Flavor Symmetries and GUTs

Mu-Chun Chen (she/her), University of California at Irvine

muchunc@uci.edu

Invisibles School 2023, Bad Honnef, 8/21-23/2023

Basics of Model Building

- •What is the Lagrangian of Nature?
- Rules:
 - •Gauge symmetries of the Lagrangian
 - •Representations of fermions and scalars under symmetries
 - Pattern of spontaneous symmetry breaking
- •Assumptions:
 - Poincare invariance
 - ·QFT
- •SM tested to high accuracy; still many deficiencies
- ·Goals: Address deficiencies of SM with (hidden) Symmetries

The Plan

- Part I: Primer Standard Model and its Deficiencies
 - Symmetries, Particle content, and Lagrangian
 - Why Go beyond the SM?
- Part II: Flavor Symmetries
 - Flavor Puzzle
 - Problem of fermion masses and mixing
 - Neutrino mass generation
 - Froggatt-Nielsen Mechanism
 - Non-Abelian Discrete Symmetries
 - CP Violation ⇔ outer automorphism

- Part III: GUT Symmetries (Michael Ratz)
 - Motivations for GUTs
 - GUTs in 4D
 - Problems of GUTs in 4D
 - Orbifold GUTs
 - Modular Flavor Symmetries

The Plan

- Part I: Primer Standard Model and its Deficiencies
 - Symmetries, Particle content, and Lagrangian
 - Why Go beyond the SM?
- Part II: Flavor Symmetries
 - Flavor Puzzle
 - Problem of fermion masses and mixing
 - Neutrino mass generation
 - Froggatt-Nielsen Mechanism
 - Non-Abelian Discrete Symmetries
 - CP Violation ⇔ outer automorphism

- Part III: GUT Symmetries (Michael Ratz)
 - Motivations for GUTs
 - GUTs in 4D
 - Problems of GUTs in 4D
 - Orbifold GUTs
 - Modular Flavor Symmetries

Tools of symmetries can be applied to problems beyond Flavor and GUTs.

References

Flavor Symmetries:

- Ishimori, Kobayashi, Ohki, Shimizu, 1003.3552
- P. Ramond, Group Theory: A Physicist's Survey (2010)

GUT Symmetries:

- Cheng and Li
- R. Slansky, Group Theory for Unified Model Building, Phys. Rep. 79 (1981)
- R. Mohapatra, TASI Lecture Notes on SUSY GUTs (1996)
- S. Raby, Supersymmetric Grand Unified Theories, From Quarks to Strings via SUSY GUTs

Standard Model

• Gauge Symmetries

$$G_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y$$

Three Fermion Generations

	$Q^I_{L_i}$	$U^I_{R_i}$	$D^I_{R_i}$	$\mathscr{C}^{I}_{L_{i}}$	$E_{R_i}^I$
$SU(3)_C$	3	3	3	1	1
$SU(2)_L$	2	1	1	2	1
$U(1)_Y$	1/6	2/3	-1/3	-1/2	1

(I: gauge interaction eigenstates; flavor index i = 1,2,3)

Group Work: Warm Up

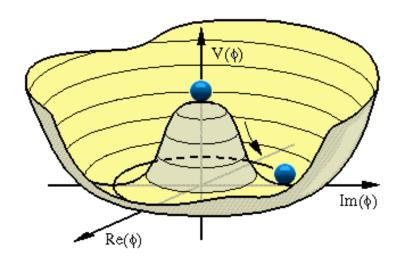
How many degrees of freedom are there for one generation of fermions in the Standard Model?

Standard Model

·Higgs Sector and Spontaneous Electroweak Symmetry Breaking

$$\phi(1,2)_{+1/2}$$
 , $\langle \phi \rangle = \begin{pmatrix} 0\\ v/\sqrt{2} \end{pmatrix}$

 $G_{SM} \rightarrow SU(3)_C \times U(1)_{EM}$



Standard Model – Kinetic Terms

·Standard Model Lagrangian

$$\mathscr{L}_{SM} = \mathscr{L}_{kinetic} + \mathscr{L}_{Higgs} + \mathscr{L}_{Yukawa}$$

Kinetic Terms: covariant derivative

$$D^{\mu} = \partial^{\mu} + ig_s G^{\mu}_a L_a + ig W^{\mu}_b T_b + ig' B^{\mu} Y$$

$$G^{\mu}_a$$
: 8 gluons

 $W^{\!\mu}_b$: 3 weak gauge bosons

 L_a : generators of SU(3) T_b : generators of SU(2)

 B^{μ} : 1 hypercharge boson

Standard Model – Kinetic Terms

• Examples:

$$\mathscr{L}_{kinetic}(Q_L) = i\overline{Q_{L_i}^I}\gamma_\mu \left(\partial^\mu + \frac{i}{2}g_s G_a^\mu \lambda_a + \frac{i}{2}g W_b^\mu \tau_b + \frac{i}{6}g' B^\mu\right)Q_{L_i}^I$$

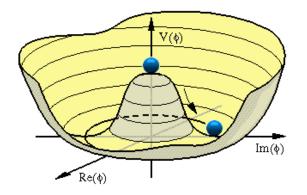
$$\mathscr{L}_{kinetic}(\mathscr{C}_{L}) = i\overline{\mathscr{C}_{L_{i}}^{I}}\gamma_{\mu}\left(\partial^{\mu} + \frac{i}{2}gW_{b}^{\mu}\tau_{b} - \frac{i}{2}g'B^{\mu}\right)\mathscr{C}_{L_{i}}^{I}$$

Standard Model – Higgs Sector

Higgs Potential:

$$-\mathscr{L}_{Higgs} = V(\phi) = \mu^2 (\phi^{\dagger} \phi) + \lambda (\phi^{\dagger} \phi)^2$$

- Two parameters: μ^2 , $\lambda \leftrightarrow m_H$, v
- Vacuum stability $\Rightarrow \lambda > 0$
- Spontaneous symmetry breaking $\Rightarrow \mu^2 < 0$



 W and Z gauge bosons acquire masses; gluons, photons remain massless

Standard Model – Yukawa Sector

Yukawa interactions:

$$-\mathscr{L}_{Yukawa}^{lepton} = Y_{ij}^{e} \overline{\mathscr{C}_{L_{i}}^{I}} \phi E_{R_{j}}^{I} + \text{h.c.}$$
$$-\mathscr{L}_{Yukawa}^{quark} = Y_{ij}^{d} \overline{Q_{L_{i}}^{I}} \phi D_{R_{j}}^{I} + Y_{ij}^{u} \overline{Q_{L_{i}}^{I}} \tilde{\phi} U_{R_{j}}^{I} + \text{h.c.}$$

Upon electroweak symmetry breaking:

$$\langle \phi \rangle = \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix} \Rightarrow$$
 charged lepton and quark masses

Non diagonal Yukawa matrices Y^u and $Y^d \Rightarrow$ mismatch between quark mass eigenstates and weak gauge eigenstates

Standard Model - Counting Parameters

- Yukawa Sector has many parameters, but not all physical Symmetry argument for parameter counting: Ex. Hydrogen Atom in uniform magnetic field (along \hat{z}) B = 0 : SO(3) symmetry \Rightarrow 3 degenerate energy eigenvalues $B \neq 0 : SO(3) \rightarrow SO(2)$ symmetry 1 unbroken generator \Rightarrow 2D rotation on xy plane
 - 2 broken generators \neg allow to align $B \parallel \hat{z}$
 - $O_{xz}O_{yz}(B_x, B_y, B_z) = (0, 0, B_z')$

Standard Model – Accidental Symmetries

Standard Model has the following accidental global symmetries $U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$

- $U(1)_B$: baryon number
- $U(1)_e$: L_e lepton number
- $U(1)_{\mu}$: L_{μ} lepton number
- $U(1)_{\tau}$: L_{τ} lepton number

Total lepton number $L = L_e + L_\mu + L_\tau$

Standard Model - Counting Parameters

- Gauge theory w/ matter content:
 - Gauge kinetic terms: global symmetries G_f
 - Potential respecting gauge symmetries may break $G_f \rightarrow H_f$ (global symmetry of the entire model)
 - Breaking of $G_{\!f}$ allow freedom to rotate away unphysical parameters

$$N_{phys} = N_{general} - N_{broken}$$

 N_{broken} : number of broken generators

- General complex $n \times n$ matrices
 - How many real parameters?
 - How many phases?
- For Hermitian Matrices
 - How many real parameters?
 - How many phases?
- For Unitary Matrices
 - How many real parameters?
 - How many phases?

- General complex $n \times n$ matrices
 - n^2 Real parameters
 - n^2 Phases
- For Hermitian Matrices
 - n(n+1)/2 Real parameters
 - n(n-1)/2 Phases
- For Unitary Matrices
 - n(n-1)/2 Real parameters
 - n(n+1)/2 Phases

Standard Model - Counting Parameters

- Applying to Standard Model Quark Sector
- Gauge Kinetic terms:

 $G_f = U(3)_Q \times U(3)_U \times U(3)_D$

- U(3): 9 generators (3 real, 6 imaginary)
- Total number of generators of G_f = 27
- Yukawa Interactions, Y^u , Y^d : complex 3×3 matrices

- How many general parameters do Y^{u} , Y^{d} have?
- What is the global symmetry of the entire model (quark sector only)?
- How many broken generators?
- How many physical parameters?

- General parameters in Y^u , $Y^d = 36$
- Global symmetry: $U(3)_Q \times U(3)_U \times U(3)_D \rightarrow U(1)_B$

 $U(1)_B$: 1 generator (1 phase)

 $N_{broken} = 27 - 1 = 26$

 $N_{physical} = N_{general} - N_{broken} = 36 - 26 = 10$

$$N_{physical}^r = 18 - 9 = 9$$

$$N^i_{physical} = 18 - 17 = 1$$

- General parameters in Y^u , $Y^d = 36$
- Global symmetry: $U(3)_Q \times U(3)_U \times U(3)_D \rightarrow U(1)_B$

 $U(1)_B$: 1 generator (1 phase)

 $N_{broken} = 27 - 1 = 26$

 $N_{physical} = N_{general} - N_{broken} = 36 - 26 = 10$

 $N_{physical}^r = 18 - 9 = 9 \Rightarrow 6$ masses, 3 angles

$$N^i_{physical} = 18 - 17 = 1 \Rightarrow 1 \text{ CP phase}$$

Standard Model – Discrete Symmetries

- Any local Lorentz invariant QFT respect CPT
- CPT invariance: T violation \Leftrightarrow CP violation
- In SM: C, P maximally violated
 - Violation independent of parameters
- SM can violate CP, depending on values of Yukawa couplings

$$Y_{ij} \overline{\psi_{L_i}} \phi \psi_{R_j} + Y^*_{ij} \overline{\psi_{R_j}} \phi^{\dagger} \psi_{L_i}$$

Under CP transformation: $\mathcal{O} \to \mathcal{O}^{\dagger}$, $c \to c$

 $\overline{\psi_{L_i}} \, \phi \psi_{R_j} \,
ightarrow \, \overline{\psi_{R_j}} \, \phi^\dagger \psi_{L_i}$, Y_{ij}^* unchanged

• CP invariant?

Standard Model – Discrete Symmetries

- Any local Lorentz invariant QFT respect CPT
- CPT invariance: T violation \Leftrightarrow CP violation
- In SM: C, P maximally violated
 - Violation independent of parameters
- SM can violate CP, depending on values of Yukawa couplings

$$Y_{ij} \overline{\psi_{L_i}} \phi \psi_{R_j} + Y^*_{ij} \overline{\psi_{R_j}} \phi^{\dagger} \psi_{L_i}$$

Under CP transformation: $\mathcal{O} \to \mathcal{O}^{\dagger}$, $c \to c$

 $\overline{\psi_{L_i}} \phi \psi_{R_j}
ightarrow \overline{\psi_{R_j}} \phi^\dagger \psi_{L_i}$, Y_{ij}^* unchanged

. CP invariant if $Y_{ij} = Y^\ast_{ij}$

Standard Model – Discrete Symmetries

• SM can violate CP, depending on values of Yukawa couplings

$$Y_{ij} \overline{\psi_{L_i}} \phi \psi_{R_j} + Y^*_{ij} \overline{\psi_{R_j}} \phi^{\dagger} \psi_{L_i}$$

- . CP invariant if $Y_{ij} = Y^\ast_{ij}$
- 1 CP phase in quark sector
- More precisely, CP is violated in the SM quark sector, iff

 $\Im(\det\left[Y^{d}Y^{d\dagger}, Y^{u}Y^{u\dagger}\right]) \neq 0$

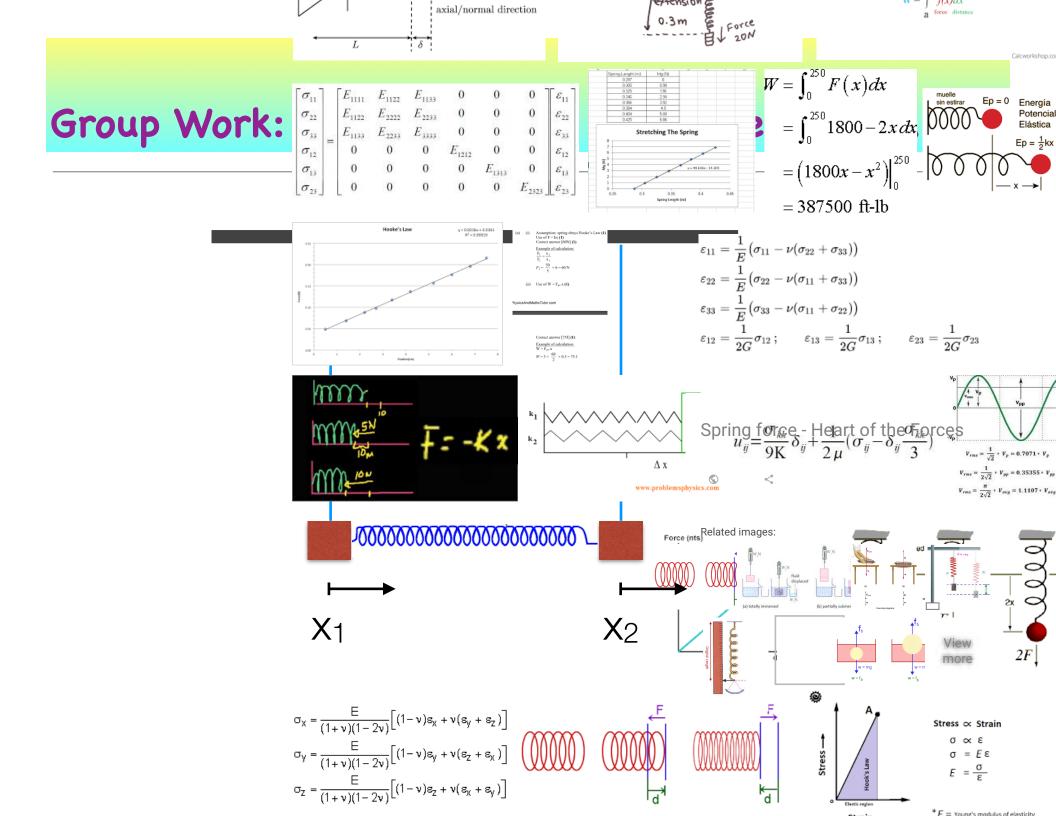
• Most measurements done in mass basis: Higgs acquiring VEV

$$\Re(\phi^0) \to (v + H^0) / \sqrt{2}$$
$$Q_{L_i}^I = \begin{pmatrix} U_{L_i}^I \\ D_{L_i}^I \end{pmatrix}$$

