcΔm2

tuΔm2
cuΔm2

bsΔm2
bdΔm2

sdJCKM ≠ 0

π/2

π

Group Work: CP Violation
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Group Work: n Generations

For the CKM-like matrix describing the 
flavor couplings of  generations of up- 
and down-type quarks, how many free 

parameters are there?


How many angles and phases?

n
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Group Work: n Generations

• CKM-like matrix for  generations: 


 free parameters


• A general  orthogonal matrix:


 angles describing rotations among  dimensions


• Remaining free paraders are phases


n

2n2 − n2 − (2n − 1) = (n − 1)2

n × n

1
2

n(n − 1) n

(n − 1)2 −
1
2

n(n − 1) =
1
2

(n − 1)(n − 2)

⇒ need at least 3 generations to have CPV in CKM matrix



Standard Model - Unitarity Triangle
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• Unitarity Triangle of CKM 
Matrix: relations among matrix 
elements





• CKM: all unitarity triangles 
have same areas =  

∑
i

VidV*is = 0

JCKM /2

• Angles of unitarity triangles





Another common convention


         

α ≡ arg[−
VtdV*tb
VudV*ub ], β ≡ arg[−

VcdV*cb

VtdV*tb ], γ ≡ arg[−
VudV*ub

VcdV*cb ]

ϕ1 = β, ϕ2 = α, ϕ3 = γ



Flavor Changing Neutral Currents
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• Flavor changing charged currents: only source of flavor violating 
interactions in SM


• No fundamental reason why there cannot be FCNCs

• Experimentally, FCNCs are highly suppressed


• In SM: no tree level FCNCs; generated at loop level


• In NP: FCNCs place stringent constraints

• Distinction:


• Non-diagonal couplings

• Diagonal couplings

• Universal couplings: diagonal in any basis

• Non-universal couplings: diagonal with different strengths; 
become non-diagonal in a different basis



Flavor Changing Neutral Currents
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• Four neutral bosons that could mediate neutral currents:


• Gluons, photons, Z-boson, (Higgs boson)


• Gluons, Photons (massless):


• Exact gauge symmetries: Only couple to fermions through 
gauge kinetic terms


• Canonical kinetic terms ⇒ universal and flavor conserving 

couplings


• Gauge symmetry protects FCNCs
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• Z-boson mediated neutral current:


• Couplings to fermions 


• In interaction basis





• What happen when going to physical basis?

∝ (T3 − q sin2 θw)

−ℒZ =
g

cos θw [uI
Li

γμ( 1
2

−
2
3

sin2 θw)uI
Li

+ uI
Ri

γμ(−
2
3

sin2 θw)uI
Ri

+dI
Li

γμ( 1
2

+
1
3

sin2 θw)dI
Li

+ dI
Ri

γμ( 1
3

sin2 θw)dI
Ri]Zμ + h.c.

Group Work: FCNCs
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• Z-boson mediated neutral current:


• In interaction basis





• In physical basis





−ℒZ =
g

cos θw [uI
Li

γμ( 1
2

−
2
3

sin2 θw)uI
Li

+ uI
Ri

γμ(−
2
3

sin2 θw)uI
Ri

+dI
Li

γμ( 1
2

+
1
3

sin2 θw)dI
Li

+ dI
Ri

γμ( 1
3

sin2 θw)dI
Ri]Zμ + h.c.

−ℒZ =
g

cos θw [uLi(VuL)ik
γμ( 1

2
−

2
3

sin2 θw)(V†
uL)kj

uLj]Zμ ,

=
g

cos θw [uLi
γμ( 1

2
−

2
3

sin2 θw)uLi]Zμ

Group Work: FCNCs



Flavor Changing Neutral Currents
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• Z-boson mediated neutral current


• ,  


• compared to W-mediated charged current, 


• Generally, fields can mix if they belong to same representation 
under unbroken generators


• Theorem: To prevent FCNCs in gauge sector: particles with 
same unbroken gauge quantum numbers must also have same 
quantum numbers under the broken gauge group 


• Homework: SM satisfies this criterion

VuL
V†

uL
= 𝕀

VuL
V†

dL
= VCKM



Probing the CKM Matrix
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• Elements of CKM matrix

VCKM ∼
1 λ λ3

λ 1 λ2

λ3 λ2 1
Jq ∼ 10−5
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Consistency:

Impressive precision 

in the measurements in 
quark flavor sector.



Why BSM?
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• SM: tested to high accuracy, good low energy effective description of Nature


• Reasons for Beyond the Standard Model (BSM) New Physics


• Neutrino Mass


• Dark Matter


• Matter-antimatter asymmetry of the Universe


• Strong CP Problem


• Gauge Hierarchy Problem


• Flavor Puzzle


• Gravity


• Understanding of Charge quantization
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Standard Model of Particle Physics
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only LH neutrinos have been observed

12/2/2016 Quantum Diaries

http://www.quantumdiaries.org/2011/06/19/helicity-chirality-mass-and-the-higgs/ 2/25

This is our spinning particle. The red arrow indicates the direction of the particle’s spin. The gray arrow indicates
the direction that the particle is moving. I’ve drawn a face on the particle just to show it spinning.

The red arrow (indicating spin) and the gray arrow (indicating direction of motion) defines an orientation, or a
handedness. The particular particle above is “right-handed” because it’s the same orientation as your right hand:
if your thumb points in the direction of the gray arrow, then your fingers wrap in the direction of the red arrow.
Physicists call this “handedness” the helicity of a particle.

To be clear, we can also draw the right-handed particle moving in the opposite direction (to the left):

Note that the direction of the spin (the red arrow) also had to change. You can confirm that if you point your
thumb in the opposite direction, your fingers will also wrap in the opposite direction.

Sounds good? Okay, now we can also imagine a particle that is left-handed (or “left helicity”). For reference
here’s a depiction of a left-handed particle moving in each direction; to help distinguish between left- and right-
handed spins, I’ve given left-handed particles a blue arrow:

[Confirm that these two particles are different from the red-arrowed particles!]

An observation: note that if you only flip the direction of the gray arrow, you end up with a
particle with the opposite handedness. This is precisely the reason why the person staring back
at you in the mirror is left-handed (if you are right-handed)!

Thus far we’re restricting ourselves to matter particles (fermions). There’s a similar story for force particles
(gauge bosons), but there’s an additional twist that will deserve special attention. The Higgs boson is another
special case since it doesn’t have spin, but this actually ties into the gauge boson story.

Once we specify that we have a particular type of fermion, say an electron, we automatically have a left-helicity
and a right-helicity version.

Helicity, Relativity, and Mass

Now let’s start to think about the meaning of mass. There are a lot of ways to think about mass. For example, it
is perhaps most intuitive to associate mass with how ‘heavy’ a particle is. We’ll take a different point of view
that is inspired by special relativity.

12/2/2016 Quantum Diaries

http://www.quantumdiaries.org/2011/06/19/helicity-chirality-mass-and-the-higgs/ 1/25

Quantum Diaries
Thoughts on work and life from particle physicists from around the world.
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Helicity, Chirality, Mass, and the Higgs

We’ve been discussing the Higgs (its interactions, its role in particle mass, and its vacuum expectation value) as

part of our ongoing series on understanding the Standard Model with Feynman diagrams. Now I’d like to take a

post to discuss a very subtle feature of the Standard Model: its chiral structure and the meaning of “mass.” This

post is a little bit different in character from the others, but it goes over some very subtle features of particle

physics and I would really like to explain them carefully because they’re important for understanding the entire

scaffolding of the Standard Model.

My goal is to explain the sense in which the Standard Model is “chiral” and what that means. In order to do this,

we’ll first learn about a related idea, helicity, which is related to a particle’s spin. We’ll then use this as an

intuitive step to understanding the more abstract notion of chirality, and then see how masses affect chiral

theories and what this all has to do with the Higgs.

Helicity

Fact: every matter particle (electrons, quarks, etc.) is spinning, i.e. each matter particle carries some intrinsic

angular momentum.

Let me make the caveat that this spin is an inherently quantum mechanical property of fundamental particles!

There’s really no classical sense in which there’s a little sphere spinning like a top. Nevertheless, this turns out to

be a useful cartoon picture of what’s going on:

all particles have 
both left-handed 
and right-handed 
partners, except 

for neutrinos
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This is our spinning particle. The red arrow indicates the direction of the particle’s spin. The gray arrow indicates
the direction that the particle is moving. I’ve drawn a face on the particle just to show it spinning.

The red arrow (indicating spin) and the gray arrow (indicating direction of motion) defines an orientation, or a
handedness. The particular particle above is “right-handed” because it’s the same orientation as your right hand:
if your thumb points in the direction of the gray arrow, then your fingers wrap in the direction of the red arrow.
Physicists call this “handedness” the helicity of a particle.

To be clear, we can also draw the right-handed particle moving in the opposite direction (to the left):

Note that the direction of the spin (the red arrow) also had to change. You can confirm that if you point your
thumb in the opposite direction, your fingers will also wrap in the opposite direction.

Sounds good? Okay, now we can also imagine a particle that is left-handed (or “left helicity”). For reference
here’s a depiction of a left-handed particle moving in each direction; to help distinguish between left- and right-
handed spins, I’ve given left-handed particles a blue arrow:

[Confirm that these two particles are different from the red-arrowed particles!]

An observation: note that if you only flip the direction of the gray arrow, you end up with a
particle with the opposite handedness. This is precisely the reason why the person staring back
at you in the mirror is left-handed (if you are right-handed)!

Thus far we’re restricting ourselves to matter particles (fermions). There’s a similar story for force particles
(gauge bosons), but there’s an additional twist that will deserve special attention. The Higgs boson is another
special case since it doesn’t have spin, but this actually ties into the gauge boson story.

Once we specify that we have a particular type of fermion, say an electron, we automatically have a left-helicity
and a right-helicity version.

Helicity, Relativity, and Mass

Now let’s start to think about the meaning of mass. There are a lot of ways to think about mass. For example, it
is perhaps most intuitive to associate mass with how ‘heavy’ a particle is. We’ll take a different point of view
that is inspired by special relativity.



Fermion Mass Generation
• Two types of mass terms:


• Dirac masses

• couple left and right handed fields


• it always involve two different fields

• the additive quantum numbers of the two fields are 

opposite

• there are four d.o.f. with the same mass


II. NEUTRINO MASSES

A. Fermion masses

In general, there are two possible mass terms for fermions: Dirac and Majorana mass

terms. All fermions can have Dirac mass terms, but only neutral fermions can have Majorana

mass terms. Indeed, all the massive fermions in the SM, the quarks and charged leptons,

have Dirac mass terms. The neutrinos, however, while massless in the SM, can have both

Dirac and Majorana mass terms.

Dirac masses couple left and right handed fields

mDψLψR + h.c., (2.1)

where mD is the Dirac mass and ψL and ψR are left and right handed Weyl spinor fields,

respectively. Note the following points regarding eq. (2.1):

• Consider a theory with one or more exact U(1) symmetries. The charges of ψL and

ψR under these symmetries must be opposite. In particular, the two fields can carry

electric charge as long as Q(ψL) = Q(ψR).

• Since ψL and ψR are different fields, there are four degrees of freedom with the same

mass, mD.

• When there are several fields with the same quantum numbers, we define the Dirac

mass matrix, (mD)ij

(mD)ij(ψL)i(ψR)j + h.c., (2.2)

where i(j) runs from one to the number of left (right) handed fields with the same

quantum numbers. In the SM, the fermion fields are present in three copies, and the

Dirac mass matrices are 3 × 3 matrices. In general, however, mD does not have to be

a square matrix.