Yukawa interactions → mass terms

$$-\mathscr{L}_{M}^{q} = \left(M_{d}\right)_{ij}\overline{D_{L_{i}}^{I}} D_{R_{j}}^{I} + \left(M_{u}\right)_{ij}\overline{U_{L_{i}}^{I}} U_{R_{j}}^{I} + \text{h.c., } M_{q} = \frac{\upsilon}{\sqrt{2}}Y^{q}$$

• Mismatch between weak eigenstates and mass eigenstates



• Interaction \rightarrow Mass basis: diagonal mass matrices

$$-\mathscr{L}_{M}^{q} = \overline{D_{L_{i}}^{I}} \left(M_{d} \right)_{ij} D_{R_{j}}^{I} + \overline{U_{L_{i}}^{I}} \left(M_{u} \right)_{ij} U_{R_{j}}^{I} + \text{h.c.}$$

• Diagonalization: bi-unitary transformation

$$V_{u_L}M_uV_{u_R}^{\dagger} = M_u^{\text{diag}}, \quad V_{d_L}M_dV_{d_R}^{\dagger} = M_d^{\text{diag}}$$
$$q_{L_i} = \left(V_{q_L}\right)_{ij} q_{L_j}^I, \quad q_{R_i} = \left(V_{q_R}\right)_{ij} q_{R_j}^I, \quad q = u, d$$

• Weak Charged Current Interactions:

$$q_{L_i} = (V_{q_L})_{ij} q_{L_j}^I, \quad q_{R_i} = (V_{q_R})_{ij} q_{R_j}^I, \quad q = u, d$$

$$-\mathscr{L}_{W^{\pm}}^{q} = \frac{g}{\sqrt{2}} \overline{u_{L_{i}}^{I}} \gamma^{\mu} d_{L_{i}}^{I} W_{\mu}^{+} + \text{h.c.}$$
$$= \frac{g}{\sqrt{2}} \overline{u_{L_{i}}} \gamma^{\mu} \left(V_{u_{L}} V_{d_{L}}^{\dagger} \right)_{ij} d_{L_{j}} W_{\mu}^{+} + \text{h.c.}$$

Cabibbo-Kobayashi-Maskawa (CKM) Matrix

$$V = V_{u_L} V_{d_L}^{\dagger}$$
 , $V V^{\dagger} = \mathbb{I}$

Cabibbo-Kobayashi-Maskawa (CKM) Matrix $V = V_{u_L} V_{d_I}^{\dagger}$

- V not diagonal $\Rightarrow W^{\pm}$ gauge bosons couple to mass eigenstates of quarks of different generations
- SM: Only flavor-changing quark interactions
- Elements of CKM matrix:

$$V = \begin{pmatrix} V_{ud} & V_{cd} & V_{td} \\ V_{us} & V_{cs} & V_{ts} \\ V_{ub} & V_{cb} & V_{tb} \end{pmatrix}$$

Parametrization not unique:

PDG convention

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

PDG convention

$$V_{CKM} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} = \\ \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix}$$

Parametrization not unique:

Wolfstein Rapametrization

$$V = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

$$\lambda \sim 0.22$$

Different parametrizations: freedom of phase rotation

Parametrization independent measure for CPV

Jarlskog invariant

$$\Im\left(V_{ij}V_{kl}V_{il}^{*}V_{kj}^{*}\right) = J_{CKM}\sum_{m, n=1}^{3} \epsilon_{ikm}\epsilon_{jln}, \quad (i, j, k, l = 1, 2, 3)$$

In terms of explicit parametrizations given above

$$J_{CKM} = c_{12}c_{23}c_{13}^2 s_{12}s_{23}s_{13}\sin\delta \approx \lambda^6 A^2 \eta$$

Group Work: CP Violation

- In terms of flavor parameters, sufficient conditions for CPV in SM quark sector: $\Delta m_{ij}^2=m_i^2-m_j^2$

$$\Delta m_{tc}^2 \Delta m_{tu}^2 \Delta m_{cu}^2 \Delta m_{bs}^2 \Delta m_{bd}^2 \Delta m_{sd}^2 J_{CKM} \neq 0$$

Requirements on SM for CPV?

Group Work: CP Violation

- In terms of flavor parameters, sufficient conditions for CPV in SM quark sector: $\Delta m_{ij}^2=m_i^2-m_j^2$

$$\Delta m_{tc}^2 \Delta m_{tu}^2 \Delta m_{cu}^2 \Delta m_{bs}^2 \Delta m_{bd}^2 \Delta m_{sd}^2 J_{CKM} \neq 0$$

Requirements on SM for CPV

- Within each quark sector, no mass degeneracy
- None of the mixing angles should be 0 or $\pi/2$
- Phase should be neither 0 or π

Group Work: n Generations

For the CKM-like matrix describing the flavor couplings of *n* generations of upand down-type quarks, how many free parameters are there?

How many angles and phases?

Group Work: n Generations

• CKM-like matrix for n generations:

$$2n^2 - n^2 - (2n - 1) = (n - 1)^2$$
 free parameters

• A general $n \times n$ orthogonal matrix:

 $\frac{1}{2}n(n-1)$ angles describing rotations among n dimensions

• Remaining free paraders are phases

$$(n-1)^2 - \frac{1}{2}n(n-1) = \frac{1}{2}(n-1)(n-2)$$

 \Rightarrow need at least 3 generations to have CPV in CKM matrix

Standard Model – Unitarity Triangle

 Unitarity Triangle of CKM Matrix: relations among matrix elements

$$\sum_{i} V_{id} V_{is}^* = 0$$

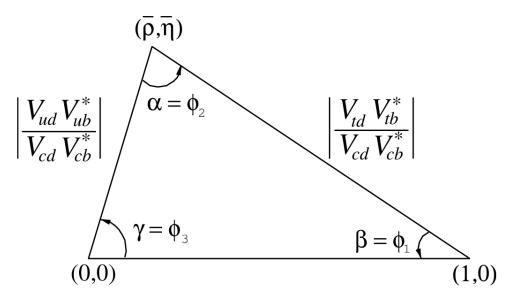
$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

• CKM: all unitarity triangles have same areas = $J_{CKM}/2$ • Angles of unitarity triangles

$$\alpha \equiv \arg\left[-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right], \quad \beta \equiv \arg\left[-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right], \quad \gamma \equiv \arg\left[-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right]$$

Another common convention

$$\phi_1 = \beta, \quad \phi_2 = \alpha, \quad \phi_3 = \gamma$$



Flavor Changing Neutral Currents

- Flavor changing charged currents: only source of flavor violating interactions in SM
- No fundamental reason why there cannot be FCNCs
- Experimentally, FCNCs are highly suppressed
 - In SM: no tree level FCNCs; generated at loop level
 - In NP: FCNCs place stringent constraints
- Distinction:
 - Non-diagonal couplings
 - Diagonal couplings
 - Universal couplings: diagonal in any basis
 - Non-universal couplings: diagonal with different strengths; become non-diagonal in a different basis

Flavor Changing Neutral Currents

- Four neutral bosons that could mediate neutral currents:
 - Gluons, photons, Z-boson, (Higgs boson)
- Gluons, Photons (massless):
 - Exact gauge symmetries: Only couple to fermions through gauge kinetic terms
 - Canonical kinetic terms \Rightarrow universal and flavor conserving couplings
 - Gauge symmetry protects FCNCs

Group Work: FCNCs

- Z-boson mediated neutral current:
 - Couplings to fermions $\propto (T_3 q \sin^2 \theta_w)$
 - In interaction basis

$$-\mathscr{L}_{Z} = \frac{g}{\cos\theta_{w}} \left[\overline{u_{L_{i}}^{I}} \gamma^{\mu} \left(\frac{1}{2} - \frac{2}{3} \sin^{2}\theta_{w} \right) u_{L_{i}}^{I} + \overline{u_{R_{i}}^{I}} \gamma^{\mu} \left(-\frac{2}{3} \sin^{2}\theta_{w} \right) u_{R_{i}}^{I} \right. \\ \left. + \overline{d_{L_{i}}^{I}} \gamma^{\mu} \left(\frac{1}{2} + \frac{1}{3} \sin^{2}\theta_{w} \right) d_{L_{i}}^{I} + \overline{d_{R_{i}}^{I}} \gamma^{\mu} \left(\frac{1}{3} \sin^{2}\theta_{w} \right) d_{R_{i}}^{I} \right] Z_{\mu} + \text{h.c.}$$

• What happen when going to physical basis?

Group Work: FCNCs

- Z-boson mediated neutral current:
 - In interaction basis

$$-\mathscr{L}_{Z} = \frac{g}{\cos\theta_{w}} \left[\overline{u_{L_{i}}^{I}} \gamma^{\mu} \left(\frac{1}{2} - \frac{2}{3} \sin^{2}\theta_{w} \right) u_{L_{i}}^{I} + \overline{u_{R_{i}}^{I}} \gamma^{\mu} \left(-\frac{2}{3} \sin^{2}\theta_{w} \right) u_{R_{i}}^{I} \right. \\ \left. + \overline{d_{L_{i}}^{I}} \gamma^{\mu} \left(\frac{1}{2} + \frac{1}{3} \sin^{2}\theta_{w} \right) d_{L_{i}}^{I} + \overline{d_{R_{i}}^{I}} \gamma^{\mu} \left(\frac{1}{3} \sin^{2}\theta_{w} \right) d_{R_{i}}^{I} \right] Z_{\mu} + \text{h.c.}$$

• In physical basis

$$-\mathscr{L}_{Z} = \frac{g}{\cos \theta_{w}} \left[\overline{u_{L_{i}}} (V_{u_{L}})_{ik} \gamma^{\mu} \left(\frac{1}{2} - \frac{2}{3} \sin^{2} \theta_{w} \right) (V_{u_{L}}^{\dagger})_{kj} u_{L_{j}} \right] Z_{\mu} ,$$
$$= \frac{g}{\cos \theta_{w}} \left[\overline{u_{L_{i}}} \gamma^{\mu} \left(\frac{1}{2} - \frac{2}{3} \sin^{2} \theta_{w} \right) u_{L_{i}} \right] Z_{\mu}$$

Flavor Changing Neutral Currents

Z-boson mediated neutral current

•
$$V_{u_L}V_{u_L}^{\dagger} = \mathbb{I}$$
,

- compared to W-mediated charged current, $V_{u_L}V_{d_I}^\dagger = V_{CK\!M}$

- Generally, fields can mix if they belong to same representation under unbroken generators
- <u>Theorem</u>: To prevent FCNCs in gauge sector: particles with same unbroken gauge quantum numbers must also have same quantum numbers under the broken gauge group
 - Homework: SM satisfies this criterion

Probing the CKM Matrix

• Elements of CKM matrix

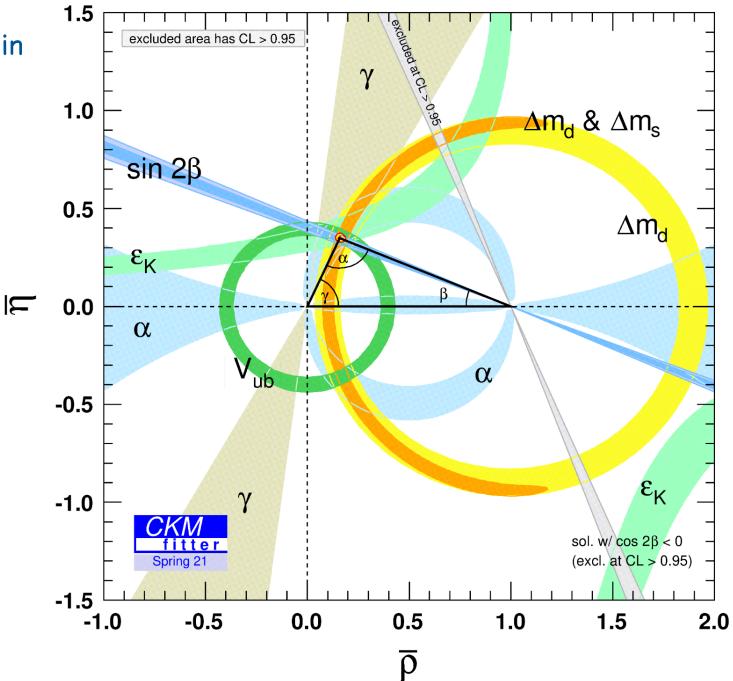
$$V_{CKM} = \begin{pmatrix} 0.97446 & 0.22452 & 0.00365 \\ 0.22438 & 0.97359 & 0.04214 \\ 0.00896 & 0.04133 & 0.99911 \end{pmatrix} \pm \begin{pmatrix} 0.00010 & 0.00044 & 0.00012 \\ 0.00044 & 0.00011 & 0.00076 \\ 0.00024 & 0.00974 & 0.00003 \end{pmatrix}$$

$$\begin{vmatrix} V_{CKM} \end{vmatrix} \sim \begin{pmatrix} 1 & \lambda & \lambda^3 \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}$$

$$J_q \sim 10^{-5}$$

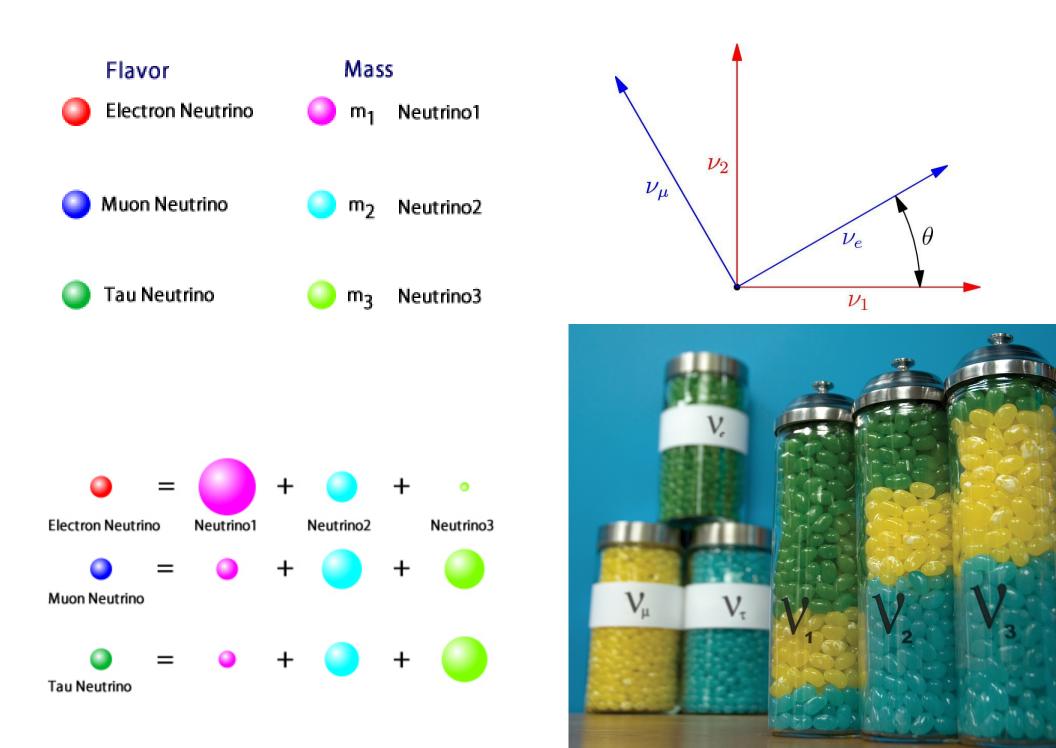
Consistency:

Impressive precision in the measurements in quark flavor sector.