A Majorana mass couples a left handed or a right handed field to itself. Consider ψR, a

SM singlet right handed field. Its Majorana mass term is

mMψc
R ψR, ψc = C ψ

T
, (2.3)

where mM is the Majorana mass and C is the charge conjugation matrix [7]. A similar

expression holds for left handed fields. Note the following points regarding eq. (2.3):

• Since only one Weyl fermion field is needed in order to generate a Majorana mass

term, there are only two degrees of freedom that have the same mass, mM .
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Fermion Mass Generation
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Neutrino Mass in the SM

• SM implies exactly massless neutrinos


• no νR ⇒ neutrinos are massless


• no Higgs SU(2) triplet ⇒ no Majorana mass ∆LL


• SM renormalizable ⇒ no Majorana mass term 
from dim-5 operator HHLL


• Unlike mγ = 0 prediction, the mν = 0 prediction is 
somewhat accidental




Mass Spectrum of Elementary Particles in SM
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neutron
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The Higgs mechanism 
generates fermion masses, 
but does not explain the 
observed mass spectrum.

Mysteries of Masses in SM

neutron
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The Higgs mechanism 
generates fermion masses, 
but does not explain the 
observed mass spectrum.

In Standard Model:

masses given by 

undetermined Yukawa 
coupling constants

Mysteries of Masses in SM

neutron
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The Higgs mechanism 
generates fermion masses, 
but does not explain the 
observed mass spectrum.

In Standard Model:

masses given by 

undetermined Yukawa 
coupling constants

SM predicts massless Neutrinos

Mysteries of Masses in SM

neutron



Mysteries of Masses and Flavor Mixing in SM

• Charged current weak interaction mediated by W± gauge 
boson:

57

Nobel prize to 
KM in 2008

Mysteries of Masses and Mixing in SM

• charged current weak interaction mediated by W± gauge boson:

7

weak eigenstates 
≠ 

mass eigenstates

Mu-Chun Chen, UC Irvine                                       Münchner Physik Kolloquium - TUM                                                               06/18/2012

3 mixing angle
1 phase

Nobel prize to KM

3 mixing angles + 1 phase

weak 
eigenstates = 


mixture of 
mass 

eigenstates

Cabibbo, 1963;
 Kobayashi, Maskawa, 1973 

s b t

where mD ≡ Yνv. Using

Tr(mν) = MN , | det(mν)| = m2
D , (2.12)

to first order in v/MN we find

mνR
= MN mνL

=
m2

D

MN
. (2.13)

Comparing this result with eq. (2.9) one identifies the new physics scale M with MN and the

new physics coupling λ with Y 2
ν . We learn that the seesaw mechanism is indeed a realization

of the effective field theory approach for neutrino masses.

D. Neutrino mixing

Massive neutrinos generally mix. The neutrino mass terms break the accidental family

lepton number symmetries. (Total lepton number is also violated if the neutrinos have

Majorana masses.) This phenomenon is very similar to quark mixing in the SM. It is

therefore instructive to describe both lepton and quark mixing in parallel.

For quarks, the Cabibbo-Kobayashi-Maskawa (CKM) matrix, V , corresponds to non-

diagonal charged current interactions between quark mass eigenstates

g√
2
(uL)iVijγ

µ(dL)jW
+
µ , i = u, c, t , j = d, s, b . (2.14)

For leptons, it is common to use two different bases. The flavor basis is defined to be the

one where the charged lepton mass matrix and the W interactions are diagonal. In the

mass basis both the charged lepton and the neutrino mass matrices are diagonal, but the W

interaction is not. In that basis the leptonic mixing matrix U is the analogue of the CKM

matrix.3 Namely, it shows up in the charged current interactions

g√
2
#LU"iγ

µ(νL)iW
−

µ , # = e, µ, τ , i = 1, 2, 3 . (2.15)

When working in the mass basis, the formalism of quark and lepton flavor mixings are

very similar. The difference between these two phenomena arises due to the way neutrino

3 Recently, in many papers the matrix U is called the Maki-Nakagawa-Sakata (MNS) matrix, UMNS, or the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, UPMNS, since these authors were the first to discuss

leptonic flavor mixing. Others call it the CKM or KM analogue for the lepton sector since Kobayashi and

Maskawa were the first to discuss CP violation from such matrices. Here we adopt the notation of [4]

and call U the leptonic mixing matrix. The fact that the CKM matrix is denoted by V helps in avoiding

confusion.

8



Mysteries of Masses and Flavor Mixing in SM

• Neutrino Masses are degenerate (all zero)

• mass eigenstates = weak eigenstates


• Accidental symmetries in SM

• lepton flavor numbers: Le, Lμ, Lτ


• no processes cross family lines in lepton sector

• As a result


• no neutrino oscillation

• lepton flavor violation decays forbidden


• total lepton number conserved:  L = Le + Lμ + Lτ
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μ e



Neutrino Oscillation  ⇒ Massive Neutrinos

• Neutrino Masses are non-degenerate (at least two are non-zero)

• mass eigenstates ≠ weak eigenstates


• Accidental symmetries in SM

• Broken lepton flavor numbers: Le, Lμ, Lτ


• Processes cross family lines in lepton sector now possible

• As a result


• neutrino oscillation

• lepton flavor violation decays?


• total lepton number?  L = Le + Lμ + Lτ
59

μ e?

7/5/2018 Fermi National Accelerator Laboratory - Home

https://www.facebook.com/Fermilab/photos/pcb.10156642551968969/10156642549958969/?type=3&theater 1/1

? ⬌

✔



What if Neutrinos Have Mass?

• Similar to the quark sector, there can be a mismatch between mass eigenstates 
and weak eigenstates


• weak interactions eigenstates: νe, νμ, ντ


• mass eigenstates: ν1, ν2, ν3

• Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix

60

Maki, Nakagawa, Sakata,  1962 ;  
Pontecorvo, 1967

3 mixing angles 

+ 1 (3) phase(s) for 

Dirac (Majorana) 
neutrinos
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diagonal charged current interactions between quark mass eigenstates
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µ(dL)jW
+
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For leptons, it is common to use two different bases. The flavor basis is defined to be the

one where the charged lepton mass matrix and the W interactions are diagonal. In the
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interaction is not. In that basis the leptonic mixing matrix U is the analogue of the CKM

matrix.3 Namely, it shows up in the charged current interactions
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When working in the mass basis, the formalism of quark and lepton flavor mixings are

very similar. The difference between these two phenomena arises due to the way neutrino
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Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, UPMNS, since these authors were the first to discuss
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Recall: n Generations

• CKM-like matrix for  generations: For Dirac fermions


 free parameters


• A general  orthogonal matrix:


 angles describing rotations among  dimensions


• Remaining free parameters are phases


n

2n2 − n2 − (2n − 1) = (n − 1)2

n × n

1
2

n(n − 1) n

(n − 1)2 −
1
2

n(n − 1) =
1
2

(n − 1)(n − 2)

⇒ need at least 3 generations to have CPV in CKM matrix



What happens for Majorana neutrinos? 


How many unphysical parameters can 
we rotate away by phase redefinition?


What is the smallest number of 
families in order to have CPV?
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Recall: n Generations
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Recall: n Generations

• CKM-like matrix for  generations: For Majorana fermions? 


 free parameters


• A general  orthogonal matrix:


 angles describing rotations among  dimensions


• Remaining free parameters are phases


n

2n2 − n2 − (2n − 1) = (n − 1)2

n × n

1
2

n(n − 1) n

(n − 1)2 −
1
2

n(n − 1) =
1
2

(n − 1)(n − 2)

⇒ need at least 2 generations to have CPV for Majorana neutrinos

(2n − 1) → n

n2 − n

n2 − n 1
2

n(n − 1)



Where Do We Stand?
• Latest 3 neutrino global analysis:


64

➡ hints of θ23 ≠ π/4

➡ expectation of Dirac CP phase δ 

➡ slight preference for normal mass ordering

Gonzalez-Garcia, Maltoni, Schwetz (NuFIT), 
2111.03086
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☞ Majorana vs Dirac? 


☞ CP violation in lepton sector? 


☞ Absolute mass scale of neutrinos?


☞ Mass ordering: sign of (Δm132)?


☞ Sterile neutrino(s)?


☞ Precision: θ23 > π/4, θ23 < π/4, θ23 = π/4 ? 

Open Questions - Neutrino Properties

a suite of current and upcoming 
experiments to address these puzzles
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☞ Majorana vs Dirac? 


☞ CP violation in lepton sector? 


☞ Absolute mass scale of neutrinos?


☞ Mass ordering: sign of (Δm132)?


☞ Sterile neutrino(s)?


☞ Precision: θ23 > π/4, θ23 < π/4, θ23 = π/4 ? 

Open Questions - Neutrino Properties

a suite of current and upcoming 
experiments to address these puzzles

To understand these properties 
⇒ BSM Physics



Part II: Flavor Symmetries
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The known knowns:

68

Where Do We Stand?

~2 x 10-3 eV2

~2 x 10-3 eV2

~7 x 10-5 
eV2

~7 x 10-5 eV2



69

  ☞ Smallness of neutrino mass:

Open Questions - Theoretical

mν ≪ me, u, d

neutron
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  ☞ Smallness of neutrino mass:

Open Questions - Theoretical

mν ≪ me, u, d

  ☞ Flavor structure:

6

  ☞ Smallness of neutrino mass:

Open Questions - Theoretical

mν ≪ me, u, d

  ☞ Flavor structure:

quark mixing leptonic mixing

[ [] ]
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  ☞ Smallness of neutrino mass:

Open Questions - Theoretical

mν ≪ me, u, d

  ☞ Flavor structure:

quark mixing leptonic mixing

[ [] ]
Fermion mass and hierarchy problem ➟ 

Many free parameters in the Yukawa 
sector of SM
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Group Work: Parameter Counting in SM

How many free physical parameters are 
there in the Yukawa sector of SM w/ 3 

RH neutrinos (assuming Majorana 
neutrinos)?
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Fermion mass and hierarchy 
problem ➟ Many (22) free 

parameters (out of 28) in the 
Yukawa sector of SM
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Where do fermion mass hierarchy, 
flavor mixing, and CP violation come 

from?
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Where do fermion mass hierarchy, 
flavor mixing, and CP violation come 

from?
Is there a simpler organization principle?
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Where do fermion mass hierarchy, 
flavor mixing, and CP violation come 

from?

Where do neutrinos get their masses?

Is there a simpler organization principle?
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Where do fermion mass hierarchy, 
flavor mixing, and CP violation come 

from?

Where do neutrinos get their masses?

Is there a simpler organization principle?

Is it the Higgs or something else that 
gives neutrino masses?



Matter-Antimatter Asymmetry
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Scientists have discovered that neutrinos have
tiny masses, in contradiction to the theoretical
model that describes neutrino interactions.
Credit: symmetry magazine

The Big Bang produced large amounts of matter
and antimatter (top). When matter and
antimatter annihilated, some tiny asymmetry in
the early universe produced our universe, made
entirely of matter (bottom). Did neutrinos cause
the asymmetry? 
Credit: Hitoshi Murayama
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Why neutrinos?
Particle physics has been very successful in creating the Standard Model, a
theoretical framework that describes many particle physics phenomena. However,
major discoveries such as the evidence for dark matter and the observation of
neutrino mass have shown that the Standard Model is incomplete. These findings
strongly suggest that new physics discoveries beyond the Standard Model await us.

Neutrinos could provide the path to unveiling these hidden physics phenomena. In
particular, physicists hope that neutrinos will shed light on these questions:

Why is the universe as we know it made of matter, with no antimatter present?
What is the origin of this matter-antimatter asymmetry, also known as CP
violation?
Are neutrinos connected to the matter-antimatter asymmetry, and if so, how?
If neutrinos exhibit CP violation, is it related to the CP violation observed in
quark interactions?
Are neutrinos their own antiparticles?
What role did neutrinos play in the evolution of the universe?