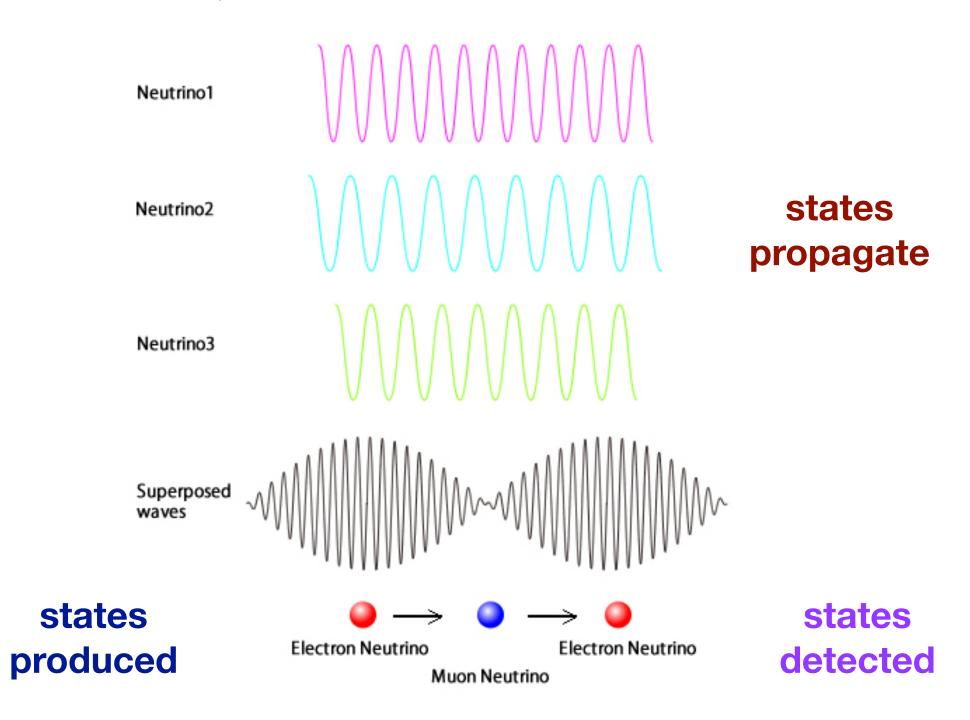
Why BSM?

- SM: tested to high accuracy, good low energy effective description of Nature
- Reasons for Beyond the Standard Model (BSM) New Physics
 - Neutrino Mass
 - Dark Matter
 - Matter-antimatter asymmetry of the Universe
 - Strong CP Problem
 - Gauge Hierarchy Problem
 - Flavor Puzzle
 - Gravity
 - Understanding of Charge quantization



[[]Picture credit: Symmetry Magazine]

Macroscopic Quantum Mechanics at Work



Standard Model of Particle Physics

Helicity of Neutrinos*

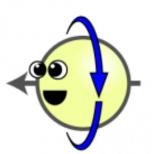
M. GOLDHABER, L. GRODZINS, AND A. W. SUNYAR Brookhaven National Laboratory, Upton, New York (Received December 11, 1957)

A COMBINED analysis of circular polarization and resonant scattering of γ rays following orbital electron capture measures the helicity of the neutrino. We have carried out such a measurement with Eu^{152m}, which decays by orbital electron capture. If we assume the most plausible spin-parity assignment for this isomer compatible with its decay scheme,¹ 0–, we find that the neutrino is "left-handed," i.e., $\sigma_{\nu} \cdot \hat{p}_{\nu} = -1$ (negative helicity).

only LH neutrinos have been observed



all particles have both left-handed and right-handed partners, except for neutrinos



Fermion Mass Generation

- Two types of mass terms:
 - Dirac masses
 - couple left and right handed fields

$$m_D \overline{\psi_L} \psi_R + h.c.,$$

- it always involve two different fields
- the additive quantum numbers of the two fields are opposite
- there are four d.o.f. with the same mass

Fermion Mass Generation

- Majorana masses
 - couple a left-handed or right-handed field to itself

$$m_M \overline{\psi_R^c} \psi_R, \qquad \psi^c = C \,\overline{\psi}^T,$$

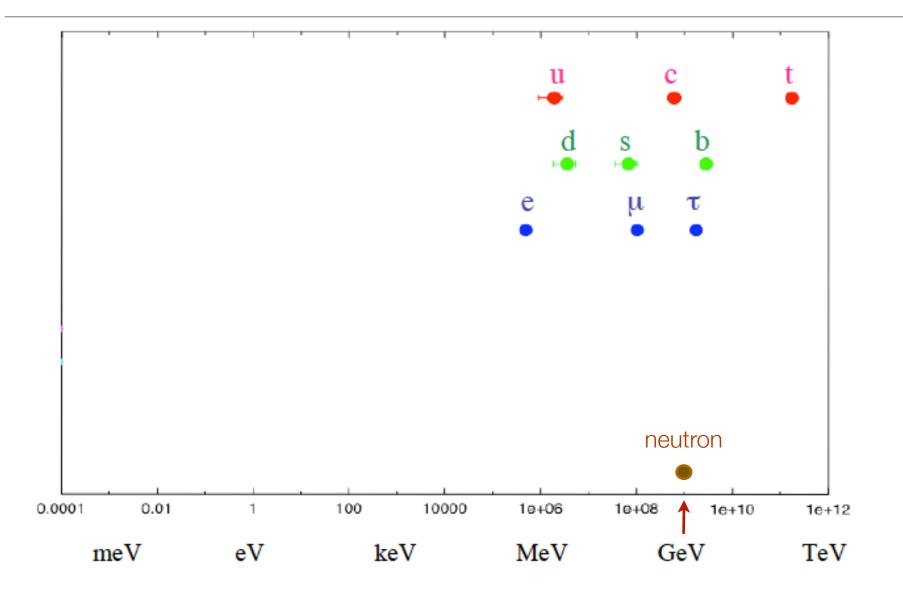
- there can be only two d.o.f. with the same mass
- additive quantum numbers of the two fields are the same ⇒ break all the U(1) symmetries
- can only be written for neutral fermions

Neutrino Mass in the SM

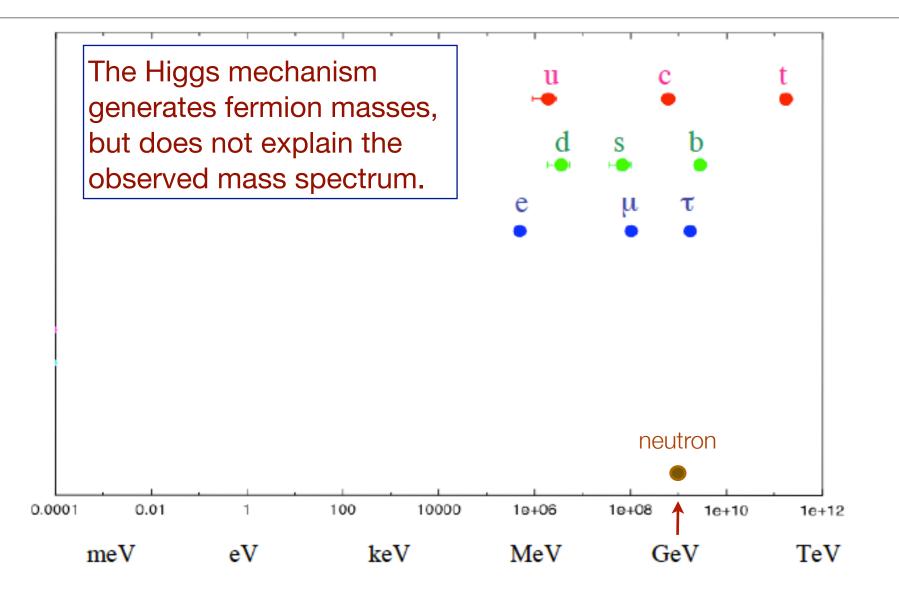
- SM implies exactly massless neutrinos
 - no $v_R \Rightarrow$ neutrinos are massless
 - no Higgs SU(2) triplet \Rightarrow no Majorana mass \triangle LL
 - SM renormalizable ⇒ no Majorana mass term from dim-5 operator HHLL

• Unlike $m_{\gamma} = 0$ prediction, the $m_{\nu} = 0$ prediction is somewhat accidental

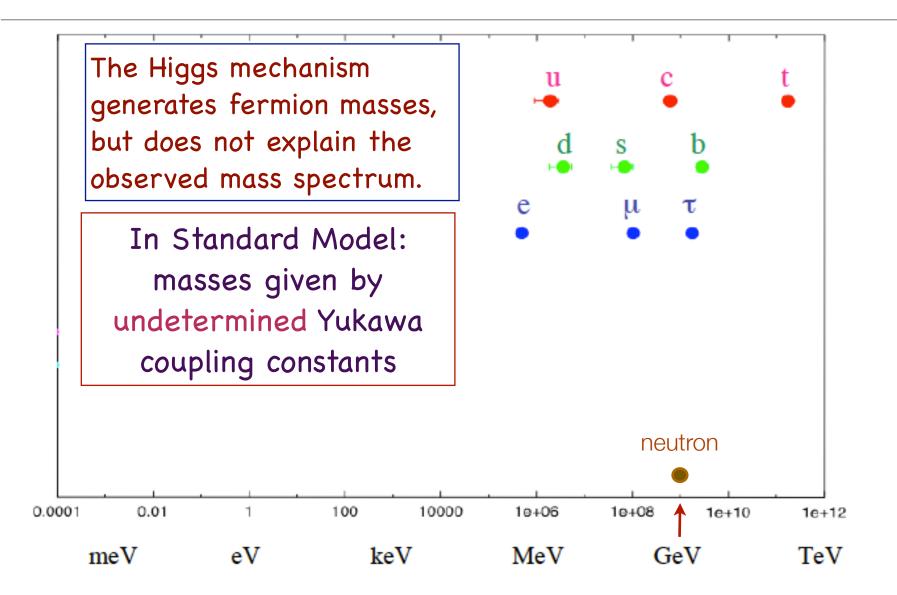
Mass Spectrum of Elementary Particles in SM



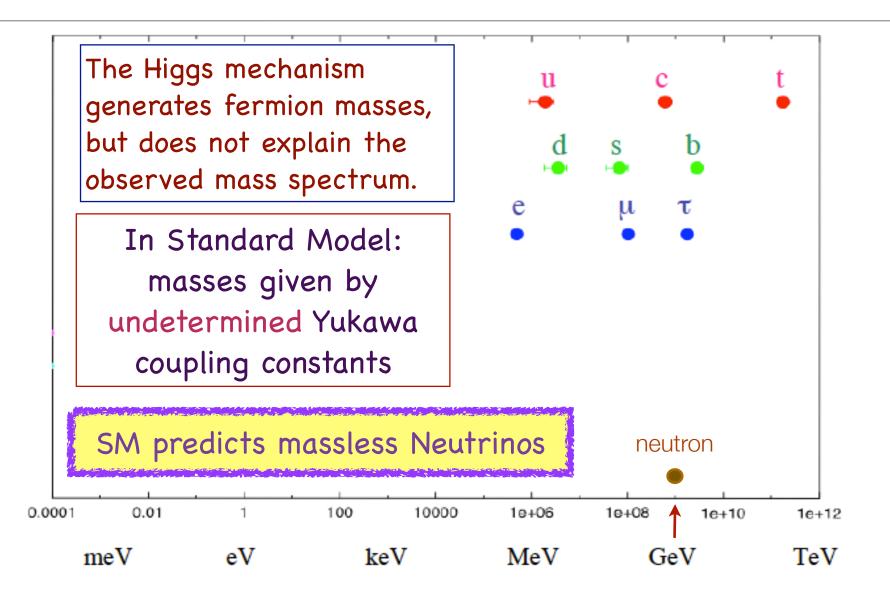
Mysteries of Masses in SM



Mysteries of Masses in SM

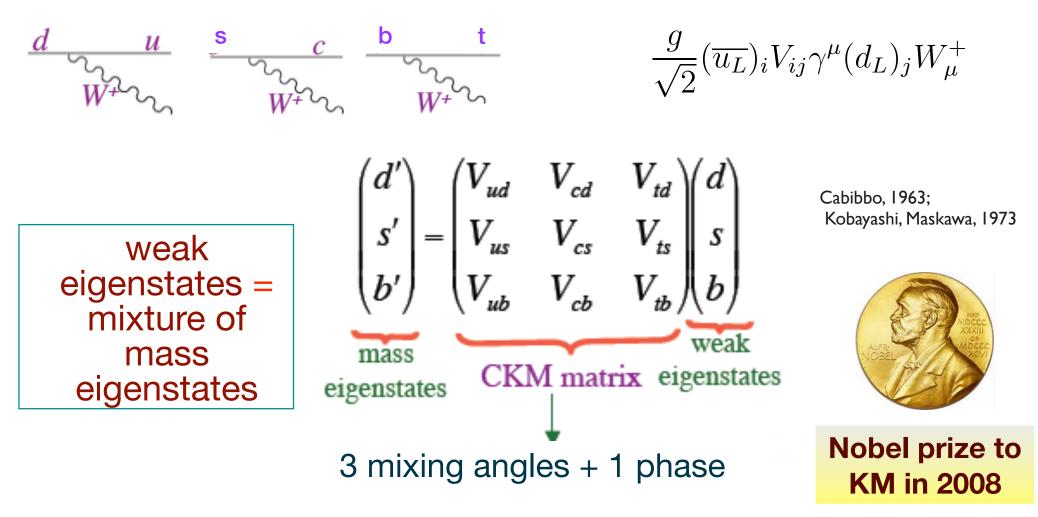


Mysteries of Masses in SM



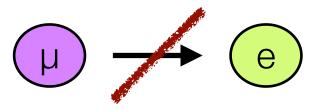
Mysteries of Masses and Flavor Mixing in SM

 Charged current weak interaction mediated by W[±] gauge boson:



Mysteries of Masses and Flavor Mixing in SM

- Neutrino Masses are degenerate (all zero)
 - mass eigenstates = weak eigenstates
- Accidental symmetries in SM
 - lepton flavor numbers: L_e , L_μ , L_τ
 - no processes cross family lines in lepton sector
 - As a result
 - no neutrino oscillation
 - lepton flavor violation decays forbidden



• total lepton number conserved: $L = L_e + L_\mu + L_\tau$

Neutrino Oscillation \Rightarrow Massive Neutrinos

- Neutrino Masses are non-degenerate (at least two are non-zero)
 - mass eigenstates ≠ weak eigenstates
- Accidental symmetries in SM
 - Broken lepton flavor numbers: L_e , L_μ , L_τ
 - Processes cross family lines in lepton sector now possible
 - As a result
 - neutrino oscillation
 - lepton flavor violation decays?

ARE NEUTRINOS

• total lepton number? $L \stackrel{2}{:} L_e + L_\mu + L_\tau \leftrightarrow 1$

What if Neutrinos Have Mass?

- Similar to the quark sector, there can be a mismatch between mass eigenstates and weak eigenstates
- weak interactions eigenstates: v_e , v_{μ} , v_{τ}

- mass eigenstates: v₁, v₂, v₃
- Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix

Maki, Nakagawa, Sakata, 1962 ; Pontecorvo, 1967

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} - \mathbf{I}$$

3 mixing angles + 1 (3) phase(s) for Dirac (Majorana) neutrinos

 \sim

Recall: n Generations

• CKM-like matrix for n generations: For Dirac fermions

$$2n^2 - n^2 - (2n - 1) = (n - 1)^2$$
 free parameters

• A general $n \times n$ orthogonal matrix:

 $\frac{1}{2}n(n-1)$ angles describing rotations among n dimensions

• Remaining free parameters are phases

$$(n-1)^2 - \frac{1}{2}n(n-1) = \frac{1}{2}(n-1)(n-2)$$

 \Rightarrow need at least 3 generations to have CPV in CKM matrix

Recall: n Generations

What happens for Majorana neutrinos? How many unphysical parameters can we rotate away by phase redefinition? What is the smallest number of families in order to have CPV?

62

Recall: n Generations

• CKM-like matrix for *n* generations: For Majorana fermions?

$$2n^2 - n^2 - (2n - 1) = (n - 1)^2 \text{ free parameters}$$

$$n^2 - n$$

$$(2n - 1) \rightarrow n$$

• A general $n \times n$ orthogonal matrix:

 $\frac{1}{2}n(n-1)$ angles describing rotations among n dimensions

• Remaining free parameters are phases

$$\frac{n^2 - n}{(n-1)^2 - \frac{1}{2}n(n-1)} = \frac{1}{2}(n-1)(n-2) \frac{1}{2}n(n-1)$$

 \Rightarrow need at least 2 generations to have CPV for Majorana neutrinos

Where Do We Stand?

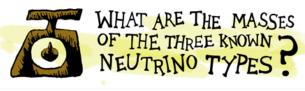
• Latest 3 neutrino global analysis:

Gonzalez-Garcia, Maltoni, Schwetz (NuFIT), 2111.03086

		NormalOr	lering (Best Fit)	Inverted Ordering ($\Delta \chi^2 = 7.0$)	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	$\frac{1}{3\sigma}$ range
with SK atmospheric data	$\sin^2 \theta_{12}$	$\frac{0.304^{+0.012}_{-0.012}}{0.304^{+0.012}_{-0.012}}$	$0.269 \rightarrow 0.343$	$\frac{0.304^{+0.013}_{-0.012}}{0.304^{+0.013}_{-0.012}}$	$0.269 \rightarrow 0.343$
	$\theta_{12}/^{\circ}$	$33.45\substack{+0.77\\-0.75}$	$31.27 \rightarrow 35.87$	$33.45\substack{+0.78\\-0.75}$	$31.27 \rightarrow 35.87$
	$\sin^2 \theta_{23}$	$0.450\substack{+0.019\\-0.016}$	0.408 ightarrow 0.603	$0.570\substack{+0.016\\-0.022}$	0.410 ightarrow 0.613
	$\theta_{23}/^{\circ}$	$42.1^{+1.1}_{-0.9}$	$39.7 \rightarrow 50.9$	$49.0\substack{+0.9\\-1.3}$	$39.8 \rightarrow 51.6$
	$\sin^2 \theta_{13}$	$0.02246^{+0.00062}_{-0.00062}$	$0.02060 \rightarrow 0.02435$	$0.02241^{+0.00074}_{-0.00062}$	$0.02055 \rightarrow 0.02457$
	$\theta_{13}/^{\circ}$	$8.62\substack{+0.12\\-0.12}$	8.25 ightarrow 8.98	$8.61^{+0.14}_{-0.12}$	8.24 ightarrow 9.02
	$\delta_{\rm CP}/^{\circ}$	230^{+36}_{-25}	144 ightarrow 350	278^{+22}_{-30}	$194 \rightarrow 345$
	$\frac{\Delta m^2_{21}}{10^{-5} {\rm eV}^2}$	$7.42\substack{+0.21 \\ -0.20}$	6.82 ightarrow 8.04	$7.42\substack{+0.21 \\ -0.20}$	6.82 ightarrow 8.04
	$\frac{\Delta m_{3\ell}^2}{10^{-3}~{\rm eV}^2}$	$+2.510\substack{+0.027\\-0.027}$	+2.430 ightarrow +2.593	$-2.490\substack{+0.026\\-0.028}$	-2.574 ightarrow -2.410

- ⇒ hints of $\theta_{23} \neq \pi/4$
- expectation of Dirac CP phase δ
- ➡ slight preference for normal mass ordering

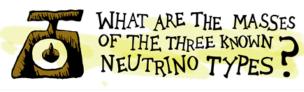
Open Questions - Neutrino Properties



- 🖙 Majorana vs Dirac?
- CP violation in lepton sector?
- Absolute mass scale of neutrinos?
- $rightarrow Mass ordering: sign of (<math>\Delta m_{13}^2$)?
- Sterile neutrino(s)?
- Solution: $θ_{23} > π/4$, $θ_{23} < π/4$, $θ_{23} = π/4$?

a suite of current and upcoming experiments to address these puzzles

Open Questions – Neutrino Properties



- 🖙 Majorana vs Dirac?
- CP violation in lepton sector?
- Absolute mass scale of neutrinos?
- $rightarrow Mass ordering: sign of (<math>\Delta m_{13}^2$)?
- Sterile neutrino(s)?
- Solution: $θ_{23} > π/4$, $θ_{23} < π/4$, $θ_{23} = π/4$?

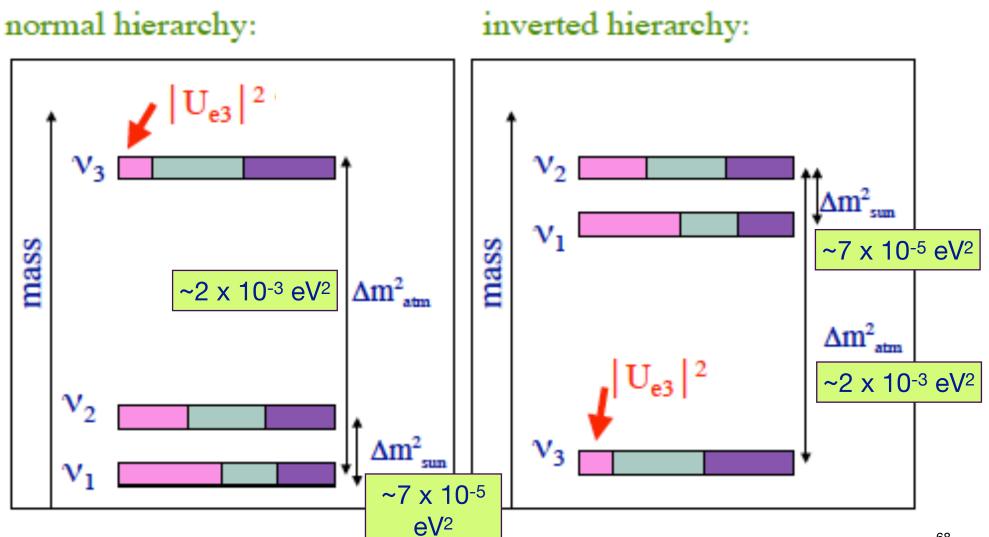
a suite of current and upcoming experiments to address these puzzles

To understand these properties \Rightarrow BSM Physics

Part II: Flavor Symmetries

Where Do We Stand?

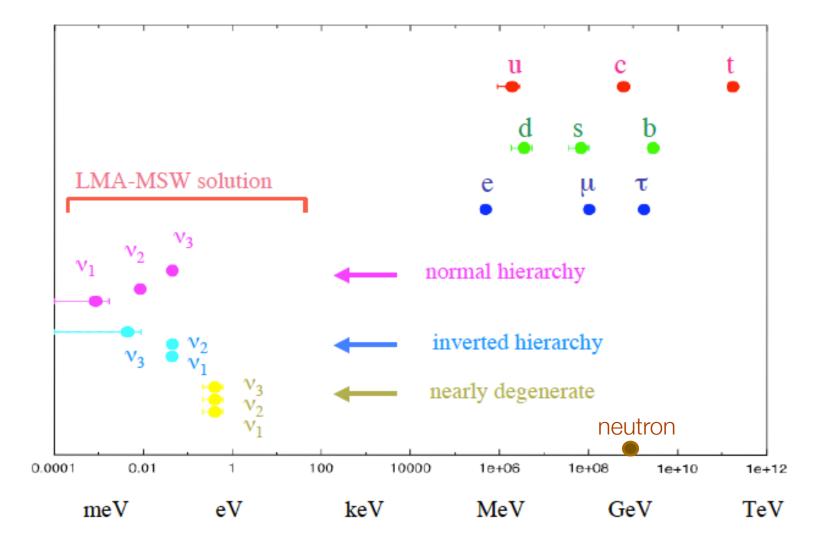
The known knowns:



Open Questions – Theoretical

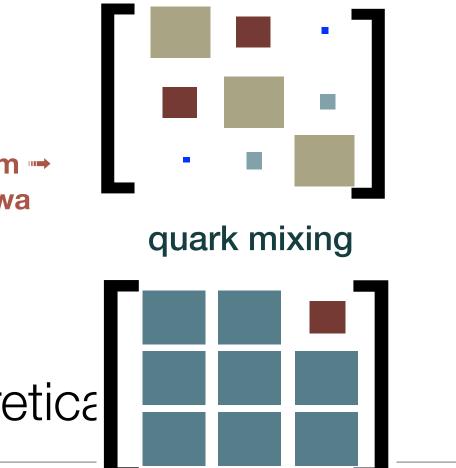
Smallness of neutrino mass:

 $m_V \ll m_{e, u, d}$

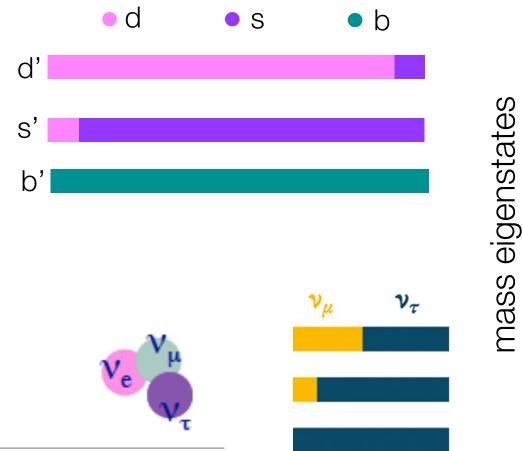


Open Questions – Theoretical

Flavor structure:



weak interaction eigenstates



leptonic mixing re:

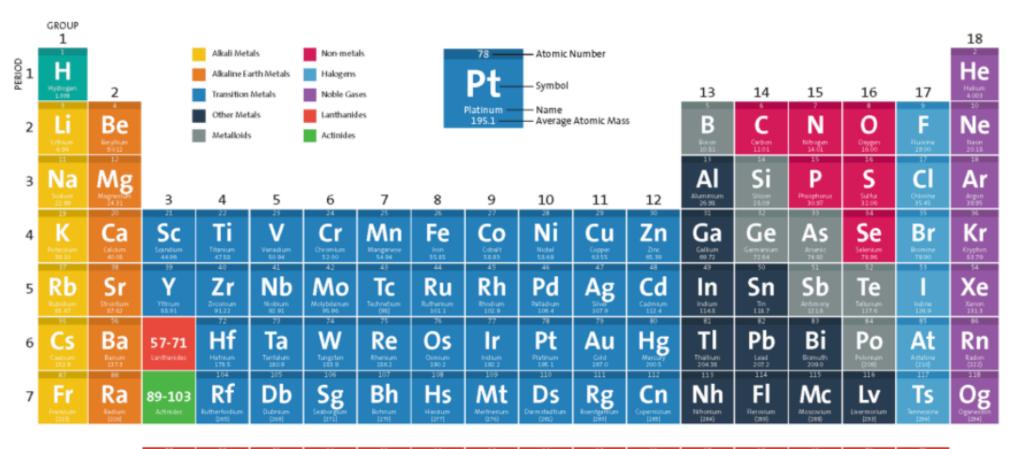
Group Work: Parameter Counting in SM

How many free physical parameters are there in the Yukawa sector of SM w/ 3 RH neutrinos (assuming Majorana neutrinos)? Fermion mass and hierarchy problem → Many (22) free parameters (out of 28) in the Yukawa sector of SM

Where do fermion mass hierarchy, flavor mixing, and CP violation come from?

Where do fermion mass hierarchy, flavor mixing, and CP violation come from?

Is there a simpler organization principle?



La	Ce	59 Pr Praseodymium	Nesdymium	Pm Promethium	Sm Samarium	Eu	Gd Gatolineum	Tb Tettium	Dy	Ho	Er	Tm Tulun	Ybebiurs	Lu
89	90	91	92	(345) 93	190.4 94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Actinium (227)	Thorium 232.0	Protactinium 2310	Uranium 238.0	Nepturium (217)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (25.1)	Einsteinium (252)	Fermium (257)	Mendelevium (251)	Nobelium (259)	Lawrendum (262)

American Chemical Society

www.acs.org/outreach

Where do fermion mass hierarchy, flavor mixing, and CP violation come from?

Is there a simpler organization principle?

Where do neutrinos get their masses?

Where do fermion mass hierarchy, flavor mixing, and CP violation come from?

Is there a simpler organization principle?

Where do neutrinos get their masses?

Is it the Higgs or something else that gives neutrino masses?

Matter-Antimatter Asymmetry

Early Universe

Universe Now

[Picture credit: H. Murayama] Page 2 of 3

What is the origin of matter antimatter asymmetry? Why do we exist?

Neutrino Mass beyond the SM

- Two options:
 - add RH neutrinos $N(1,1)_0 \Rightarrow$ Dirac mass $m_D \overline{\nu}_L \nu_R$
 - why Yukawa couplings are small
 - why there are no large Majorana mass terms for RH neutrinos
 - add Higgs SU(2) triplet $\Delta \Rightarrow$ Majorana mass ΔLL
 - why $\langle \Delta \rangle \ll \langle H \rangle$
- Generally, in these models
 - new fields are introduced only to generate neutrino mass
 - there is no understanding of why neutrinos are light

Neutrino Mass beyond the SM

• The SM is an effective low energy theory, with NR terms. NP effects are suppressed by powers of small parameter

 $rac{M_W}{\Lambda}$

• Neutrino masses are generated by so-called Weinberg operator

 $HH\ell_i\ell_j$

What is the mass dimension of the Weinberg Operator, *HHt*_it_j? How does it appear in the Lagrangian?