Physicists have discovered three types of neutrinos so far: electron neutrinos, muon
neutrinos and tau neutrinos. Although neutrinos are among the most abundant
particles in the universe, they rarely interact with other matter. Hence, they are often
referred to as ghost particles.

"For every electron, for every proton, for every neutron, there are about a billion neutrinos... every second there are 100 trillion neutrinos
from the sun passing through each person," says Fermilab theorist Boris Kayser. "It's the neutrinos and photons, particles that make up light
beams, that are by far the most abundant particles in the universe."

Kayser further explains that a recent theory has developed, which is that the neutrinos may have something very important to do with how
the universe came to be dominated by matter and have no antimatter. "Life is possible only because there is no antimatter around. When
matter and antimatter meet, they annihilate each other."

By generating huge numbers of neutrinos using high-intensity accelerators and by building large detectors that increase the chance of
neutrino observation, physicists can study these mysterious particles and learn more about their role in the universe. The proposed Long-
Baseline Neutrino Experiment will give physicists the chance to push the door wide open to search for physics beyond the Standard Model
and allow them to make exciting discoveries at the Intensity Frontier.

Further reading:
For an excellent introduction to the neutrino physics opportunities presented by the
proposed Deep Underground Science and Engineering Laboratory (DUSEL, no
longer a funded entity), read this chapter in the report Deep Science, published by
the National Science Foundation.

Details on the scientific questions surrounding neutrinos and their properties and
interactions are given in this summary by Boris Kayser and Stephen Parke, members
of the Fermilab theory group.
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What is the origin of matter antimatter 
asymmetry? Why do we exist?



Neutrino Mass beyond the SM

• Two options: 

• add RH neutrinos N(1,1)0 ⇒ Dirac mass 

• why Yukawa couplings are small 

• why there are no large Majorana mass terms for RH neutrinos 

• add Higgs SU(2) triplet ∆ ⇒ Majorana mass ∆LL 

• why 〈∆〉    〈H〉 

• Generally, in these models 

• new fields are introduced only to generate neutrino mass 

• there is no understanding of why neutrinos are light

≪

mD�L�R



Neutrino Mass beyond the SM

• The SM is an effective low energy theory, with NR 
terms. NP effects are suppressed by powers of 
small parameter 

• Neutrino masses are generated by so-called 
Weinberg operator 

                      HHℓiℓj

MW

Λ



Group Work: Mass Dimension

What is the mass dimension of the 
Weinberg Operator,  ?


How does it appear in the Lagrangian?

HHℓiℓj

81



Neutrino Mass beyond the SM

• The SM is an effective low energy theory, with NR 
terms. NP effects are suppressed by powers of 
small parameter 

• Neutrino masses are generated by so-called 
Weinberg operator, dim-5 

λij are dimensionless couplings 

 is some high scaleΛ

MW

Λ

λij

Λ
HHℓiℓj ⇒ mν = λij

υ2

Λ



Group Work: Weinberg Operator

What symmetry/symmetries does the 
Weinberg operator break? 

83

HHℓiℓj

Λ



Neutrino Mass beyond the SM

• promoting SM to an effective field theory implies 

                  mν ≠ 0 

• mν is small because it arises from NR terms (  is high) 

• Neutrino mass therefore probe the high energy physics 

• Both total lepton number and family lepton numbers are 
broken 

➡  lepton mixing and CP violation expected

Λ

λij

Λ
HHℓiℓj ⇒ mν = λij

υ2

Λ



Seesaw Mechanism

• Consider one generation SM with an additional 
singlet  

 is a Majorana mass of the RH neutrino 

the 2nd term: Dirac mass term 

• In the (νL, NR) basis, the neutrino mass matrix is 

N(1, 1)0

MN ≫ υ

Lm� = 1
2MNNN + Y�HLN

m� =
�

0 mD

mD MN

⇥
mD = Y�v



Group Work: Seesaw Mechanism

Assuming , what are the two 

eigenvalues at leading order?

MN ≫ υ

86

m� =
�

0 mD

mD MN

⇥



Seesaw Mechanism

• Assuming  to first order, 

• the new physics scale M is identified with MN  

• the seesaw scale can be generalized to three generations 

• seesaw is realized in, e.g. Left-Right, Pati-Salam, and 
GUT models

MN ≫ υ

m� =
�

0 mD

mD MN

⇥

mNR = MN , m�L = m2
D

MN
, (EFT: m� = � v2

M )



Group Work: Seesaw Mechanism

What is needed to populate the (1 1) 

entry with a non-vanishing 

contribution?

88

m� =
�

0 mD

mD MN

⇥



Neutrino Mass beyond the SM

• SM: effective low energy theory


• only one dim-5 operator: most sensitive to high scale physics


• mν ~ (Δm2atm)1/2  ~ 0.1 eV with v ~ 100 GeV, λ ~ O(1) ⇒ M ~ 1014 GeV 


• Lepton number violation ∆L = 2 ➩ Majorana fermions
89

L = LSM +
O5D

M
+
O6D

M2
+ ... (1)

1

new physics effects

�ij

M HHLiLj � m⇥ = �ij
v2

M

Weinberg, 1979

GUT scale



Group Work: UV Completion for Weinberg Operator

Schematically, how do you UV complete the 

Weinberg Operator? What can be the “portal” 

particles?
90



L L

H H

Type-I seesaw Type-II seesaw Type-III seesaw
Seesaw model has been previously shown [11] to induce a non-unitary leptonic mixing
matrix. In this work we will explicitly analyze the issue for the other types of Seesaw
models.
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Figure 1: The three generic realizations of the Seesaw mechanism, depending on the
nature of the heavy fields exchanged: SM singlet fermions (type I Seesaw) on the left,
SM triplet scalars (type II Seesaw) and SM triplet fermions (type III Seesaw) on the
right.
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NR: SU(3)c x SU(2)w x U(1)Y ~(1,1,0)

Minkowski, 1977; Yanagida, 1979; Glashow, 1979; 

Gell-mann, Ramond, Slansky,1979; 

Mohapatra, Senjanovic, 1979; 
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Seesaw model has been previously shown [11] to induce a non-unitary leptonic mixing
matrix. In this work we will explicitly analyze the issue for the other types of Seesaw
models.
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right.
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Foot, Lew, He, Joshi, 1989; Ma, 1998
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exist seven massive physical Higgs bosons: two neutral Higgses, H1, H2, one CP
odd Higgs, A, two singlet charged Higgses, H±, and two doubly charged Higgses,
H

±±.
The generic prediction of the model is the existence of the doubly charged Hig-

gses, which couple only to the leptons, but not to the quarks. A unique signature
of this class of model is that the doubly charged Higgses decay into same sign di-
leptons (for a recent general discussion on the same sign dilepton signals at the
collider experiments, see, Ref. 9),

�±±
! `

±
`
±
, (` = e, µ, ⌧) (5)

which do not have any SM or MSSM backgrounds. As pointed out in Ref. 10, the
doubly charged Higgses can be produced at the LHC via the Drell-Yan,

qq ! �
⇤
, Z

⇤
! H

++
H

��
, qq

0
! W

⇤
! H

±±
H

⌥
. (6)

As the production of the triplet Higgs is through the gauge interactions, it is in-
dependent of the small light-heavy neutrino mixing and consequently can have un-
suppressed production cross section, in contrast to the case of the Type-I seesaw.
It has been shown that, for a triplet mass in the range of (200-1000) GeV, the cross
section can be 0.1-100 fb. With 300 fb�1, a doubly charged Higgs, �++, with mass
of 600 GeV can be discovered at the LHC.

Phenomenology associated with the triplet Higgs at a linear collider has also
been investigated11.

2.1.3. Type-III Seesaw

The Weinberg operator can also be UV completed by the mediation of a SU(2)L
triplet fermion, ⌃ = (⌃+

,⌃0
,⌃�), with zero hypercharge12. The e↵ective neutrino

mass is y2
⌫
v
2
/⇤, where y⌫ is the Dirac Yukawa coupling of the triplet lepton to the

SM lepton doublet and the Higgs and ⇤ is the lepton number violation scale. To
have ⇤ ⇠ 1 TeV, y⌫ has a value ⇠ 10�6.

Because the triplet lepton ⌃ has weak gauge interactions, their production cross
section is unsuppressed, contrary to the case of the Type-I seesaw. The signature
with relatively high rate is13

pp ! ⌃0⌃+
! ⌫W

+
W

±
`
⌥
! 4 jets + /ET + ` . (7)

As the masses of ⌃± and ⌃0 are on the order of sub-TeV region, the displaced
vertices from the primary production vertex in the ⌃0, ⌃± decays can be visible13.
The triplet lepton lifetime is related to the e↵ective neutrino mass spectrum

⌧  1 mm⇥

✓
0.05 eVP

i
mi

◆✓
100 GeV

⇤

◆2

. (8)

For the normal hierarchy case (
P

i
mi ' 0.05 eV), this leads to ⌧  1 mm for ⇤ '

100 GeV. (For other collider studies, see Ref. 14.) In addition, in the supersymmetric

ΣR: SU(3)c x SU(2)w x U(1)Y ~(1,3,0) Lazarides, 1980; Mohapatra, Senjanovic, 1980

3 possible portals
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Neutrino Mass beyond the SM



Why are neutrinos light? Seesaw Mechanism

• Adding the right-handed 
neutrinos:

92

If

Minkowski, 1977;  Yanagida, 1979;  Gell-Mann, 
Ramond, Slansky, 1979; Mohapatra, Senjanovic, 

1981



Ultimate Goal of Grand Unification

• Maxwell: electric and magnetic forces are different aspects of electromagnetism

• Einstein: early attempt to unify electric force and gravity

93

Weinberg, Salam, Glashow: electroweak Theory Nobel prize 
1979



Grand Unification

• Motivations:


• Electromagnetic, weak, and strong 
forces have very different 
strengths


• But their strengths become the 
same at 1016 GeV if there is 
supersymmetry


         1016 GeV ~ 10-30 meters 


• To obtain


• Neutrino oscillations probe 
physics at unification scale!
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EM *

weak

strongmν ~ (Δm2atm)1/2, 

mD ~ mtop,  MR ~ 1015 GeV

MGUT

Dimopoulos, Raby, Wilczek, 1981

LHC

coupling strengths run!

neutrino mass 
from seesaw 

MGUT

~1016 GeV



Grand Unification

95

Georgi, Glashow, 1974

Fritzsch, Minkowski, 1975SO(10):

quarks and leptons  
are close relatives

matter fields come  
in 3 copies

charge quantization 
can be understood

16 = 10 + 5* + 1 RH neutrino 
predicted



Grand Unification Naturally Accommodates Seesaw

96

LHC neutrino mass 
from seesaw 

Fritzsch, Minkowski, 1975

Grand Unification

10

EM *

weak

strong

MGUT

Dimopoulos, Raby, Wilczek, 1981

LHC

coupling strengths run!

neutrino mass 
from seesaw 

Fritzsch, Minkowski, 1975

SO(10):
☞ origin of the heavy scale ⇒ U(1)B-L   
☞ exotic mediators ⇒ predicted in 

many GUT theories, e.g. SO(10)

Fritzsch, Minkowski, 1975

☞ exotic mediators for Type II, III  
harder to get from string theory

Dienes, March-Russell, 1996



Flavor Structure 
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Flavor Structure

• there are parametrically small numbers 

• m2/m3 < 1  ,   θ13 < 1  

• In general, large mixing ⇔ no hierarchy 

• a >> b, c  ⇒  sin2θ << 1,  m1/m2 << 1 

• a,b,c ~ 1 ⇒ det(m) ~ 1 ⇒ sin2θ~1,  m1/m2 ~ 1 

• a,b,c ~ 1 ⇒ det(m) << 1 ⇒ sin2θ~1,  m1/m2 << 1

m =
�

a b
b c

⇥



DPF 2004 André de Gouvêa, Northwestern University

Example:

zeroth order guesses

that capture dominant

features of neutrino

mixing (textures).

Note correlations.

Case Texture Hierarchy |Ue3| | cos 2�23| (n.s.) | cos 2�23| Solar Angle

A
⇤

�m2
13

2

�

⇧⇧⇧⇤

0 0 0

0 1 1

0 1 1

⇥

⌃⌃⌃⌅ Normal
�

�m2
12

�m2
13

O(1)
�

�m2
12

�m2
13

O(1)

B
⌥

�m2
13

�

⇧⇧⇧⇤

1 0 0

0 1
2 �1

2

0 �1
2

1
2

⇥

⌃⌃⌃⌅ Inverted �m2
12

|�m2
13| – �m2

12
|�m2

13| O(1)

C
⇤

�m2
13�

2

�

⇧⇧⇧⇤

0 1 1

1 0 0

1 0 0

⇥

⌃⌃⌃⌅ Inverted �m2
12

|�m2
13| O(1) �m2

12
|�m2

13| | cos 2�12| ⇥ �m2
12

|�m2
13|

Anarchy
⌥

�m2
13

�

⇧⇧⇧⇤

1 1 1

1 1 1

1 1 1

⇥

⌃⌃⌃⌅ Normala > 0.1 O(1) – O(1)

aOne may argue that the anarchical texture prefers but does not require a normal mass hierarchy.

1

Its is important to ask what each specific flavor model is teaching us. We have

to get more out of them then simply the values of the fermion masses and mixing angles

Do they predict anything else? Do they tell anything about GUTs?, etc

August 27, 2004 Neutrino Physics Theory



Flavor structure 

anarchy symmetryvs
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Symmetry Relations
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Grand Unified Theories: GUT symmetry (vertical)

Family Symmetry: (horizontal)

Quarks ⬌ Leptons

e-family ⬌ muon-family ⬌ tau-family
33

The Horizontal Symmetry

• Three families are the

same under vertical

symmetry; yet

different under

horizontal symmetry

• Zeros in the mass

matrices are protected

by a family symmetry

SU(2)F

uuu

ddd

eee

sss

ttt

bbb

!!!µµµ

"""µµµ

!!!"""

ccc

!!!eee

SU(2)F

SU(10)



Symmetry Relations
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Symmetry ⇒ relations among parameters 
⇒ reduction in number of fundamental 

parameters

Symmetry ⇒ experimentally testable 
correlations among physical observables



Froggatt-Nielsen Mechanism
Flavor, CP, and baryons Fermion masses and the early universe

Froggatt–Nielsen scenarios

+ Popular scenario for addressing flavor hierarchies: Froggatt–Nielsen
scenario

Froggatt and Nielsen [1979]

+ E.g. e�ective Lagrangean for charged lepton masses

L ∏ y
fg

0

1 ÂS
�

2nfg

e
g

R
· „

ú
· ¸

f

L
+ h.c.

O(1)

flavon

nfg = q
(f)

R
≠ q

(g)

L

+ Assume ÂS acquires VEV vS = Á �

Â Hierarchical Yukawa couplings and nontrivial mixing angles

question:

Is that the only role of the flavon ÂS?

Mu–Chun Chen, UC Irvine Beyond 2019, Warsaw 5/ 38
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υS̃ ∼ λΛ



Froggatt-Nielsen Mechanism
Flavor, CP, and baryons Fermion masses and the early universe

Froggatt–Nielsen scenarios

+ Popular scenario for addressing flavor hierarchies: Froggatt–Nielsen
scenario

Froggatt and Nielsen [1979]

+ E.g. e�ective Lagrangean for charged lepton masses

L ∏ y
fg

0

1 ÂS
�

2nfg

e
g

R
· „

ú
· ¸

f

L
+ h.c.

O(1)

flavon

nfg = q
(f)

R
≠ q

(g)

L

+ Assume ÂS acquires VEV vS = Á �

Â Hierarchical Yukawa couplings and nontrivial mixing angles

question:

Is that the only role of the flavon ÂS?

Mu–Chun Chen, UC Irvine Beyond 2019, Warsaw 5/ 38



Froggatt-Nielsen Mechanism
Flavor, CP, and baryons Fermion masses and the early universe
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Gauging the U(1) 
symmetry, what 

constraints do we have 
on the model? 



Origin of Flavor Mixing and Mass Hierarchy

109

33

The Horizontal Symmetry

• Three families are the

same under vertical

symmetry; yet

different under

horizontal symmetry

• Zeros in the mass

matrices are protected

by a family symmetry

SU(2)F

uuu

ddd

eee

sss

ttt

bbb

!!!µµµ

"""µµµ

!!!"""

ccc

!!!eee

SU(2)F

SU(10)
GUT 

Symmetry
SU(5), 

SO(10), ...

family symmetry 
(T′, SU(2), ...)

Large neutrino mixing

⇒ discrete family symmetry

[Eligio Lisi for NOW2008 ]



Origin of Flavor Mixing and Mass Hierarchies

• several models have been constructed based on 


•GUT Symmetry [SU(5), SO(10)] ⊕ Family 
Symmetry GF   


•models based on discrete family symmetry groups 
have been constructed 


•A4 (tetrahedron)


• T´ (double tetrahedron) 


•S3 (equilateral triangle)


•S4 (octahedron, cube)


•A5 (icosahedron, dodecahedron)


• ∆27 


•Q6 
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The Horizontal Symmetry

• Three families are the

same under vertical

symmetry; yet

different under

horizontal symmetry

• Zeros in the mass

matrices are protected

by a family symmetry

SU(2)F

uuu

ddd

eee

sss

ttt

bbb

!!!µµµ

"""µµµ

!!!"""

ccc

!!!eee

SU(2)F

SU(10)

GUT Symmetry
SU(5), SO(10), …

family symmetry 
(T′, SU(2), ...)
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TBM and Coupled Pendulums

x1 x2 x3
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TBM and Coupled Pendulums

(1, 0, -1) (1, 1, 1)

(1, -2, 1)



Tri-bimaximal Neutrino Mixing

• Latest Global Fit (3σ)

• Tri-bimaximal Mixing Pattern Harrison, Perkins, Scott (1999)

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2⇧

limits for the mixing parameters [1],

sin
2 ⇤12 = 0.30 (0.25� 0.34), sin

2 ⇤23 = 0.5 (0.38� 0.64), sin
2 ⇤13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =

�

⇧⇧⇧⇤

⌥
2/3 1/

⇧
3 0

�
⌥

1/6 1/
⇧

3 �1/
⇧

2

�
⌥

1/6 1/
⇧

3 1/
⇧

2

⇥

⌃⌃⌃⌅
, (2)

which predicts sin
2 ⇤atm, TBM = 1/2 and sin ⇤13,TBM = 0. In addition, it predicts sin

2 ⇤⇥,TBM = 1/3

for the solar mixing angle. Even though the predicted ⇤⇥,TBM is currently still allowed by the

experimental data at 2⇧, as it is very close to the upper bound at the 2⇧ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1
⇤
, 1

⇤⇤
and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a di⇥erent finite group, the double tetrahedral group,
(d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition,
(d)T has three in-equivalent

doublets, 2, 2
⇤
, and 2

⇤⇤
, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing
(d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⇤ 1 representation assignments under
(d)T , and the

prediction for the solar mixing angle is ⌅ 10
�3

, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the
(d)T to
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sin2 ✓23 = 0.437 (0.374� 0.626)

sin2 ✓12 = 0.308 (0.259� 0.359)

sin2 ✓13 = 0.0234 (0.0176� 0.0295)

1

[θlep23 ~ 49.2°]

[θlep12 ~ 33.4°]

[θlep13 ~ 8.57°]

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou (2020)



Non-Abelian Finite Family Symmetry A4

• TBM mixing matrix: can be realized with finite group family 
symmetry based on A4


• A4:  even permutations of 4 objects

     


• How many such permutations (i.e. group elements)?
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Ma, Rajasekaran (2001); Babu, Ma, Valle (2003); ...



Non-Abelian Finite Family Symmetry A4

• TBM mixing matrix: can be realized with finite group family 
symmetry based on A4


• A4:  even permutations of 4 objects

      S: (1234) → (4321)

      T: (1234) → (2314)


• Group of order 12

• Invariant group of tetrahedron
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Ma, Rajasekaran (2001); Babu, Ma, Valle (2003); ...



TBM from A4 Group

T: (1234) → (2314) S: (1234) →(4321)
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S2 = 1,   (ST)3 = 1,   T3 = 1



A4 Group Theory

117

S2 = 1,   (ST)3 = 1,   T3 = 1Irreps: 1, 1′ , 1′ ′ , 3

1 : S = 1, T = 1
1′ : S = 1, T = e4πi/3 ≡ ω2

1′ ′ : S = 1, T = e2πi/3 ≡ ω

3 : T =
1 0 0
0 ω2 0
0 0 ω

, S =
1
3 (

−1 2 2
2 −1 2
2 2 −1)

12 group elements: 1, S, T, ST, TS, T2, ST2, STS, TST, T2S, TST2, T2ST



Tri-bimaximal Neutrino Mixing

• fermion charge assignments:


• SM Higgs ~ singlet under A4

• operators for neutrino masses:


• two scalar (flavon) fields for neutrino sector:


• product rules:
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T ⇥ � invariant:
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Tri-bimaximal Neutrino Mixing

• fermion charge assignments:

• SM Higgs ~ singlet under T!

• operator for neutrino masses: 

• two scalar (flavon) fields for neutrino sector: 

• product rules:
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
⇥2

ytsH5T3Ta⌃� +
1
⇥2

ycH5TaTa⇧
2 +

1
⇥3

yuH5TaTa⇧
�3 (4)

LTF =
1
⇥2

ybH5FT3⇧� +
1
⇥3

⇤
ys�45FTa⇧⌃N + ydH5FTa⇧

2⌃�
⌅

(5)

LFF =
1

Mx⇥

⇤
⇤1H5H5F F ⌅ + ⇤2H5H5F F⇥

⌅
, (6)

where Mx is the cuto⇤ scale at which the lepton number violation operator HHF F is generated,

while ⇥ is the cuto⇤ scale, above which the (d)T symmetry is exact. The parameters y’s and ⇤’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,
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where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [9],
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1
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)⇥ (d)T symmetry in Table II. By imposing an additional Z12⇥Z �
12 symmetry,
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [9].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)⇥ (d)T symmetry in Table II. By imposing an additional Z12⇥Z �
12 symmetry,
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1
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, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈

ξ
〉

= ξ0Λ











1

1

1











,
〈

φ′
〉

= φ′
0Λ











1

1

1











, (7)
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where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [10],
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [10].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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The Lagrangian of the model is given as follows,
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[

λ1H5H5F F ξ + λ2H5H5F Fη

]

, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,
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while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [10].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,
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A4 A4

Altarelli, Feruglio (2005)



Tri-bimaximal Neutrino Mixing

• Neutrino Masses: triplet flavon contribution


• Neutrino Masses: singlet flavon contribution

• resulting mass matrix:
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where

3S =
1

3





2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1



 3A =
1

2





α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3





1 = α1β1 + α2β3 + α3β2

1′ = α3β3 + α1β2 + α2β1

1′′ = α2β2 + α1β3 + α3β1 .