Neutrino Mass beyond the SM

• The SM is an effective low energy theory, with NR terms. NP effects are suppressed by powers of small parameter

 M_W

• Neutrino masses are generated by so-called Weinberg operator, dim-5

$$\frac{\lambda_{ij}}{\Lambda} HH\ell_i\ell_j \Rightarrow m_\nu = \lambda_{ij} \frac{v^2}{\Lambda}$$

 λ_{ij} are dimensionless couplings

 Λ is some high scale

Group Work: Weinberg Operator

What symmetry/symmetries does the Weinberg operator break?

 $\frac{HH\ell_{i}\ell_{j}}{\Lambda}$

Neutrino Mass beyond the SM

$$\frac{\lambda_{ij}}{\Lambda} HH\ell_i \ell_j \implies m_\nu = \lambda_{ij} \frac{v^2}{\Lambda}$$

• promoting SM to an effective field theory implies

 $m_v \neq 0$

- m_v is small because it arises from NR terms (Λ is high)
- Neutrino mass therefore probe the high energy physics
- Both total lepton number and family lepton numbers are broken

lepton mixing and CP violation expected

Seesaw Mechanism

• Consider one generation SM with an additional singlet $N(1, 1)_0$

$$\mathcal{L}_{m_{\nu}} = \frac{1}{2}M_N N N + Y_{\nu} H L N$$

- $M_N \gg v$ is a Majorana mass of the RH neutrino the 2nd term: Dirac mass term
- In the (v_L, N_R) basis, the neutrino mass matrix is

$$m_{\nu} = \begin{pmatrix} 0 & m_D \\ m_D & M_N \end{pmatrix} \qquad \qquad m_D = Y_{\nu} v$$

Group Work: Seesaw Mechanism

$$m_{\nu} = \left(\begin{array}{cc} 0 & m_D \\ m_D & M_N \end{array}\right)$$

Assuming $M_N \gg v$, what are the two eigenvalues at leading order?

Seesaw Mechanism

$$m_{\nu} = \left(\begin{array}{cc} 0 & m_D \\ m_D & M_N \end{array}\right)$$

• Assuming $M_N \gg v$ to first order,

$$m_{N_R} = M_N , \ m_{\nu_L} = \frac{m_D^2}{M_N} , \quad (\text{EFT:} \ m_{\nu} = \lambda \frac{v^2}{M})$$

- the new physics scale M is identified with M_N
- the seesaw scale can be generalized to three generations
- seesaw is realized in, e.g. Left-Right, Pati-Salam, and GUT models

Group Work: Seesaw Mechanism

$$m_{\nu} = \left(\begin{array}{cc} 0 & m_D \\ m_D & M_N \end{array}\right)$$

What is needed to populate the (1 1) entry with a non-vanishing contribution?

Neutrino Mass beyond the SM

• SM: effective low energy theory

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{\mathcal{O}_{5D}}{M} + \frac{\mathcal{O}_{6D}}{M^2} + \dots$$
 new physics effects

• only one dim-5 operator: most sensitive to high scale physics

Weinberg, 1979

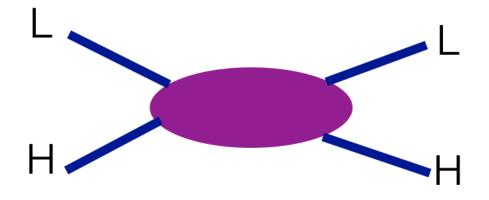
GUT scale

$$\frac{\lambda_{ij}}{M}HHL_iL_j \quad \Rightarrow \quad m_{\nu} = \lambda_{ij}\frac{v^2}{M}$$

• $m_{\nu} \sim (\Delta m^2_{atm})^{1/2} \sim 0.1 \text{ eV with } \mathbf{v} \sim 100 \text{ GeV}, \lambda \sim O(1) \Rightarrow M \sim 10^{14} \text{ GeV}$

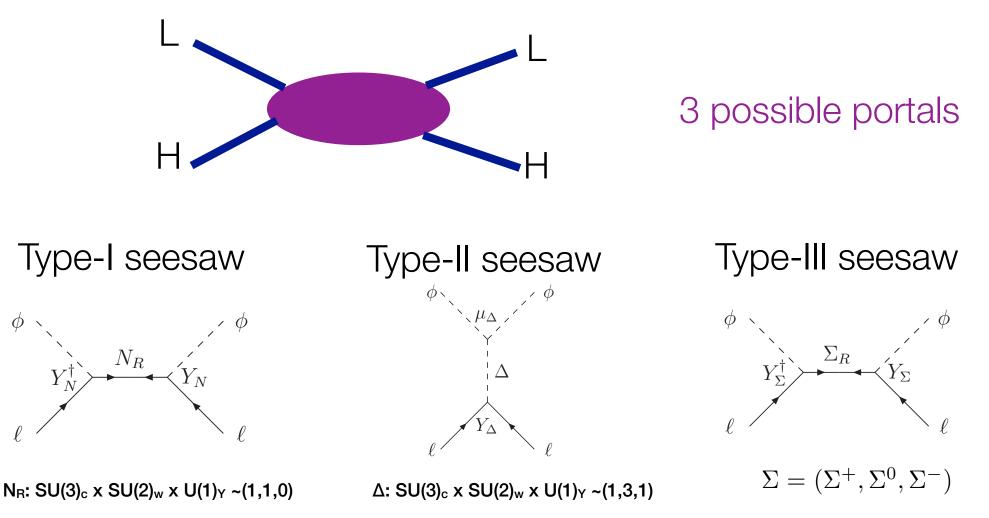
• Lepton number violation $\Delta L = 2 \implies Majorana$ fermions

Group Work: UV Completion for Weinberg Operator



Schematically, how do you UV complete the Weinberg Operator? What can be the "portal" particles?

Neutrino Mass beyond the SM



Minkowski, 1977; Yanagida, 1979; Glashow, 1979; Gell-mann, Ramond, Slansky,1979; Mohapatra, Senjanovic, 1979; Lazarides, 1980; Mohapatra, Senjanovic, 1980

Foot, Lew, He, Joshi, 1989; Ma, 1998

 $\Sigma_{\rm R}$: SU(3)_c x SU(2)_w x U(1)_Y ~(1,3,0)

Why are neutrinos light? Seesaw Mechanism

 Adding the right-handed neutrinos:

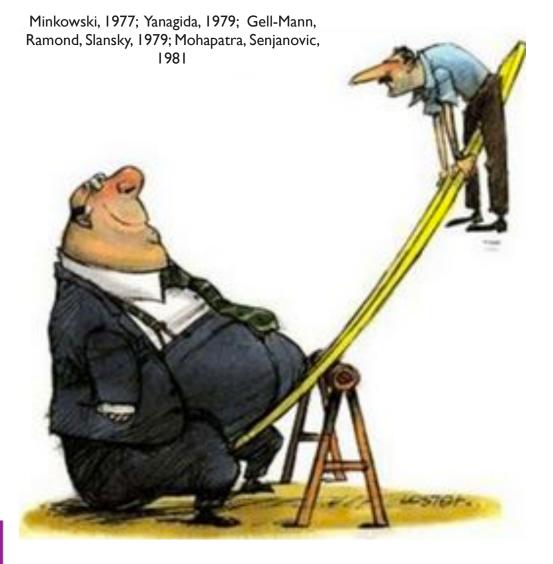
$$\begin{pmatrix} \boldsymbol{v}_L & \boldsymbol{v}_R \end{pmatrix} \begin{pmatrix} \boldsymbol{0} & \boldsymbol{m}_D \\ \boldsymbol{m}_D & \boldsymbol{M}_R \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_L \\ \boldsymbol{v}_R \end{pmatrix}$$

$$egin{aligned} m_{m v} &\sim m_{light} \sim rac{m_D^2}{M_R} << m_D \ m_{heavy} &\sim M_R \end{aligned}$$

For
$$m_{v_3} \sim \sqrt{\Delta m_{atm}^2}$$

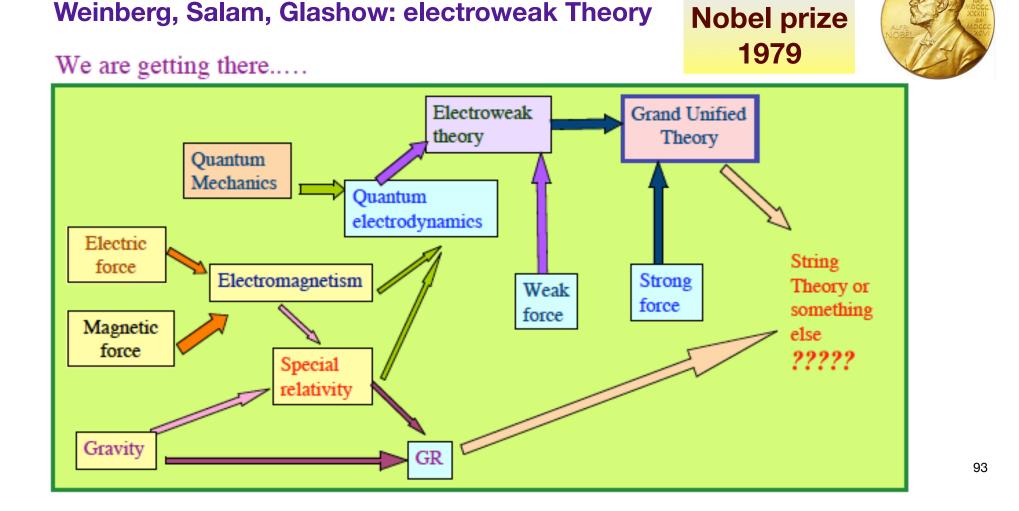
f
$$m_D \sim m_t \sim 180 \ GeV$$

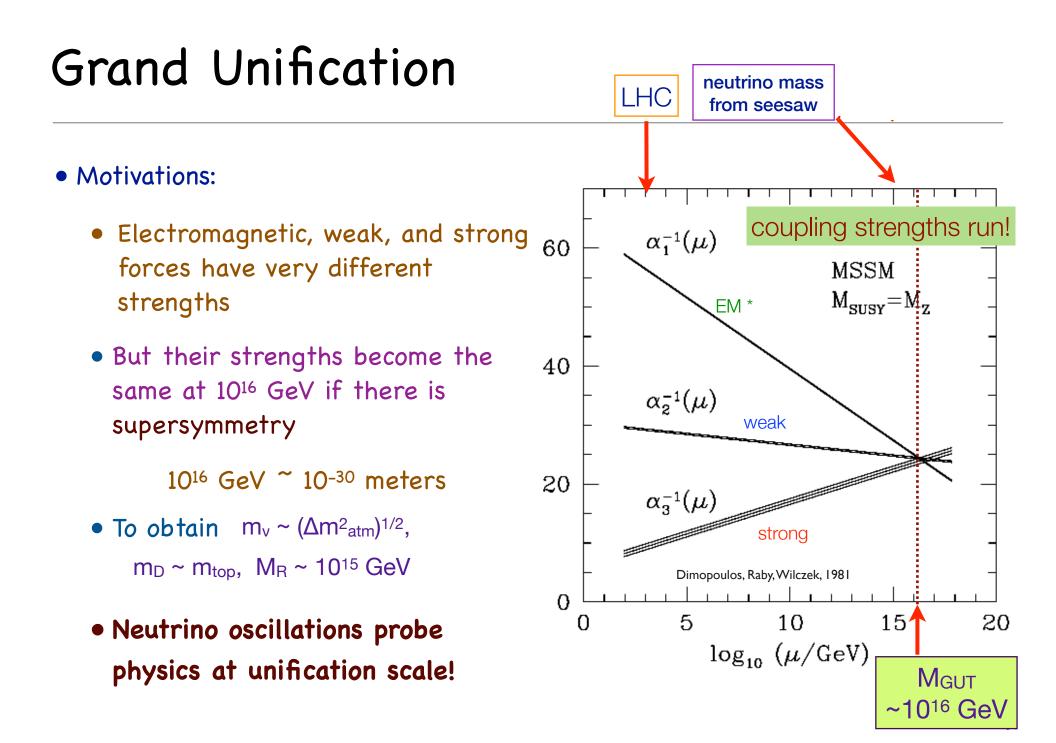
 \implies M_R ~ 10¹⁵ GeV (GUT !!)



Ultimate Goal of Grand Unification

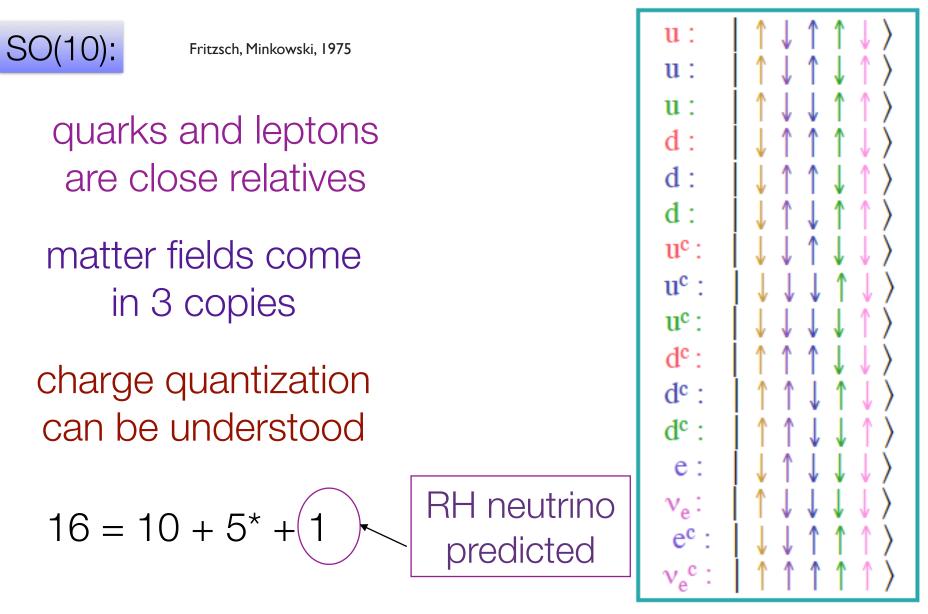
- Maxwell: electric and magnetic forces are different aspects of electromagnetism
- Einstein: early attempt to unify electric force and gravity

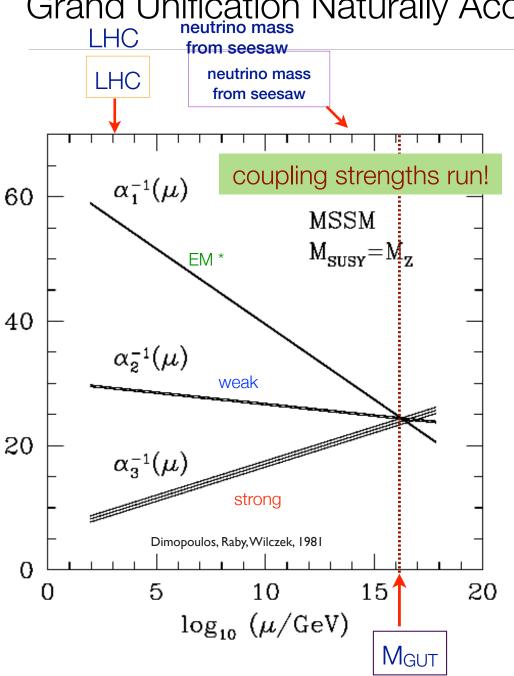




Grand Unification

Georgi, Glashow, 1974





Grand Unification Naturally Accommodates Seesaw

- [∞] origin of the heavy scale \Rightarrow U(1)_{B-L}
- ∞ exotic mediators ⇒ predicted in many GUT theories, e.g. SO(10)
- exotic mediators for Type II, III
 harder to get from string theory