9 Appendix B

In this appendix we discuss the subleading terms of the superpotential wd and how they

correct the VEV alignment. We work along the lines of the appendix B of [6].
The VEVs are shifted from the values

〈ϕS〉 = (vS, vS, vS) , 〈ϕT 〉 = (vT , 0, 0) , 〈η〉 = (v1, 0) , 〈ξ〉 = u , 〈ξ̃〉 = 0 , 〈ξ′ ′〉 = 0

to the values

〈ϕS〉 = (vS + δvS 1, vS + δvS 2, vS + δvS 3) , 〈ϕT 〉 = (vT + δvT 1, δvT 2, δvT 3) ,

〈η〉 = (v1 + δv1, δv2) , 〈ξ〉 = u , 〈ξ̃〉 = δũ , 〈ξ′ ′〉 = δu′ ′

where the corrections δvT i, δvS i, δvi, δũ and δu′ ′ are independent of each other. Note
that there also might be a correction to the VEV u, but we do not have to indicate this
explicitly by the addition of a term δu, since u is undetermined at tree-level anyway.

We change the notation in eq. (31) a bit by defining

g3 ≡ 3 g̃2
3 , g4 ≡ −g̃2

4 and g8 ≡ i g̃2
8

such that the VEVs read
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where we have chosen the “+” sign for the VEV v1. Apart from the subleading terms

which are already presented in [6] we get 17 other invariants which involve at least one of
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The VEVs are shifted from the values

〈ϕS〉 = (vS, vS, vS) , 〈ϕT 〉 = (vT , 0, 0) , 〈η〉 = (v1, 0) , 〈ξ〉 = u , 〈ξ̃〉 = 0 , 〈ξ′ ′〉 = 0

to the values

〈ϕS〉 = (vS + δvS 1, vS + δvS 2, vS + δvS 3) , 〈ϕT 〉 = (vT + δvT 1, δvT 2, δvT 3) ,

〈η〉 = (v1 + δv1, δv2) , 〈ξ〉 = u , 〈ξ̃〉 = δũ , 〈ξ′ ′〉 = δu′ ′

where the corrections δvT i, δvS i, δvi, δũ and δu′ ′ are independent of each other. Note
that there also might be a correction to the VEV u, but we do not have to indicate this
explicitly by the addition of a term δu, since u is undetermined at tree-level anyway.

We change the notation in eq. (31) a bit by defining

g3 ≡ 3 g̃2
3 , g4 ≡ −g̃2

4 and g8 ≡ i g̃2
8

such that the VEVs read

vS =
g̃4

3 g̃3
u , vT =

Mη

g9
and v1 =

1√
3 g̃8 g9

√

2 g M2
η + 3 g9 M Mη

where we have chosen the “+” sign for the VEV v1. Apart from the subleading terms

which are already presented in [6] we get 17 other invariants which involve at least one of
the new fields η1,2, ξ′ ′, η0

1,2 and ξ′ 0:

∆wd 2 =
1

Λ

(
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S
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4 +
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4
∑
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Y
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under which the transformation properties of various fields are summarized in Table I, the above

Lagrangian is the most general one. Here the operators that couple to H5T3T3 are not shown in the

above Lagrangian as their contributions can be absorbed into a redefinition of the coupling constant

yt. In addition, we neglect the operator H5FT3�⌥⌥� in LTF since its contribution is negligible.

Also not shown are those that contribute to LFF which can be absorbed into a redefinition of the

parameter u and ⌃0. Note that in principle, viable phenomenology may still be obtained when

more operators are allowed, The additional discrete symmetry that is needed in that case would be

smaller. Nevertheless, more Yukawa coupling constants will be present and the model would not

be as predictive. The Z12 ⇥ Z �
12 symmetry also forbids proton and other nucleon decay operators

to very high orders; it is likely this symmetry might be linked to orbifold compactification in extra

dimensions. Note that, the Z12 ⇥ Z �
12 symmetry also separates the neutrino and charged fermion

sectors, so that the neutrinos only couple to the GTST2 breaking sector. Furthermore, it allows the

45-dim Higgs, �45, to appear only in the operator shown above, and thus is crucial for obtaining

the Georgi-Jarlskog (GJ) relations.

The interactions in L⇥ give the following neutrino mass matrix [3], which is invariant under

GTST2 [9],

M⇥ =
⇤v2

Mx

�

⇧⇧⇧⇤

2⌅0 + u �⌅0 �⌅0

�⌅0 2⌅0 u� ⌅0

�⌅0 u� ⌅0 2⌅0

⇥

⌃⌃⌃⌅
, (13)

and we have absorbed the Yukawa coupling constants by rescaling the VEV’s. This mass matrix

M⇥ is form diagonalizable, i.e. the orthogonal matrix that diagonzlizes it does not depend on the

eigenvalues. Its diagonal form is,

V T
⇥ M⇥V⇥ = diag(u + 3⌅0, u, �u + 3⌅0)

v2
u

Mx
, (14)

where the diagonalization matrix V⇥ is the tri-bimaximal mixing matrix, V⇥ = UTBM given in Eq. 2.

This tri-bimaximal mixing pattern and the mass eigenvalues in the neutrino sector are thus the

same as in all previous analyses in models based on A4 and (d)T , which has been shown to be

consistent with experimental data.

The down type quark and charged lepton masses are generated by LTF . Because the renormal-

izable operator H5FT3 is forbidden by the (d)T symmetry, the generation of b quark mass requires

the breaking of (d)T , which naturally explains the hierarchy between mt and mb. The b quark mass,

and thus the ⇧ mass, is generated upon the breaking of (d)T ⇤ GT and (d)T ⇤ GS. As mb and m⇤

are generated by the same operator, H5FT3⌃�, we obtain the successful b� ⇧ unification relation.
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I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2⇥

limits for the mixing parameters [1],

sin2 �12 = 0.30 (0.25� 0.34), sin2 �23 = 0.5 (0.38� 0.64), sin2 �13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =

�

⇧⇧⇧⇤

⌥
2/3 1/

⌅
3 0

�
⌥

1/6 1/
⌅

3 �1/
⌅

2

�
⌥

1/6 1/
⌅

3 1/
⌅

2

⇥

⌃⌃⌃⌅
, (2)

which predicts sin2 �atm, TBM = 1/2 and sin �13,TBM = 0. In addition, it predicts sin2 �⇥,TBM = 1/3

for the solar mixing angle. Even though the predicted �⇥,TBM is currently still allowed by the

experimental data at 2⇥, as it is very close to the upper bound at the 2⇥ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1⇤, 1⇤⇤ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a di�erent finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2⇤, and 2⇤⇤, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⇥ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ⇤ 10�3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to

2

Form diagonalizable: 
-- no adjustable parameters
-- neutrino mixing from CG coefficients!
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Tri-bimaximal Neutrino Mixing from A4

•charged lepton sector -- without quarks

•operators for charged lepton masses


•scalar sector: flavon triplet for charged lepton masses


• resulting charged lepton mass matrix = diagonal
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z = x5 + ix6

z ⇧ z + 1, z ⇧ z + �, � = ei�/3

z ⇧ �z

(z1, z2, z3, z4) = (1/2, (1 + �)/2, �/2, 0)

3⇤ 3 = 3⇥ 3⇥ 1⇥ 1� ⇥ 1��

HHLL

M

�
⌃⌅⌥
�

+
⌃⇥⌥
�

⇥

⇤

⇧
�1
�2
�3

⌅

⌃

L

⌅ 3, eR ⌅ 1, µR ⌅ 1��, ⇧R ⌅ 1�

⌅ ⌅ 3, ⇥ ⌅ 1

(�⌃)1eR(1) + (�⌃)1�µR(1��) + (�⌃)1��⇧R(1�)

⌃ ⌅ 3

1

where

3S =
1

3





2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1



 3A =
1

2





α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3





1 = α1β1 + α2β3 + α3β2

1′ = α3β3 + α1β2 + α2β1

1′′ = α2β2 + α1β3 + α3β1 .

9 Appendix B

In this appendix we discuss the subleading terms of the superpotential wd and how they

correct the VEV alignment. We work along the lines of the appendix B of [6].
The VEVs are shifted from the values

〈ϕS〉 = (vS, vS, vS) , 〈ϕT 〉 = (vT , 0, 0) , 〈η〉 = (v1, 0) , 〈ξ〉 = u , 〈ξ̃〉 = 0 , 〈ξ′ ′〉 = 0

to the values

〈ϕS〉 = (vS + δvS 1, vS + δvS 2, vS + δvS 3) , 〈ϕT 〉 = (vT + δvT 1, δvT 2, δvT 3) ,

〈η〉 = (v1 + δv1, δv2) , 〈ξ〉 = u , 〈ξ̃〉 = δũ , 〈ξ′ ′〉 = δu′ ′

where the corrections δvT i, δvS i, δvi, δũ and δu′ ′ are independent of each other. Note
that there also might be a correction to the VEV u, but we do not have to indicate this
explicitly by the addition of a term δu, since u is undetermined at tree-level anyway.

We change the notation in eq. (31) a bit by defining

g3 ≡ 3 g̃2
3 , g4 ≡ −g̃2

4 and g8 ≡ i g̃2
8

such that the VEVs read

vS =
g̃4

3 g̃3
u , vT =

Mη

g9
and v1 =

1√
3 g̃8 g9

√

2 g M2
η + 3 g9 M Mη

where we have chosen the “+” sign for the VEV v1. Apart from the subleading terms

which are already presented in [6] we get 17 other invariants which involve at least one of
the new fields η1,2, ξ′ ′, η0

1,2 and ξ′ 0:
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Λ

(
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T
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S
i + x4 IX
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i +
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∑
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⇧

⌥
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⇥
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�
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⇤
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(1� i)�1⇥3 � �2⇥1
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VCKM =

T ⇥ ⌅ GTST 2 :

T ⇥ � invariant:

T ⇥ ⌅ GT :

1

Tri-bimaximal Neutrino Mixing

• charged lepton sector -- non-GUT models

• operators for charged fermion masses:

• scalar sector: flavon triplet for charged lepton sector

• resulting charged lepton mass matrix: diagonal

• leptonic mixing matrix = tri-bimaximal

• in our model:  SU(5) GUT ⇒ corrections from charged lepton sector
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The Lagrangian of the model is given as follows,

LYuk = LTT + LTF + LFF (3)

LTT = ytH5T3T3 +
1

Λ2
ytsH5T3Taψζ +

1

Λ2
ycH5TaTaφ

2 +
1

Λ3
yuH5TaTaφ

′3 (4)

LTF =
1

Λ2
ybH

′
5FT3φζ +

1

Λ3

[

ys∆45FTaφψN + ydH
′
5FTaφ

2ψ′

]

(5)

LFF =
1

MxΛ

[

λ1H5H5F F ξ + λ2H5H5F Fη

]

, (6)

where Mx is the cutoff scale at which the lepton number violation operator HHF F is generated,

while Λ is the cutoff scale, above which the (d)T symmetry is exact. The parameters y’s and λ’s

are the coupling constants. The vacuum expectation values (VEV’s) of various SU(5) singlet scalar

fields are,

(d)T −→ GTST2 :
〈

ξ
〉

= ξ0Λ











1

1

1











,
〈

φ′
〉

= φ′
0Λ











1

1

1











, (7)

(d)T −→ GT :
〈

φ
〉

= φ0Λ











1

0

0











,
〈

ψ
〉

= ψ0Λ





1

0



 (8)

(d)T −→ nothing :
〈

ψ′
〉

= ψ′
0Λ





1

1



 (9)

(d)T −→ GS :
〈

ζ
〉

= ζ0Λ,
〈

N
〉

= N0Λ (10)

(d)T − invariant :
〈

η
〉

= uΛ (11)

where GTST2 denotes the subgroup generated by the elements TST 2, which in the triplet repre-

sentation is given by [10],

TST 2 =
1

3











−1 2 2

2 −1 2

2 2 −1











, (12)

while GT and GS denote subgroup generated by the elements T and S, respectively. (Our notation

is the same as in Ref. [10].) The details concerning vacuum alignment of these VEV’s will be

presented in a future publication.