Dienes, March-Russell, 1996

$$16 = (3, 2, 1/6) \sim \begin{bmatrix} u & u & u \\ d & d \end{bmatrix}$$

+ (3*, 1, -2/3) ~ (u^c u^c u^c u^c)
+ (3*, 1, 1/3) ~ (d^c d^c d^c)
+ (1, 2, -1/2) ~ $\begin{bmatrix} v \\ e \end{bmatrix}$
+ (1, 1, 1) ~ e^c
+ (1, 1, 0) ~ v^c

Fritzsch, Minkowski, 1975

Flavor Structure

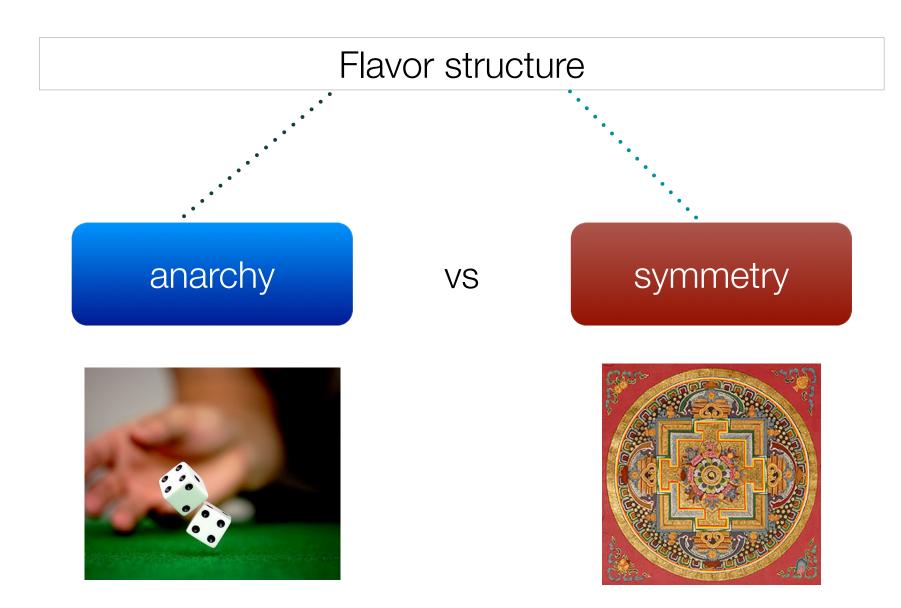
Flavor Structure

- there are parametrically small numbers
 - $m_2/m_3 < 1$, $\theta_{13} < 1$
- In general, large mixing \Leftrightarrow no hierarchy

$$m = \left(\begin{array}{cc} a & b \\ b & c \end{array}\right)$$

- $a >> b, c \Rightarrow sin^2\theta << 1, m_1/m_2 << 1$
- $a,b,c \sim 1 \Rightarrow det(m) \sim 1 \Rightarrow sin^2\theta \sim 1, m_1/m_2 \sim 1$
- $a,b,c \sim 1 \Rightarrow det(m) \ll 1 \Rightarrow sin^2\theta \sim 1, m_1/m_2 \ll 1$

Texture	Hierarchy	$ U_{e3} $	$ \cos 2\theta_{23} $ (n.s.)	$ \cos 2\theta_{23} $	Solar Angle
$ \begin{array}{c cccc} & & & \\ \hline & & \\ \hline & & \\ \hline & & \\ & & \\ \hline & & \\ $	Normal	$\sqrt{\frac{\Delta m_{12}^2}{\Delta m_{13}^2}}$	O(1)	$\sqrt{\frac{\Delta m_{12}^2}{\Delta m_{13}^2}}$	O(1)
$ \sqrt{\Delta m_{13}^2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{pmatrix} $	Inverted	$\frac{\Delta m_{12}^2}{ \Delta m_{13}^2 }$	_	$\frac{\Delta m_{12}^2}{ \Delta m_{13}^2 }$	O(1)
$\frac{\sqrt{\Delta m_{13}^2}}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$	Inverted	$\frac{\Delta m_{12}^2}{ \Delta m_{13}^2 }$	O(1)	$\frac{\Delta m_{12}^2}{ \Delta m_{13}^2 }$	$\left \cos 2\theta_{12}\right \sim \frac{\Delta m_{12}^2}{ \Delta m_{13}^2 }$
$ \sqrt{\Delta m_{13}^2} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$	$Normal^a$	> 0.1	O(1)		O(1)

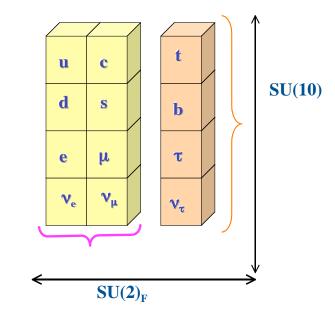




Symmetry Relations

Grand Unified Theories: GUT symmetry (vertical)

Quarks + Leptons



Family Symmetry: (horizontal)

Symmetry Relations

Symmetry \Rightarrow relations among parameters \Rightarrow reduction in number of fundamental parameters

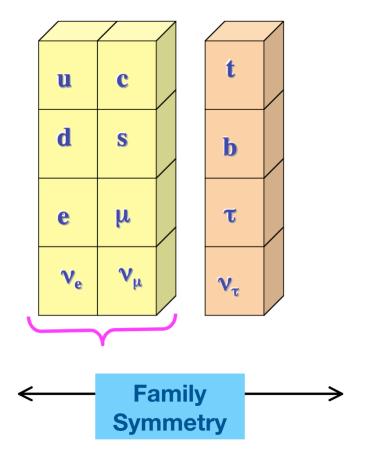
Symmetry ⇒ experimentally testable correlations among physical observables

Popular scenario for addressing flavor hierarchies: Froggatt–Nielsen scenario

Froggatt and Nielsen [1979]

E.g. effective Lagrangean for charged lepton masses

$$\mathscr{L} \supset y_0^{fg} \, \left(\frac{\widetilde{S}}{\Lambda}\right)^{n_{fg}} \overline{e}_{\mathrm{R}}^g \cdot \phi^* \cdot \ell_{\mathrm{L}}^f + \mathsf{h.c.}$$



Popular scenario for addressing flavor hierarchies: Froggatt–Nielsen scenario

 $n_{fg} = q_{\rm R}^{(f)} - q_{\rm L}^{(g)}$ Froggatt and Nielsen [1979] \mathbb{R} E.g. effective Lagrangean for charged lepton masses

$$\begin{split} \mathscr{L} \supset y_0^{fg} \, \left(rac{\widetilde{S}}{\Lambda}
ight)^{n_{fg}} \overline{e}_{\mathrm{R}}^g \cdot \phi^* \cdot \ell_{\mathrm{L}}^f + \mathsf{h.c.} \ \mathcal{O}(1) \end{split}$$

Popular scenario for addressing flavor hierarchies: Froggatt–Nielsen scenario

Froggatt and Nielsen [1979]

E.g. effective Lagrangean for charged lepton masses

$$\begin{pmatrix} \lambda^{n_{11}} & \lambda^{n_{12}} & \lambda^{n_{13}} \\ \lambda^{n_{21}} & \lambda^{n_{22}} & \lambda^{n_{23}} \\ \lambda^{n_{31}} & \lambda^{n_{32}} & \lambda^{n_{33}} \end{pmatrix}$$

٠

Popular scenario for addressing flavor hierarchies: Froggatt–Nielsen scenario

Froggatt and Nielsen [1979]

E.g. effective Lagrangean for charged lepton masses

$$\mathscr{L} \supset y_0^{fg} \left(\frac{\widetilde{S}}{\Lambda}\right)^{n_{fg}} \overline{e}_{\mathrm{R}}^g \cdot \phi^* \cdot \ell_{\mathrm{L}}^f + \mathsf{h.c.}$$

- \bowtie Assume \widetilde{S} acquires VEV $v_{\widetilde{S}} \sim \lambda \Lambda$
- Hierarchical Yukawa couplings and nontrivial mixing angles

$$\begin{pmatrix} \lambda^{n_{11}} \ \lambda^{n_{12}} \ \lambda^{n_{13}} \\ \lambda^{n_{21}} \ \lambda^{n_{22}} \ \lambda^{n_{23}} \\ \lambda^{n_{31}} \ \lambda^{n_{32}} \ \lambda^{n_{33}} \end{pmatrix}$$

Popular scenario for addressing flavor hierarchies: Froggatt–Nielsen scenario

Froggatt and Nielsen [1979]

E.g. effective Lagrangean for charged lepton masses

$$\mathscr{L} \supset y_0^{fg} \, \left(\frac{\widetilde{S}}{\Lambda}\right)^{n_{fg}} \overline{e}_{\mathrm{R}}^g \cdot \phi^* \cdot \ell_{\mathrm{L}}^f + \mathsf{h.c.}$$

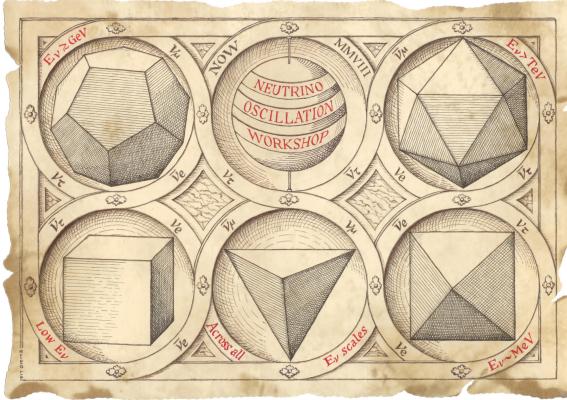
- \bowtie Assume \widetilde{S} acquires VEV $v_{\widetilde{S}} \sim \lambda \Lambda$
- Hierarchical Yukawa couplings and nontrivial mixing angles

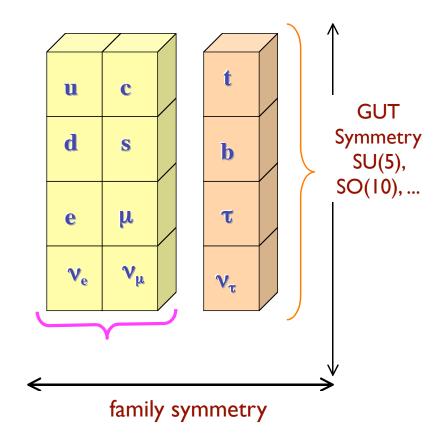
$$\begin{pmatrix} \lambda^{n_{11}} & \lambda^{n_{12}} & \lambda^{n_{13}} \\ \lambda^{n_{21}} & \lambda^{n_{22}} & \lambda^{n_{23}} \\ \lambda^{n_{31}} & \lambda^{n_{32}} & \lambda^{n_{33}} \end{pmatrix}$$

Gauging the U(1) symmetry, what constraints do we have on the model?

Origin of Flavor Mixing and Mass Hierarchy

Large neutrino mixing ⇒ discrete family symmetry

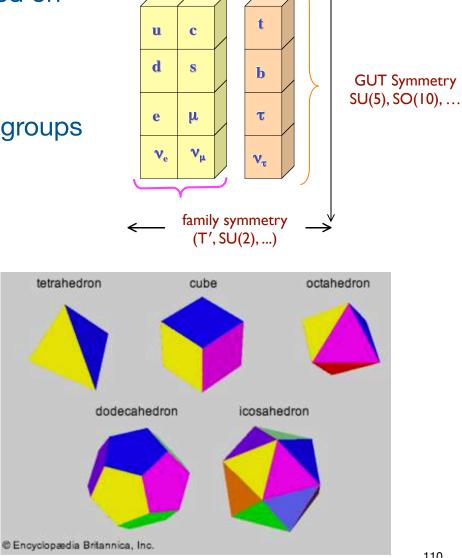




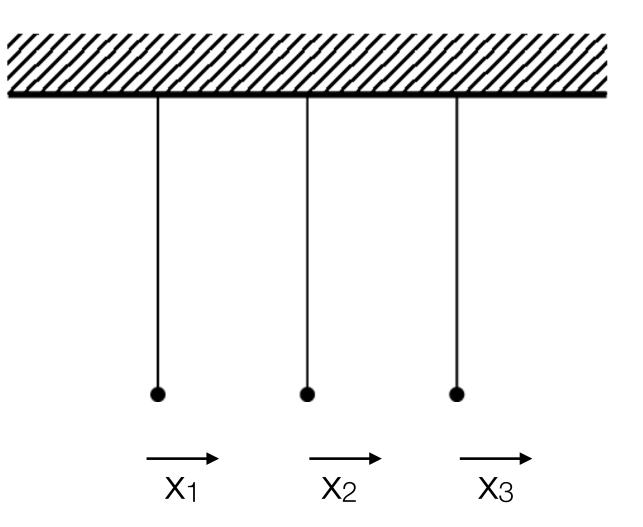
[[]Eligio Lisi for NOW2008]

Origin of Flavor Mixing and Mass Hierarchies

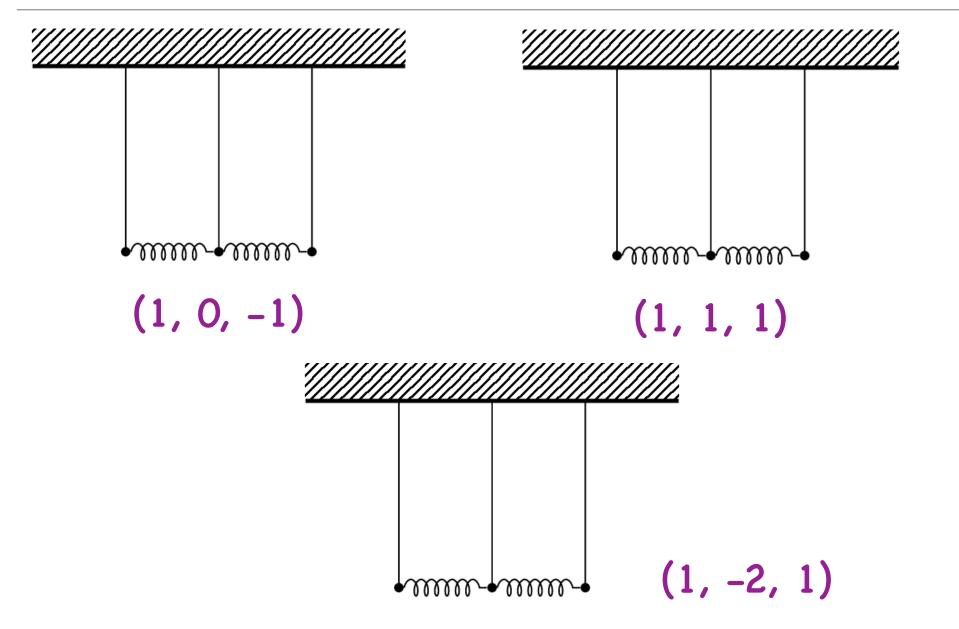
- several models have been constructed based on
 - GUT Symmetry [SU(5), SO(10)] ⊕ Family Symmetry G_F
- models based on discrete family symmetry groups have been constructed
 - A₄ (tetrahedron)
 - T´ (double tetrahedron)
 - S₃ (equilateral triangle)
 - S₄ (octahedron, cube)
 - A₅ (icosahedron, dodecahedron)
 - Δ₂₇



TBM and Coupled Pendulums



TBM and Coupled Pendulums



Tri-bimaximal Neutrino Mixing

• Latest Global Fit (3σ)

 $\sin^2 \theta_{23} = 0.437 \ (0.374 - 0.626)$

 $\sin^2 \theta_{12} = 0.308 \ (0.259 - 0.359)$

$$[\Theta^{\text{lep}_{23}} \sim 49.2^{\circ}]$$

 $[\Theta^{\text{lep}_{12}} \sim 33.4^{\circ}]$

 $\sin^2 \theta_{13} = 0.0234 \ (0.0176 - 0.0295)$

$$[\Theta^{lep}_{13} \sim 8.57^{\circ}]$$

Tri-bimaximal Mixing Pattern

Harrison, Perkins, Scott (1999)

$$U_{TBM} = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0 \\ -\sqrt{1/6} & \sqrt{1/3} & -\sqrt{1/2} \\ -\sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix}$$

 $\sin^2 \theta_{\text{atm, TBM}} = 1/2 \qquad \sin^2 \theta_{\odot, \text{TBM}} = 1/3$ $\sin \theta_{13, \text{TBM}} = 0.$

Non-Abelian Finite Family Symmetry A₄

- TBM mixing matrix: can be realized with finite group family symmetry based on A₄ Ma, Rajasekaran (2001); Babu, Ma, Valle (2003); ...
- A₄: even permutations of 4 objects
- How many such permutations (i.e. group elements)?

Non-Abelian Finite Family Symmetry A₄

- TBM mixing matrix: can be realized with finite group family symmetry based on A₄ Ma, Rajasekaran (2001); Babu, Ma, Valle (2003); ...
- A4: even permutations of 4 objects

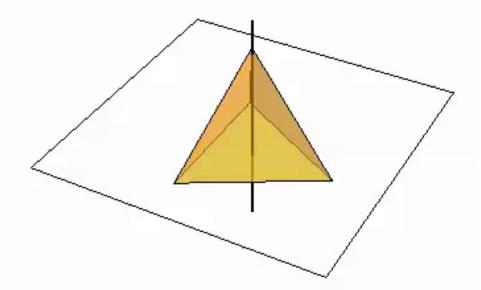
S: (1234) → (4321) T: (1234) → (2314)

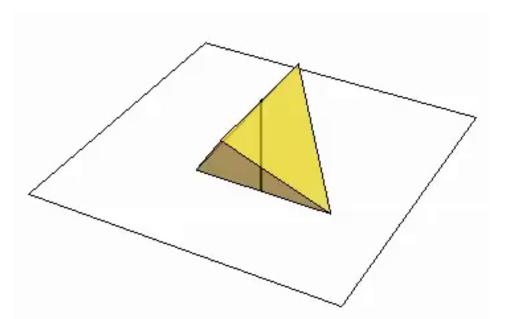
- Group of order 12
- Invariant group of tetrahedron

TBM from A4 Group

T: (1234) \rightarrow (2314) S: (1234) \rightarrow (4321)

$$S^2 = 1$$
, $(ST)^3 = 1$, $T^3 = 1$





A4 Group Theory

Irreps: 1, 1', 1", 3 $S^2 = 1$, $(ST)^3 = 1$, $T^3 = 1$

1:
$$S = 1, T = 1$$

1': $S = 1, T = e^{4\pi i/3} \equiv \omega^2$
1": $S = 1, T = e^{2\pi i/3} \equiv \omega$
3: $T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix}, \quad S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$

12 group elements: 1, S, T, ST, TS, T², ST², STS, TST, T²S, TST², T²ST

helds are,
$$\begin{aligned} z = x_5 + 3 \otimes 3 = 3 \oplus 3 \oplus 1 \oplus 1 \\ \frac{HHLL}{M} \left(\frac{\langle \xi \rangle}{\langle \xi \rangle} + \frac{\langle \eta \rangle}{A_1} \right) z = x_5 + 3 \otimes 3 = 3 \oplus 3 \oplus 1 \oplus 1 \\ \frac{HHLL}{M} \left(\frac{\langle \xi \rangle}{\langle \xi \rangle} + \frac{\langle \eta \rangle}{A_1} \right) z = x_5 + 3 \otimes 3 = 3 \oplus 3 \oplus 1 \oplus 1 \\ \frac{HHLL}{M} \left(\frac{\langle \xi \rangle}{\langle \xi \rangle} + \frac{\langle \eta \rangle}{A_1} \right) z = x_5 + 3 \otimes 3 = 3 \oplus 3 \oplus 1 \oplus 1 \\ \frac{HHLL}{M} \left(\frac{\langle \xi \rangle}{\langle \xi \rangle} + \frac{\langle \eta \rangle}{A_1} \right) z = x_5 + 3 \otimes 3 = 3 \oplus 3 \oplus 1 \oplus 1 \\ z \to -z = 1 \oplus 1 \oplus 1 \\ \frac{\langle \xi \rangle}{A_1} = x_5 + 3 \otimes 3 = 3 \oplus 1 \oplus 1 \\ \frac{\langle \xi \rangle}{\langle \xi \rangle} = \frac{\langle \xi \rangle}{\langle \xi \rangle} = \frac{\langle \eta \rangle}{A_1} \right) z = z = z = 1 \\ \frac{\langle \xi \rangle}{A_1} = x_5 + 3 \otimes 3 = 1 \oplus 1 \\ \frac{\langle \xi \rangle}{\langle \xi \rangle} = \frac{\langle \xi \rangle}{A_1} = x_5 + 3 \otimes 3 \oplus 1 \oplus 1 \\ \frac{\langle \xi \rangle}{\langle \xi \rangle} = \frac{\langle \xi \rangle}{\langle \xi \rangle} = \frac{\langle \xi \rangle}{A_1} = x_5 + 3 \oplus 1 \\ \frac{\langle \xi \rangle}{\langle \xi \rangle} = \frac{\langle \xi \rangle}{A_1} = \frac{\langle \xi \rangle}{A_$$

Tri-bimaximal Neutrino Mixing

Neutrino Masses: triplet flavon contribution

Altarelli, Feruglio (2005)

$$3_{S} = \frac{1}{3} \begin{pmatrix} 2\alpha_{1}\beta_{1} - \alpha_{2}\beta_{3} - \alpha_{3}\beta_{2} \\ 2\alpha_{3}\beta_{3} - \alpha_{1}\beta_{2} - \alpha_{2}\beta_{1} \\ 2\alpha_{2}\beta_{2} - \alpha_{1}\beta_{3} - \alpha_{3}\beta_{1} \end{pmatrix} \qquad 1 = \alpha_{1}\beta_{1} + \alpha_{2}\beta_{3} + \alpha_{3}\beta_{2}$$

- Neutrino Masses: singlet flavon contribution $1 = \alpha_1\beta_1 + \alpha_2\beta_3 + \alpha_3\beta_2$
- resulting mass matrix:

$$M_{\nu} = \frac{\lambda v^2}{M_x} \begin{pmatrix} 2\xi_0 + u & -\xi_0 & -\xi_0 \\ -\xi_0 & 2\xi_0 & u - \xi_0 \\ -\xi_0 & u - \xi_0 & 2\xi_0 \end{pmatrix} \qquad U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$
$$V_{\nu}^{\text{T}} M_{\nu} V_{\nu} = \text{diag}(u + 3\xi_0, u, -u + 3\xi_0) \frac{v_u^2}{M_x}$$

Form diagonalizable: -- no adjustable parameters -- neutrino mixing from CG coefficients!

$${}^{L}_{1''}, \quad \tau_R \sim 1'$$

Tri-bimaximal Neutrino Mixing from A_4^3 , $\eta \sim 1$

 $\begin{array}{l} \textbf{ \cdot charged lepton sector -- without quarks} \\ e_{R}(1) \textbf{ + oble computed for the formula of the form$

resulting charged lepton mass matrix = diagonal

 $V_{MNS} = V_{e,L}^{\dagger} V_{\nu} = \mathcal{I} \cdot U_{TBM} = U_{TBM}$ erms of the superpotential w_d and how they ne lines of the appendix B of [6].

Group Work: A4 Neutrino Mass Model

$$M_{\nu} = \frac{\lambda v^2}{M_x} \begin{pmatrix} 2\xi_0 + u & -\xi_0 & -\xi_0 \\ -\xi_0 & 2\xi_0 & u - \xi_0 \\ -\xi_0 & u - \xi_0 & 2\xi_0 \end{pmatrix} \qquad U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

Show that M_{ν} is always diagonalizable by U_{TBM} . What are the mass eigenvalues?

Group Work: A4 Neutrino Mass Model

$$M_{\nu} = \frac{\lambda v^2}{M_x} \begin{pmatrix} 2\xi_0 + u & -\xi_0 & -\xi_0 \\ -\xi_0 & 2\xi_0 & u - \xi_0 \\ -\xi_0 & u - \xi_0 & 2\xi_0 \end{pmatrix} \qquad U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

$$M_{eff}^{\nu \text{ diag}} = U_{\text{TBM}}^T M_{eff}^{\nu} U_{\text{TBM}} = \text{diag}(3\alpha_s + \alpha_0, \ \alpha_0, \ 3\alpha_s - \alpha_0) \cdot \frac{v^2}{\Lambda_L} \equiv (m_1, \ m_2, \ m_3)$$

Ma, Rajasekaran (2001); Babu, Ma, Valle (2003); Altarelli, Feruglio (2005)

$$M_{\nu} = \frac{\lambda v^2}{M_x} \begin{pmatrix} 2\xi_0 + u & -\xi_0 & -\xi_0 \\ -\xi_0 & 2\xi_0 & u - \xi_0 \\ -\xi_0 & u - \xi_0 & 2\xi_0 \end{pmatrix}$$

$$2 \text{ free parameters}$$

$$relative strengths$$

$$\Rightarrow CG's$$

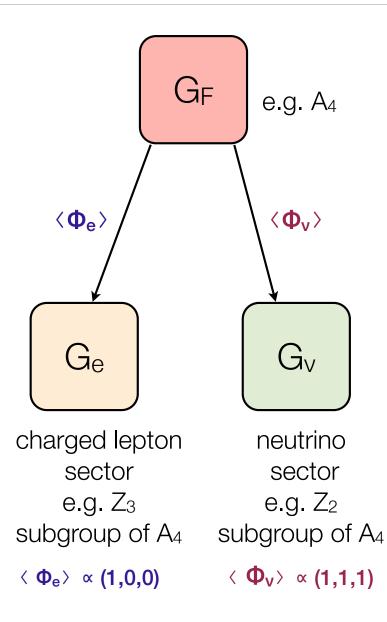
 always diagonalized by TBM matrix, independent of the two free parameters

$$U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

Neutrino Mixing Angles from Group Theory

• 2 independent parameters for 3 masses \Rightarrow 1 relation

General Structure Flavor Model Structure: A4 Example

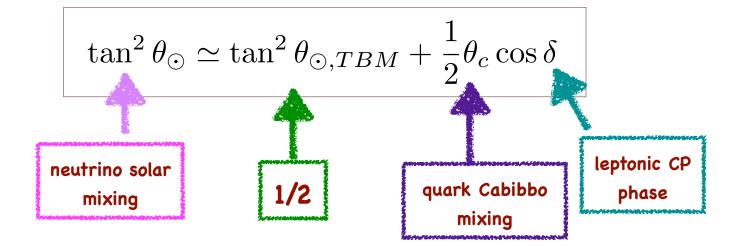


- interplay between the sym in two sectors lead to lept
- symmetry breaking achiev
- each sector preserves differences
- full Lagrangian does not h symmetries
- general approach: include holomorphic superpotentia
- possible to construct mod holomorphic superpotentia orders
- quantum correction?
 ⇒ uncertainty in prediction

Kähler corrections

Example: SU(5) Compatibility \Rightarrow T' Family Symmetry

- Double Tetrahedral Group T´: double covering of A4
- Symmetries \Rightarrow 10 parameters in Yukawa sector \Rightarrow 22 physical observables
- Symmetries \Rightarrow correlations among quark and lepton mixing parameters



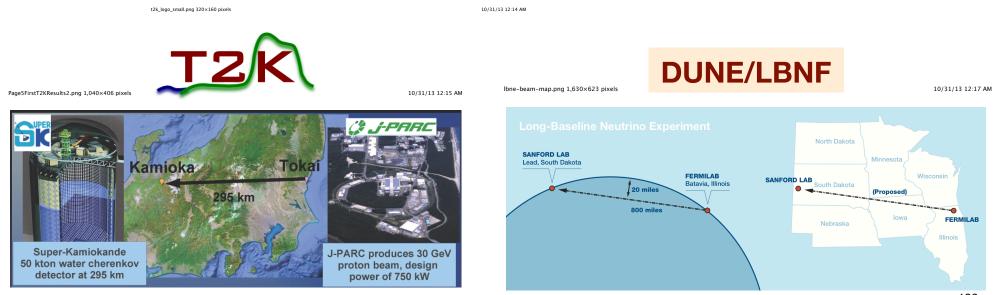
M.-C.C, K.T. Mahanthappa (2007, 2009)

CP Violation in Neutrino Oscillation

- With leptonic Dirac CP phase $\delta \neq 0 \Rightarrow$ leptonic CP violation
- Predict different transition probabilities for neutrinos and antineutrinos

$$\mathsf{P}\left(\mathsf{v}_{\alpha} \rightarrow \mathsf{v}_{\beta}\right) \neq \mathsf{P}\left(\overline{\mathsf{v}_{\alpha}} \rightarrow \overline{\mathsf{v}_{\beta}}\right)$$

• One of the major scientific goals at current and planned neutrino experiments



Origin of CP Violation

CP violation ⇔ complex mass matrices

 $\overline{U}_{R,i}(M_u)_{ij}Q_{L,j} + \overline{Q}_{L,j}(M_u^{\dagger})_{ji}U_{R,i} \xrightarrow{\mathfrak{CP}} \overline{Q}_{L,j}(M_u)_{ij}U_{R,i} + \overline{U}_{R,i}(M_u)_{ij}^*Q_{L,j}$

- Conventionally, CPV arises in two ways:
 - Explicit CP violation: complex Yukawa coupling constants Y
 - Spontaneous CP violation: complex scalar VEVs <h>
- Complex CG coefficients in certain discrete groups ⇒ explicit CP violation
 - CPV in quark and lepton sectors purely from complex CG coefficients