We have summarized the remaining operators in the charged fermion sectors that are otherwise

allowed by the SU(5)× (d)T symmetry in Table II. By imposing an additional Z12×Z ′
12 symmetry,

4

z = x5 + ix6
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z ⇧ �z

(z1, z2, z3, z4) = (1/2, (1 + �)/2, �/2, 0)

3⇤ 3 = 3⇥ 3⇥ 1⇥ 1� ⇥ 1��

HHLL

M

�
⌃⇤⌥
⇥

+
⌃⇥⌥
⇥

⇥

⇤

⇧
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⌃2
⌃3

⌅

⌃
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⌅ 3, eR ⌅ 1, µR ⌅ 1��, ⌅R ⌅ 1�

⇤ ⌅ 3, ⇥ ⌅ 1

(⌃⇧)1eR(1) + (⌃⇧)1�µR(1��) + (⌃⇧)1��⌅R(1�)

⇧ ⌅ 3

m1 �m3 = 2m2

�m2
atm > 0

V� = UMNS

1

2⌅ 2 = 2⇤ ⌅ 2⇤⇤ = 2⇤⇤ ⌅ 2⇤ = 3⇤ 1

3 =

⇧

⌥

�
1�i
2

⇥
(�1⇥2 + �2⇥1)
i�1⇥1

�2⇥2

⌃

�

2⌅ 3 = 2⇤ 2⇤ ⇤ 2⇤⇤

2 =
⇤

(1 + i)�2⇥2 + �1⇥1

(1� i)�1⇥3 � �2⇥1

⌅

VCKM =

T ⇤ ⌃ GTST 2 :

T ⇤ � invariant:

T ⇤ ⌃ GT :

T ⇤ ⌃ nothing:

T ⇤ ⌃ GS :

m1 = u0 + 3⇤0

m2 = u0

m3 = �u0 + 3⇤0

�m2
atm ⇧ |m3|2 � |m2|2 = �12u0⇤0

�m2
⇥ ⇧ |m2|2 � |m1|2 = �9⇤2

0 � 6u0⇤0 (1)

VCKM = V †
u,LVd,L

VMNS = V †
e,LV� = I · UTBM = UTBM

1

A4
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Group Work: A4 Neutrino Mass Model

Show that  is always diagonalizable by Mν UTBM
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under which the transformation properties of various fields are summarized in Table I, the above

Lagrangian is the most general one. Here the operators that couple to H5T3T3 are not shown in the

above Lagrangian as their contributions can be absorbed into a redefinition of the coupling constant

yt. In addition, we neglect the operator H5FT3�⌥⌥� in LTF since its contribution is negligible.

Also not shown are those that contribute to LFF which can be absorbed into a redefinition of the

parameter u and ⌃0. Note that in principle, viable phenomenology may still be obtained when

more operators are allowed, The additional discrete symmetry that is needed in that case would be

smaller. Nevertheless, more Yukawa coupling constants will be present and the model would not

be as predictive. The Z12 ⇥ Z �
12 symmetry also forbids proton and other nucleon decay operators

to very high orders; it is likely this symmetry might be linked to orbifold compactification in extra

dimensions. Note that, the Z12 ⇥ Z �
12 symmetry also separates the neutrino and charged fermion

sectors, so that the neutrinos only couple to the GTST2 breaking sector. Furthermore, it allows the

45-dim Higgs, �45, to appear only in the operator shown above, and thus is crucial for obtaining

the Georgi-Jarlskog (GJ) relations.

The interactions in L⇥ give the following neutrino mass matrix [3], which is invariant under

GTST2 [9],

M⇥ =
⇤v2
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and we have absorbed the Yukawa coupling constants by rescaling the VEV’s. This mass matrix

M⇥ is form diagonalizable, i.e. the orthogonal matrix that diagonzlizes it does not depend on the

eigenvalues. Its diagonal form is,

V T
⇥ M⇥V⇥ = diag(u + 3⌅0, u, �u + 3⌅0)

v2
u

Mx
, (14)

where the diagonalization matrix V⇥ is the tri-bimaximal mixing matrix, V⇥ = UTBM given in Eq. 2.

This tri-bimaximal mixing pattern and the mass eigenvalues in the neutrino sector are thus the

same as in all previous analyses in models based on A4 and (d)T , which has been shown to be

consistent with experimental data.

The down type quark and charged lepton masses are generated by LTF . Because the renormal-

izable operator H5FT3 is forbidden by the (d)T symmetry, the generation of b quark mass requires

the breaking of (d)T , which naturally explains the hierarchy between mt and mb. The b quark mass,

and thus the ⇧ mass, is generated upon the breaking of (d)T ⇤ GT and (d)T ⇤ GS. As mb and m⇤

are generated by the same operator, H5FT3⌃�, we obtain the successful b� ⇧ unification relation.
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I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2⇥

limits for the mixing parameters [1],

sin2 �12 = 0.30 (0.25� 0.34), sin2 �23 = 0.5 (0.38� 0.64), sin2 �13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =
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, (2)

which predicts sin2 �atm, TBM = 1/2 and sin �13,TBM = 0. In addition, it predicts sin2 �⇥,TBM = 1/3

for the solar mixing angle. Even though the predicted �⇥,TBM is currently still allowed by the

experimental data at 2⇥, as it is very close to the upper bound at the 2⇥ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1⇤, 1⇤⇤ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a di�erent finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2⇤, and 2⇤⇤, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⇥ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ⇤ 10�3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to

2
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under which the transformation properties of various fields are summarized in Table I, the above

Lagrangian is the most general one. Here the operators that couple to H5T3T3 are not shown in the

above Lagrangian as their contributions can be absorbed into a redefinition of the coupling constant

yt. In addition, we neglect the operator H5FT3�⌥⌥� in LTF since its contribution is negligible.

Also not shown are those that contribute to LFF which can be absorbed into a redefinition of the

parameter u and ⌃0. Note that in principle, viable phenomenology may still be obtained when

more operators are allowed, The additional discrete symmetry that is needed in that case would be

smaller. Nevertheless, more Yukawa coupling constants will be present and the model would not

be as predictive. The Z12 ⇥ Z �
12 symmetry also forbids proton and other nucleon decay operators

to very high orders; it is likely this symmetry might be linked to orbifold compactification in extra

dimensions. Note that, the Z12 ⇥ Z �
12 symmetry also separates the neutrino and charged fermion

sectors, so that the neutrinos only couple to the GTST2 breaking sector. Furthermore, it allows the

45-dim Higgs, �45, to appear only in the operator shown above, and thus is crucial for obtaining

the Georgi-Jarlskog (GJ) relations.

The interactions in L⇥ give the following neutrino mass matrix [3], which is invariant under

GTST2 [9],
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and we have absorbed the Yukawa coupling constants by rescaling the VEV’s. This mass matrix

M⇥ is form diagonalizable, i.e. the orthogonal matrix that diagonzlizes it does not depend on the

eigenvalues. Its diagonal form is,

V T
⇥ M⇥V⇥ = diag(u + 3⌅0, u, �u + 3⌅0)

v2
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Mx
, (14)

where the diagonalization matrix V⇥ is the tri-bimaximal mixing matrix, V⇥ = UTBM given in Eq. 2.

This tri-bimaximal mixing pattern and the mass eigenvalues in the neutrino sector are thus the

same as in all previous analyses in models based on A4 and (d)T , which has been shown to be

consistent with experimental data.

The down type quark and charged lepton masses are generated by LTF . Because the renormal-

izable operator H5FT3 is forbidden by the (d)T symmetry, the generation of b quark mass requires

the breaking of (d)T , which naturally explains the hierarchy between mt and mb. The b quark mass,

and thus the ⇧ mass, is generated upon the breaking of (d)T ⇤ GT and (d)T ⇤ GS. As mb and m⇤

are generated by the same operator, H5FT3⌃�, we obtain the successful b� ⇧ unification relation.
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I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2⇥

limits for the mixing parameters [1],

sin2 �12 = 0.30 (0.25� 0.34), sin2 �23 = 0.5 (0.38� 0.64), sin2 �13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],
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which predicts sin2 �atm, TBM = 1/2 and sin �13,TBM = 0. In addition, it predicts sin2 �⇥,TBM = 1/3

for the solar mixing angle. Even though the predicted �⇥,TBM is currently still allowed by the

experimental data at 2⇥, as it is very close to the upper bound at the 2⇥ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1⇤, 1⇤⇤ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a di�erent finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2⇤, and 2⇤⇤, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⇥ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ⇤ 10�3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to

2
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under which the transformation properties of various fields are summarized in Table I, the above

Lagrangian is the most general one. Here the operators that couple to H5T3T3 are not shown in the

above Lagrangian as their contributions can be absorbed into a redefinition of the coupling constant

yt. In addition, we neglect the operator H5FT3�⌥⌥� in LTF since its contribution is negligible.

Also not shown are those that contribute to LFF which can be absorbed into a redefinition of the

parameter u and ⌃0. Note that in principle, viable phenomenology may still be obtained when

more operators are allowed, The additional discrete symmetry that is needed in that case would be

smaller. Nevertheless, more Yukawa coupling constants will be present and the model would not

be as predictive. The Z12 ⇥ Z �
12 symmetry also forbids proton and other nucleon decay operators

to very high orders; it is likely this symmetry might be linked to orbifold compactification in extra

dimensions. Note that, the Z12 ⇥ Z �
12 symmetry also separates the neutrino and charged fermion

sectors, so that the neutrinos only couple to the GTST2 breaking sector. Furthermore, it allows the

45-dim Higgs, �45, to appear only in the operator shown above, and thus is crucial for obtaining

the Georgi-Jarlskog (GJ) relations.

The interactions in L⇥ give the following neutrino mass matrix [3], which is invariant under

GTST2 [9],

M⇥ =
⇤v2
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, (13)

and we have absorbed the Yukawa coupling constants by rescaling the VEV’s. This mass matrix

M⇥ is form diagonalizable, i.e. the orthogonal matrix that diagonzlizes it does not depend on the

eigenvalues. Its diagonal form is,

V T
⇥ M⇥V⇥ = diag(u + 3⌅0, u, �u + 3⌅0)

v2
u

Mx
, (14)

where the diagonalization matrix V⇥ is the tri-bimaximal mixing matrix, V⇥ = UTBM given in Eq. 2.

This tri-bimaximal mixing pattern and the mass eigenvalues in the neutrino sector are thus the

same as in all previous analyses in models based on A4 and (d)T , which has been shown to be

consistent with experimental data.

The down type quark and charged lepton masses are generated by LTF . Because the renormal-

izable operator H5FT3 is forbidden by the (d)T symmetry, the generation of b quark mass requires

the breaking of (d)T , which naturally explains the hierarchy between mt and mb. The b quark mass,

and thus the ⇧ mass, is generated upon the breaking of (d)T ⇤ GT and (d)T ⇤ GS. As mb and m⇤

are generated by the same operator, H5FT3⌃�, we obtain the successful b� ⇧ unification relation.

5

I. INTRODUCTION

The measurements of neutrino oscillation parameters have entered a precision era. The global

fit to current data from neutrino oscillation experiments give the following best fit values and 2⇥

limits for the mixing parameters [1],

sin2 �12 = 0.30 (0.25� 0.34), sin2 �23 = 0.5 (0.38� 0.64), sin2 �13 = 0 (< 0.028) . (1)

These values for the mixing parameters are very close to the values arising from the so-called

“tri-bimaximal” mixing (TBM) matrix [2],

UTBM =

�

⇧⇧⇧⇤

⌥
2/3 1/

⌅
3 0

�
⌥

1/6 1/
⌅

3 �1/
⌅

2

�
⌥

1/6 1/
⌅

3 1/
⌅

2

⇥

⌃⌃⌃⌅
, (2)

which predicts sin2 �atm, TBM = 1/2 and sin �13,TBM = 0. In addition, it predicts sin2 �⇥,TBM = 1/3

for the solar mixing angle. Even though the predicted �⇥,TBM is currently still allowed by the

experimental data at 2⇥, as it is very close to the upper bound at the 2⇥ limit, it may be ruled out

once more precise measurements are made in the upcoming experiments.

It has been pointed out that the tri-bimaximal mixing matrix can arise from a family symmetry

in the lepton sector based on A4 [3] , which is a group that describes the even permutations of

four objects and it has four in-equivalent representations, 1, 1⇤, 1⇤⇤ and 3. However, due to its lack

of doublet representations, CKM matrix is an identity in most A4 models. In addition, to explain

the mass hierarchy among the charged fermions, one needs to resort to additional symmetry. It is

hence not easy to implement A4 as a family symmetry for both quarks and leptons [4].

In this letter, we consider a di�erent finite group, the double tetrahedral group, (d)T , which is a

double covering of A4. (For a classification of all finite groups up to order 32 that can potentially

be a family symmetry, see [5]). Because it has the same four in-equivalent representations as in

A4, the tri-bimaximal mixing pattern can be reproduced. In addition, (d)T has three in-equivalent

doublets, 2, 2⇤, and 2⇤⇤, which can be utilized to give the 2 + 1 representation assignments for the

quarks [6]. In the context of SU(2) flavor group, this assignment has been known to give realistic

quark mixing matrix and mass hierarchy [7]. Utilizing (d)T as a family symmetry for both quarks

and leptons has been considered before in non-unified models [8, 9]. In Ref. [8], both quarks

and leptons (including the neutrinos) have 2 ⇥ 1 representation assignments under (d)T , and the

prediction for the solar mixing angle is ⇤ 10�3, which is in the region of small mixing angle solution

that has been ruled out by SNO and KamLAND. A recent attempt in [9] generalizes the (d)T to
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Flavor Model Structure: A4 Example

• interplay between the symmetry breaking patterns 
in two sectors lead to lepton mixing (BM, TBM, ...)

• symmetry breaking achieved through flavon VEVs

• each sector preserves different residual symmetry

• full Lagrangian does not have these residual 
symmetries

• general approach: include high order terms in 
holomorphic superpotential

• possible to construct models where higher order 
holomorphic superpotential terms vanish to ALL 
orders

• quantum correction?
⇒ uncertainty in predictions due to                                     

     Kähler corrections
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Example: SU(5) Compatibility ⇒ T′ Family Symmetry 

• Double Tetrahedral Group T´: double covering of A4

• Symmetries ⇒ 10 parameters in Yukawa sector  ⇒ 22 physical observables


• Symmetries ⇒ correlations among quark and lepton mixing parameters 
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angle, the corresponding mixing angle in the charged lepton sector, ⌅e
12, is much suppressed due to

the GJ relations,

⌅e
12 ⌅

⌥
me

mµ
⌅ 1

3

⌥
md

ms
⇤ 1

3
⌅c . (18)

As a result, the correction to the tri-bimaximal mixing pattern due to the mixing in the charged

lepton sector is small, and is given, to the leading order, by,

tan2 ⌅� ⌅ tan2 ⌅�,TBM � ei�⌅c/3 , (19)

where the relative phase � is determined by the strengths and phases of the VEV’s, ⇧0 and ⌃⇥
0.

With ⌅c ⌅ 0.22 and (⇧0⌃⇥
0) being real, the factor ei� turns out to be very close to 1. This

deviation thus naturally accounts for the di�erence between the prediction of the TBM matrix,

which gives tan2 ⌅�,TBM = 1/2, and the experimental best fit value, tan2 ⌅�,exp = 0.429. The

o� diagonal matrix element in Me also generates a non-zero value for the neutrino mixing angle

⌅13 ⌅ ⌅c/3
⇧

2 ⇤ 0.05. We note that a more precise measurement of tan ⌅� will pin down the

phase of ⇧0⌃⇥
0, and thus the three leptonic CP phases, which may yield interesting consequences

on leptogenesis [10] and lepton flavor violating processes [11].

III. NUMERICAL RESULTS

The observed quark masses respect the following relation,

mu : mc : mt = ⇥2u : ⇥u : 1, md : ms : mb = ⇥2d : ⇥d : 1 , (20)

where ⇥u ⌅ (1/200) = 0.005 and ⇥d ⌅ (1/20) = 0.05.

In our model, the mass matrices for the down type quarks and charged leptons can be

parametrized as,

Md

ybvd⇧0⇤0
=

�

⇧⇧⇧⇤

0 (1 + i)b 0

�(1� i)b c 0

b b 1

⇥

⌃⌃⌃⌅
,

Me

ybvd⇧0⇤0
=

�
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0 �(1� i)b b

(1 + i)b �3c b

0 0 1

⇥

⌃⌃⌃⌅
,

(21)

and with the choice of b ⇥ ⇧0⌃⇥
0/⇤0 = 0.00789 and c ⇥ ⌃0N0/⇤0 = 0.0474, the mass ratios for the

down type quarks and for the charged leptons are given by,

md : ms : mb = 0.00250 : 0.0499 : 1.00 , (22)

me : mµ : m⇤ = 0.000870 : 0.143 : 1.00 . (23)

8

CG’s of 

SU(5) & T´

The values in Eq. 46 correspond to the following parameters in the standard
parametrization (PDG),

s12 ⌅ ⌥ = 0.227, s23 ⌅ A⌥2 = 0.0411, s13 = 0.00412, c12 = 0.974, c23 = c13 ⌃ 0 .
(49)

⇤

⇧
0.838 0.542 0.0583e�i227o

�0.385� 0.0345ei227o

0.594� 0.0224ei227o

0.705
0.384� 0.0346ei227o �0.592� 0.0224ei227o

0.707

⌅

⌃ (50)

⇧ |UMNS | =

⇤

⇧
0.838 0.542 0.0583
0.362 0.610 0.705
0.408 0.577 0.707

⌅

⌃ (51)

J� = �0.00967 (52)

Charged lepton diagonalization matrix:
⇤

⇧
0.997ei177o

0.0823ei131o

1.31⇤ 10�5e�i45o

0.0823ei41.8o

0.997ei176o

0.000149e�i3.58o

1.14⇤ 10�6 0.000149 1

⌅

⌃ (53)

sin2 2⌃atm = 1, tan2 ⌃⇤ = 0.419, |Ue3| = 0.0583 (54)

tan2 ⌃⇤ ⌃ tan2 ⌃⇤,TBM +
1
2
⌃c cos ⌅ (55)
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CP Violation in Neutrino Oscillation

• With leptonic Dirac CP phase δ ≠ 0  ➜  leptonic CP violation

• Predict different transition probabilities for neutrinos and antineutrinos


• One of the major scientific goals at current and planned neutrino experiments 
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P (να→νβ) ≠ P ( να→νβ)
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Origin of CP Violation

• CP violation ⇔ complex mass matrices


• Conventionally, CPV arises in two ways:


• Explicit CP violation: complex Yukawa coupling constants Y


• Spontaneous CP violation: complex scalar VEVs  <h>


• Complex CG coefficients in certain discrete groups ⇒ explicit CP violation  

• CPV in quark and lepton sectors purely from complex CG coefficients

3

which is parametrized by two parameters, giving the
three absolute neutrino masses [9] (see below). As these
interactions involve only the triplet representations of T ′,
the relevant product rule is 3 ⊗ 3. Consequently, all CG
coefficients are real, leading to a real neutrino Majo-
rana mass matrix. The neutrino mass matrix given in
Eq. 16 has the special property that it is form diagonal-
izable [14], i.e. independent of the values of ξ0 and u0, it
is diagonalized by the tri-bimaximal mixing matrix,

UT
TBM

MνUTBM = diag(u0 + 3ξ0, u0,−u0 + 3ξ0)
v2

u

MX
,

≡ diag(m1, m2, m3) . (17)

While the neutrino mass matrix is real, the complex
charged lepton mass matrix Me, which is diagonalized
by, V †

e,RMeVe,L = diag(me, mµ, mτ ), leads to a complex

VPMNS = V †
e,LUTBM (see below).

CPT Invariance and CP Violation.—Even though the
complexity of the Lagrangian arises in our model through
the complex CG coefficients, the hermiticity of the La-
grangian, which is required in order to have CPT invari-
ance, remains satisfied. This is easily seen using the com-
ponent form given in Eq. 11. Take the term URMuQL

for example. Its corresponding hermitian conjugate is

(URMuQL)† = (U †
Rγ0MuQL)† = QLM †

uUR . (18)

The hermiticity of the Lagrangian allows us to write, in
general,

L(#x, t) = αO(#x, t) + α∗
O

†(#x, t) , (19)

where O(#x, t) is some operator and α is some c-number.
Recall that, the charge conjugation C changes a left-
hande particle into a left-hande anti-particle, while the
parity P turns a left-handed particle into a right-handed
particle, and vice versa. Thus the CP transformation
converts a left-handed particle into a right-handed anti-
particle. Effectively,

O(#x, t)
CP−→ O

†(−#x, t) , α
CP−→ α , (20)

The time reversal operator is antiunitary. It reverses the
momentum of a particle and flips its spin. Effectively,

O(#x, t)
T−→ O(#x,−t) , α

T−→ α∗ , (21)

In the weak eigenstates, the interactions Lcc in Eq. 15 are
invariant under CP and T, as all coupling constants are
real. On the other hand, the Yukawa interactions violate
both CP and T. Using the up-quark sector again as an
example, for each conjugate pair specified by indices i
and j,

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

CP−→ QL,j(Mu)ijUR,i + UR,i(Mu)∗ijQL,j , (22)

UR,i(Mu)ijQL,j + QL,j(M
†
u)jiUR,i

T−→ UR,i(Mu)∗ijQL,j + QL,j(Mu)ijUR,i , (23)

The complexity of the mass matrix, giving rise to CP and
T violations, ensues from the complex CG coefficients in
T ′. Here we have suppressed the space-time coordinates
the inversions of which under the transformations are as-
sumed implicitly. Due to its hermiticity, the Lagrangian
is CPT invariant,

URMuQL +QLM †
uUR

CPT−→ QLM †
uUR +URMuQL , (24)

Alternatively, in the mass eigenstates, the Yukawa inter-
actions are invariant under CP and T, while the charged
current interactions violate CP and T individually and
are invariant under CPT. Note that CP violation is in-
herent in the Lagrangian Eq.3, which is T ′ and SU(5)
invariant.