M.-C.C., K.T. Mahanthappa, Phys. Lett. B681, 444 (2009)

 e_L

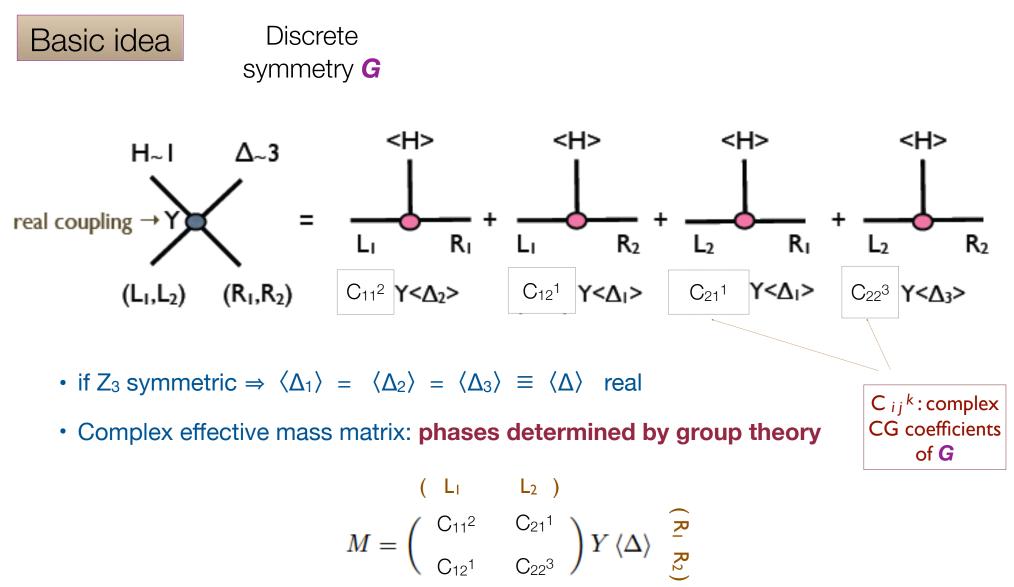
CG coefficients in non-Abelian discrete symmetries relative strengths and phases in entries of Yukawa matrices mixing angles and phases (and mass hierarchy)

Υ

 $\langle h \rangle$

Group Theoretical Origin of CP Violation

M.-C.C., K.T. Mahanthappa Phys. Lett. B681, 444 (2009)



CP Transformation

Canonical CP transformation

$$\phi(x) \xrightarrow{C\mathcal{P}} \eta_{C\mathcal{P}} \phi^*(\mathcal{P}x)$$
freedom of re-phasing fields

Generalized CP transformation

Ecker, Grimus, Konetschny (1981); Ecker, Grimus, Neufeld (1987); Grimus, Rebelo (1995)

$$\Phi(x) \xrightarrow{\widetilde{CP}} U_{CP} \Phi^*(\mathcal{P} x)$$

$$\bigwedge$$
unitary matrix

Generalized CP Transformation

 \square setting w/ discrete symmetry G

G and CP transformations do not commute

- Generalized CP transformation Feruglio, Hagedorn, Ziegler (2013); Holthausen, Lindner, Schmidt (2013)
- ${}^{\tiny \hbox{\tiny IMS}}$ invariant contraction/coupling in A_4 or ${
 m T}'$

$$\left[\phi_{\mathbf{1}_2} \otimes (x_{\mathbf{3}} \otimes y_{\mathbf{3}})_{\mathbf{1}_1} \right]_{\mathbf{1}_0} \propto \phi \left(x_1 y_1 + \omega^2 x_2 y_2 + \omega x_3 y_3 \right)$$

$$\omega = e^{2\pi i/3}$$

something non-invariant contraction to something non-invariant contraction to something non-invariant

Group Work: Generalized CP Transformation

$$\left[\phi_{\mathbf{1}_{2}} \otimes (\mathbf{x_{3}} \otimes \mathbf{y_{3}})_{\mathbf{1}_{1}}\right]_{\mathbf{1}_{0}} \propto \phi \left(\mathbf{x}_{1} \mathbf{y}_{1} + \omega^{2} \mathbf{x}_{2} \mathbf{y}_{2} + \omega \mathbf{x}_{3} \mathbf{y}_{3}\right)$$
$$\omega = e^{2\pi i/3}$$

Is there a unitary transformation that can "repair" the A4 invariance once a naïve CP transformation is performed?

Generalized CP Transformation

setting w/ discrete symmetry G

generalized CP transformation

G and CP transformations do not commute

Feruglio, Hagedorn, Ziegler (2013); Holthausen, Lindner, Schmidt (2013)

invariant contraction/coupling in A_4 or T'

$$\left[\phi_{\mathbf{1}_{2}} \otimes (x_{\mathbf{3}} \otimes y_{\mathbf{3}})_{\mathbf{1}_{1}}\right]_{\mathbf{1}_{0}} \propto \phi \left(x_{1}y_{1} + \omega^{2}x_{2}y_{2} + \omega x_{3}y_{3}\right)$$
$$\omega = e^{2\pi i/3}$$

- something non-invariant contraction maps A_4/T' invariant contraction to
- ► need generalized CP transformation \widetilde{CP} : $\phi \stackrel{\widetilde{CP}}{\longmapsto} \phi^*$ as usual but

$$\left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) \xrightarrow{\widetilde{CP}} \left(\begin{array}{c} x_1^* \\ x_3^* \\ x_2 \end{array}\right) & \& & \left(\begin{array}{c} y_1 \\ y_2 \\ y_3 \end{array}\right) \xrightarrow{\widetilde{CP}} \left(\begin{array}{c} y_1^* \\ y_3^* \\ y_3 \end{array}\right) \\ & & y_2^* \end{array}\right)$$

How (Not) to Generalize CP

proper CP transformations

- map field operators to *their own*Hermitean conjugates
- violation of physical CP is prerequisite for a non-trivial

$$\varepsilon_{i \to f} = \frac{\left|\Gamma\left(i \to f\right)\right|^2 - \left|\Gamma\left(\bar{\imath} \to \bar{f}\right)\right|^2}{\left|\Gamma\left(i \to f\right)\right|^2 + \left|\Gamma\left(\bar{\imath} \to \bar{f}\right)\right|^2}$$

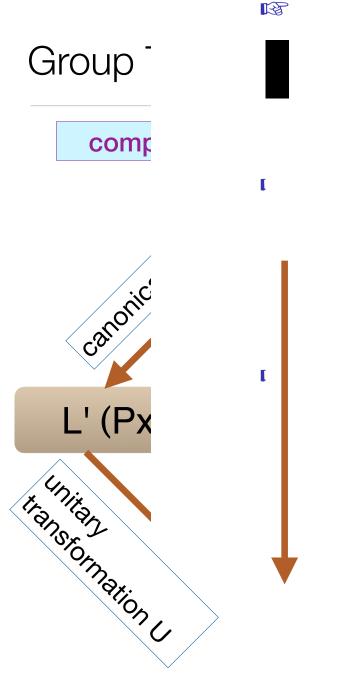
 connection to observed baryogenesis & ...

CP–like transformations

- map some field operators to some other operators
- such transformations have
 sometimes been called
 "generalized CP
 transformations" in the literature
- however, imposing CP-like transformations does not imply physical CP conservation
- NO connection to observed
 baryogenesis & ...

Discrete Family Symmetries and Origin of CP Violation

Generalizing CP transformations



generalized CP transformation.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner, NPB (2014)

$$\Phi(x) \xrightarrow{C\mathcal{P}} U_{CP} \Phi^*(\mathcal{P} x)$$

consistency condition

Holthausen, Lindner, and Schm

$$\rho(u(g)) = U_{CP} \rho(g)^* U_{CP}^{\dagger} \quad \forall g \in G$$

further properties:

• *u* has to be class–inverting

• in all known cases, *u* is equivalent to an automorphism of order

u has to be a class-inverting,

involutory automorphism of G bottom-line: *u* has to be a class-inverting (involutory) automorphism of G in certain groups

u has cobealculassienpertisicatinorputopyatactomorphism of (

generic setting

bottom-line: T7. A

u has to be a class-inverting (involutory) automorphism of G

П

D

b

R

 μ has to be a class-inverting (involutory) automorphism of

The Bickerstaff-Damhus automorphism (BDA)

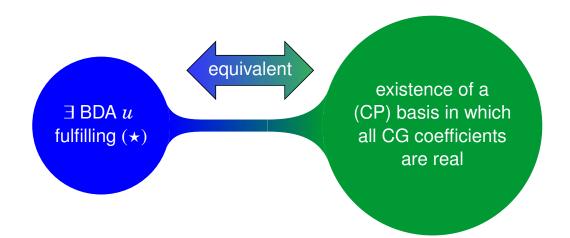
• Bickerstaff-Damhus automorphism (BDA) u

Bickerstaff, Damhus (1985)

$$\rho_{\boldsymbol{r}_{i}}(\boldsymbol{u}(g)) = U_{\boldsymbol{r}_{i}} \rho_{\boldsymbol{r}_{i}}(g)^{*} U_{\boldsymbol{r}_{i}}^{\dagger} \quad \forall g \in G \text{ and } \forall i \qquad (\star)$$

unitary & symmetric

• BDA vs. Clebsch-Gordan (CG) coefficients



Twisted Frobenius-Schur Indicator

- How can one tell whether or not a given automorphism is a BDA?
- Frobenius-Schur indicator:

$$\begin{aligned} \mathrm{FS}(\boldsymbol{r}_i) &:= \frac{1}{|G|} \sum_{g \in G} \chi_{\boldsymbol{r}_i}(g^2) = \frac{1}{|G|} \sum_{g \in G} \mathrm{tr} \left[\rho_{\boldsymbol{r}_i}(g)^2 \right] \\ \mathrm{FS}(\boldsymbol{r}_i) &= \begin{cases} +1, & \text{if } \boldsymbol{r}_i \text{ is a real representation,} \\ 0, & \text{if } \boldsymbol{r}_i \text{ is a complex representation,} \\ -1, & \text{if } \boldsymbol{r}_i \text{ is a pseudo-real representation.} \end{cases} \end{aligned}$$

Twisted Frobenius-Schur indicator

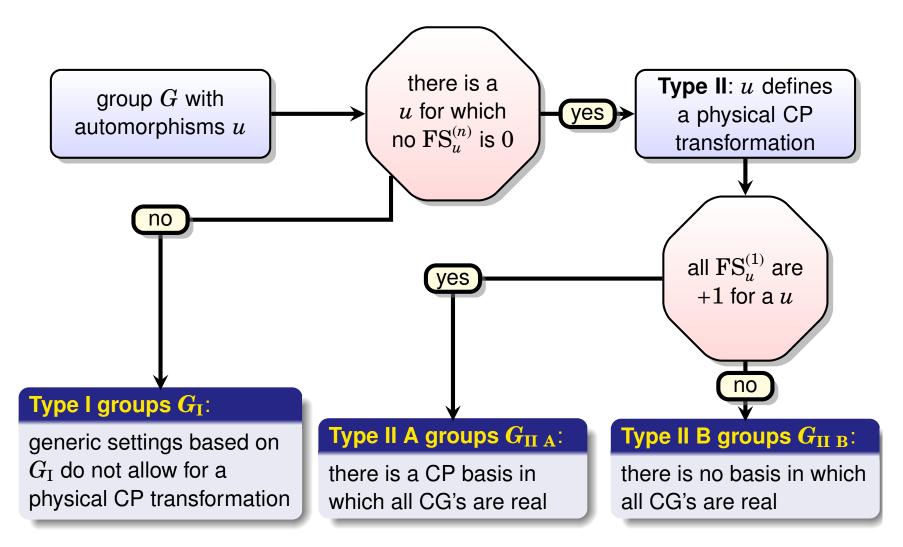
Bickerstaff, Damhus (1985); Kawanaka, Matsuyama (1990)

$$FS_{u}(\boldsymbol{r}_{i}) = \frac{1}{|G|} \sum_{g \in G} \left[\rho_{\boldsymbol{r}_{i}}(g) \right]_{\alpha\beta} \left[\rho_{\boldsymbol{r}_{i}}(\boldsymbol{u}(g)) \right]_{\beta\alpha}$$

 $FS_{u}(\mathbf{r}_{i}) = \begin{cases} +1 \quad \forall i, & \text{if } u \text{ is a BDA,} \\ +1 \text{ or } -1 \quad \forall i, & \text{if } u \text{ is class-inverting and involutory,} \\ \text{different from } \pm 1, & \text{otherwise.} \end{cases}$

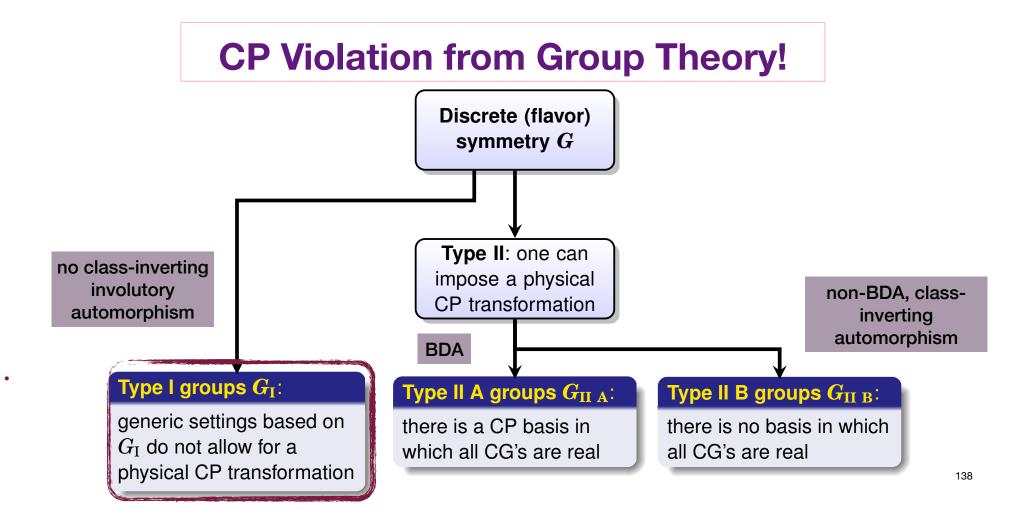
Three Types of Finite Groups

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)



M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner, NPB (2014)

- For discrete groups that do not have class-inverting, involutory automorphism, CP is generically broken by complex CG coefficients (Type I Group)
- Non-existence of such automorphism ⇔ Physical CP violation



Examples

• Type I: all odd order non-Abelian groups

group	$\mathbb{Z}_5 \rtimes \mathbb{Z}_4$	T_7	$\Delta(27)$	$\mathbb{Z}_9 \rtimes \mathbb{Z}_3$
SG	(20,3)	(21,1)	(27,3)	(27,4)

• Type IIA: dihedral and all Abelian groups

group	S_3	Q_8	A_4	$\mathbb{Z}_3 \rtimes \mathbb{Z}_8$	Τ'	S_4	A_5
SG	(6,1)	(8,4)	(12,3)	(24,1)	(24,3)	(24, 12)	(60,5)

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

• Type IIB

group	$\Sigma(72)$	$((\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_4) \rtimes \mathbb{Z}_4$
SG	(72, 41)	(144, 120)

Novel Origin of CP (Time Reversal) Violation

complex CGs I CP symmetry cannot be defined for certain groups

CP Violation from Group Theory!