Numerical Predictions.—The predicted charged
fermion mass matrices in our model are parametrized in
terms of 7 parameters,
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With b ≡ φ0ψ′
0/ζ0 = 0.0029, c ≡ ψ0N0/ζ0 = −0.0169,

k ≡ y′ψ0ζ0 = −0.029, h ≡ φ2
0 = 0.008 and g ≡ φ′3

0 =
−9 × 10−6, the following mass ratios are obtained, md :
ms : mb & θ4.7

c : θ2.7

c : 1, mu : mc : mt & θ8

c : θ3.2

c : 1,
with θc &

√

md/ms & 0.225. (These ratios in terms
of θc coincide with those give in [15].) We have also
taken yt = 1 and ybφ0ζ0 & mb/mt & 0.011. As a result
of the GJ relations, realistic charged lepton masses are
obtained. Making use of these parameters, the complex
CKM matrix is,
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The values for |VCKM | elements are in agreement with
current experimental values. The predictions of our
model for the angles in the unitarity triangle and the
Jarlskog invariant in the quark sector are,
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where δq is the CP phase in the standard parametriza-
tion. In terms of the Wolfenstein parameters, we have
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CG coefficients in non-Abelian discrete symmetries  
➪ relative strengths and phases in entries of Yukawa matrices 

➪ mixing angles and phases (and mass hierarchy)

M.-C.C., K.T. Mahanthappa, Phys. Lett. B681, 444 (2009)



 Group Theoretical Origin of CP Violation

• if Z3 symmetric ⇒〈∆1〉= 〈∆2〉=〈∆3〉≡〈∆〉 real


• Complex effective mass matrix: phases determined by group theory 

(   L1          L2    ) ( R
1   R

2 )

C i j k : complex 
CG coefficients 

of G
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C112

Discrete 
symmetry G

Basic idea

C121 C211 C223

C112

C121

C211

C223

M.-C.C., K.T. Mahanthappa

Phys. Lett. B681, 444 (2009)



CP Transformation

• Canonical CP transformation


• Generalized CP transformation
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The canonical CP transformation

The canonical CP transformation

+ scalar field operator
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d3
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annihilates particlecreates anti–particle
+ CP exchanges particles & anti–particles

(C P)�1 a(~p)C P = ⌘CP b(�~p) & (C P)�1 a†(~p)C P = ⌘⇤CP b†(�~p)

(C P)�1 b(~p)C P = ⌘⇤CP a(�~p) & (C P)�1 b†(~p)C P = ⌘CP a†(�~p)

phase factor
+ CP transformation of (scalar) fields

�(x)
C P7���! ⌘CP �⇤(Px)

freedom of re–phasing fields
Discrete Family Symmetries and Origin of CP Violation Generalizing CP transformations

Constraints on generalized CP transformations

Constraints on generalized CP transformations

+ generalized CP transformation
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fCP7��! UCP�

⇤( P x)
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+ fCP depends on symmetry, not on model E disagreement w/ Holthausen,
Lindner, and Schmidt (2013)

Holthausen, Lindner, and Schmidt (2013)
+ consistency condition

⇢
�
u(g)

�
= UCP ⇢(g)⇤UCP

† 8 g 2 G

automorphism u : G ! Grepresentation matrixblock–diagonal unitary matrix
+ further properties:

• u has to be class–inverting
• in all known cases, u is equivalent to an automorphism of order two

bottom–line:
u has to be a class–inverting (involutory) automorphism of G

Ecker, Grimus, Konetschny (1981); Ecker, Grimus, Neufeld (1987);

Grimus, Rebelo (1995) 

unitary matrix
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Generalized CP transformations

Generalized CP transformations

+ setting w/ discrete symmetry G

+ generalized CP transformation
Holthausen, Lindner, and Schmidt (2013)

+ invariant contraction/coupling in A4 or T
0

⇥
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⌦ (x3 ⌦ y3)11

⇤
10

/ �
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x1 y1 + !

2
x2 y2 + ! x3 y3

�
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+ canonical CP transformation maps A4/T0 invariant contraction to
something non–invariant
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fCP7��! �⇤ as usual but

0

@
x1

x2

x3

1

A fCP7��!

0

B@
x
⇤
1

x
⇤
3

x
⇤
2

1

CA &

0

@
y1

y2

y3

1

A fCP7��!

0

B@
y
⇤
1

y
⇤
3

y
⇤
2

1

CA

Group theory of CP violation Generalizing CP transformations

Generalized CP transformations

Generalized CP transformations

+ setting w/ discrete symmetry G

+ generalized CP transformation
Holthausen, Lindner, and Schmidt (2013)

+ invariant contraction/coupling in A4 or T
0

⇥
�12
⌦ (x3 ⌦ y3)11

⇤
10

/ �
�
x1 y1 + !

2
x2 y2 + ! x3 y3

�

! = e
2⇡ i/3

+ canonical CP transformation

x
CP7��! x

⇤ & y
CP7��! y

⇤ & �
CP7��! �⇤

maps A4/T0 invariant contraction to something non–invariant

Â need generalized CP transformation fCP: �
fCP7��! �⇤ as usual but

0

@
x1

x2

x3

1

A fCP7��!

0

B@
x
⇤
1

x
⇤
3

x
⇤
2

1

CA &

0

@
y1

y2

y3

1

A fCP7��!

0

B@
y
⇤
1

y
⇤
3

y
⇤
2

1

CA

Feruglio, Hagedorn, Ziegler (2013); Holthausen, Lindner, Schmidt (2013)

G and CP transformations do not commute 



Group Work: Generalized CP Transformation
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Is there a unitary transformation that can 

“repair” the A4 invariance once a naïve CP 

transformation is performed? 
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CP vs. CP–like transformations

How (not) to generalize CP

proper CP transformations
+ map field operators to their own

Hermitean conjugates

+ violation of physical CP is
prerequisite for a non–trivial

"i!f =

���
�
i! f

���2 �
����

⇣
ı! f

⌘���
2

���
�
i! f

���2 +
����

⇣
ı! f

⌘���
2

anti–particles

particlesÂ connection to observed CP,
baryogenesis & . . .

CP–like transformations
+ map some field operators to

some other operators

+ such transformations have
sometimes been called
“generalized CP
transformations” in the literature

+ however, imposing CP–like
transformations does not imply
physical CP conservation

Â NO connection to observed
CP, baryogenesis & . . .

+ explicit example in talk by
Mu–Chun Chen
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complex CGs ➪ G and physical CP transformations do not commute 

L(x)

L(Px)

L' (Px) 

ca
no

nic
al 
CP

autom
orphism

 u

Constraints on generalized CP transformations
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+ generalized CP transformation

�(x)
fCP7��! UCP�

⇤( P x)

fields of the theory/modelP (t,~x) = (t,�~x)
Holthausen, Lindner, and Schmidt (2013)

+ consistency condition

⇢
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u(g)

�
= UCP ⇢(g)⇤UCP

† 8 g 2 G

automorphism u : G ! Grepresentation matrixblock–diagonal unitary matrix
+ further properties:

• u has to be class–inverting
• in all known cases, u is equivalent to an automorphism of order two

bottom–line:
u has to be a class–inverting (involutory) automorphism of G
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physical CP 
transformations

Constraints on generalized CP transformations
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physical CP 
transformations

u has to be a class-inverting,   
        involutory automorphism of G 
➪ non-existence of such automorphism  
        in certain groups 
➪ calculable physical CP violation in  
        generic setting

M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. 
Ratz, A. Trautner, NPB (2014)

unitary 
transformation U examples: T7, ∆(27), …..
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• Bickerstaff-Damhus automorphism (BDA) u


• BDA vs. Clebsch-Gordan (CG) coefficients


•
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The Bickerstaff–Damhus automorphism (BDA)
Bickerstaff and Damhus (1985)

+ Bickerstaff–Damhus automorphism (BDA) u

⇢ri
(u(g)) = Uri

⇢ri
(g)⇤U

†
ri
8 g 2 G and 8 i ( ? )

unitary & symmetric

+ BDA vs. Clebsch–Gordan (CG) coefficients

9 BDA u

fulfilling (?)

existence of a
(CP) basis in which
all CG coefficients

are real

equivalent

CP basis : ⇢ri
(u(g)) = ⇢ri

(g)⇤ 8 g 2 G and 8 i
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Twisted Frobenius-Schur Indicator

• How can one tell whether or not a given automorphism is a BDA?


• Frobenius-Schur indicator:


• Twisted Frobenius-Schur indicator


•
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The twisted Frobenius–Schur indicator

+ How can one tell whether or not a given automorphism u is a BDA?

+ Frobenius–Schur indicator

FS(ri) :=
1

|G|
X

g2G
�ri

(g2) =
1

|G|
X

g2G
tr
⇥
⇢ri

(g)2
⇤

Bickerstaff and Damhus (1985); Kawanaka and Matsuyama (1990)

+ twisted Frobenius–Schur indicator

FSu(ri) =
1

|G|
X

g2G

⇥
⇢ri

(g)
⇤
↵�

⇥
⇢ri

(u(g))
⇤
�↵

+ crucial property

FSu(ri) =

8
<

:

+1 8 i, if u is a BDA,
+1 or � 1 8 i, if u is class–inverting and involutory,
different from ±1, otherwise.
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Three Types of Finite Groups
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Three types of groups

Three types of groups

group G with
automorphisms u

there is a
u for which

no FS
(n)
u

is 0

Type I groups GI:

generic settings based on
GI do not allow for a
physical CP transformation

no

Type II: u defines
a physical CP
transformation

yes

all FS
(1)
u

are
+1 for a u

Type II A groups GII A:

there is a CP basis in
which all CG’s are real

yes

Type II B groups GII B:

there is no basis in which
all CG’s are real

no



A Novel Origin of CP Violation

• For discrete groups that do not have class-inverting, involutory automorphism, CP is generically broken by 
complex CG coefficients (Type I Group) 

• Non-existence of such automorphism ⇔ Physical CP violation 

•   
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Main messages of the previous talk

Main messages of the previous talk

+ Not every outer automorphism defines a physical CP transformation!

+ Three types of groups

Discrete (flavor)

symmetry G

Type I groups GI:

generic settings based on
GI do not allow for a
physical CP transformation

Type II: one can
impose a physical
CP transformation

Type II A groups GII A:

there is a CP basis in
which all CG’s are real

Type II B groups GII B:

there is no basis in which
all CG’s are real

M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, 
A. Trautner, NPB (2014)

CP Violation from Group Theory!

no class-inverting 
involutory 

automorphism 

BDA 

non-BDA, class- 
inverting 

automorphism  



Examples

• Type I: all odd order non-Abelian groups


• Type IIA: dihedral and all Abelian groups


• Type IIB
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group 5 o 4 T7 �(27) 9 o 3

SG (20,3) (21,1) (27,3) (27,4)

(a) Examples for type I groups. Generally,
all odd order non–Abelian groups are of this
type with the caveat of groups that have a
class–inverting automorphism that squares
to a non–trivial outer one.

group S3 Q8 A4 3 o 8 T0
S4 A5

SG (6,1) (8,4) (12,3) (24,1) (24,3) (24,12) (60,5)

(b) Examples for type II A groups. The dihedral and all Abelian
groups are also of this type.

group ⌃(72) (( 3 ⇥ 3)o 4)o 4

SG (72,41) (144,120)

(c) Examples for type II B groups.

Table 2.1: Examples for the three types of groups: (a) I, (b) II A and (c) II B with their
common names and SmallGroups library ID of GAP [15].

with unitary W and

⌃ =

8
>>>>>>><

>>>>>>>:

⌃+ = , if U is symmetric,

⌃� =

0

BBBBB@

1
�1

. . .
1

�1

1

CCCCCA
, if U is anti–symmetric.

(2.38)

Note that, since representation matrices always have full rank, the anti–symmetric case
does not arise for odd–dimensional irreps [20], i.e. ⌃ always has full rank. We can, hence,
perform the unitary basis change

ri ! W
†
ri
ri , ⇢ri(g) ! W

†
ri
⇢ri(g)Wri 8 g 2 G , (2.39)

such that in the new basis the matrices Uri take the simple form

Uri ! W
†
ri
Uri W

⇤
ri

= ⌃ri . (2.40)

For type II A groups, all the ⌃ri ’s equal the identity matrix and the new basis is a CP
basis. In this basis all Clebsch–Gordan coe�cients are real [16].
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Novel Origin of CP (Time Reversal) Violation
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complex CGs ➪ CP symmetry 
cannot be defined for certain 

groups  

CP Violation from 
Group Theory!


