Flavor Symmetries and GUTs

Mu-Chun Chen (she/her), University of California at Irvine
muchunc@uci.edu

Invisibles School 2023, Bad Honnef, 8/21-23/2023

Basics of Model Building

-What is the Lagrangian of Nature?

- Rules:
- Gauge symmetries of the Lagrangian
- Representations of fermions and scalars under symmetries
- Pattern of spontaneous symmetry breaking
- Assumptions:
- Poincare invariance
- QFT
- SM tested to high accuracy; still many deficiencies
- Goals: Address deficiencies of SM with (hidden) Symmetries

The Plan

- Part I: Primer - Standard Model and its Deficiencies
- Symmetries, Particle content, and Lagrangian
- Why Go beyond the SM?
- Part II: Flavor Symmetries
- Flavor Puzzle
- Problem of fermion masses and mixing
- Neutrino mass generation
- Froggatt-Nielsen Mechanism
- Non-Abelian Discrete Symmetries
- CP Violation \Leftrightarrow outer automorphism
- Part III: GUT Symmetries (Michael Ratz)
- Motivations for GUTs
- GUTs in 4D
- Problems of GUTs in 4D
- Orbifold GUTs
- Modular Flavor Symmetries

The Plan

- Part I: Primer - Standard Model and its Deficiencies
- Symmetries, Particle content, and Lagrangian
- Why Go beyond the SM?
- Part II: Flavor Symmetries
- Flavor Puzzle
- Problem of fermion masses and mixing
- Neutrino mass generation
- Froggatt-Nielsen Mechanism
- Non-Abelian Discrete Symmetries
- CP Violation \Leftrightarrow outer automorphism
- Part III: GUT Symmetries (Michael Ratz)
- Motivations for GUTs
- GUTs in 4D
- Problems of GUTs in 4D
- Orbifold GUTs
- Modular Flavor Symmetries

> Tools of symmetries can be applied to problems beyond Flavor and GUTs.

References

- Flavor Symmetries:
- Ishimori, Kobayashi, Ohki, Shimizu, 1003.3552
- P. Ramond, Group Theory: A Physicist's Survey (2010)
- GUT Symmetries:
- Cheng and Li
- R. Slansky, Group Theory for Unified Model Building, Phys. Rep. 79 (1981)
- R. Mohapatra, TASI Lecture Notes on SUSY GUTs (1996)
- S. Raby, Supersymmetric Grand Unified Theories, From Quarks to Strinas via SUSY GUTs

Standard Model

- Gauge Symmetries

$$
G_{S M}=S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}
$$

- Three Fermion Generations

	$Q_{L_{i}}^{I}$	$U_{R_{i}}^{I}$	$D_{R_{i}}^{I}$	$\ell_{L_{i}}^{I}$	$E_{R_{i}}^{I}$
$S U(3)_{C}$	3	3	3	1	1
$S U(2)_{L}$	2	1	1	2	1
$U(1)_{Y}$	$1 / 6$	$2 / 3$	$-1 / 3$	$-1 / 2$	-1

(I: gauge interaction eigenstates; flavor index $i=1,2,3$)

Group Work: Warm Up

How many degrees of freedom are there for one generation of fermions in the Standard Model?

Standard Model

- Higgs Sector and Spontaneous Electroweak Symmetry Breaking

$$
\begin{aligned}
& \phi(1,2)_{+1 / 2} \quad, \quad\langle\phi\rangle=\binom{0}{v / \sqrt{2}} \\
& G_{S M} \rightarrow S U(3)_{C} \times U(1)_{E M}
\end{aligned}
$$

Standard Model - Kinetic Terms

- Standard Model Lagrangian

$$
\mathscr{L}_{S M}=\mathscr{L}_{\text {kinetic }}+\mathscr{L}_{\text {Higgs }}+\mathscr{L}_{\text {Yukawa }}
$$

Kinetic Terms: covariant derivative

$$
D^{\mu}=\partial^{\mu}+i g_{s} G_{a}^{\mu} L_{a}+i g W_{b}^{\mu} T_{b}+i g^{\prime} B^{\mu} Y
$$

$G_{a}^{\mu}: 8$ gluons
$W_{b}^{\mu}: 3$ weak gauge bosons
$L_{a}:$ generators of $S U(3)$
T_{b} : generators of $S U(2)$
$B^{\mu}: 1$ hypercharge boson

Standard Model - Kinetic Terms

- Examples:

$$
\begin{aligned}
& \mathscr{L}_{\text {kinetic }}\left(Q_{L}\right)=i \overline{Q_{L_{i}}^{I}} \gamma_{\mu}\left(\partial^{\mu}+\frac{i}{2} g_{s} G_{a}^{\mu} \lambda_{a}+\frac{i}{2} g W_{b}^{\mu} \tau_{b}+\frac{i}{6} g^{\prime} B^{\mu}\right) Q_{L_{i}}^{I} \\
& \mathscr{L}_{\text {kinetic }}\left(\ell_{L}\right)=i \overline{\ell_{L_{i}}^{I}} \gamma_{\mu}\left(\partial^{\mu}+\frac{i}{2} g W_{b}^{\mu} \tau_{b}-\frac{i}{2} g^{\prime} B^{\mu}\right) \ell_{L_{i}}^{I}
\end{aligned}
$$

Standard Model - Higgs Sector

Higgs Potential:

$$
-\mathscr{L}_{\text {Higgs }}=V(\phi)=\mu^{2}\left(\phi^{\dagger} \phi\right)+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

- Two parameters: $\mu^{2}, \lambda \leftrightarrow m_{H}, v$
- Vacuum stability $\Rightarrow \lambda>0$
- Spontaneous symmetry breaking $\Rightarrow \mu^{2}<0$

- W and Z gauge bosons acquire masses; gluons, photons remain massless

Standard Model - Yukawa Sector

Yukawa interactions:

$$
\begin{aligned}
-\mathscr{L}_{\text {Yukawa }}^{\text {lepton }} & =Y_{i j}^{e} \overline{\ell_{L_{i}}^{I}} \phi E_{R_{j}}^{I}+\text { h.c. } \\
-\mathscr{L}_{\text {Yukawa }}^{\text {quark }} & =Y_{i j}^{d} \overline{Q_{L_{i}}^{I}} \phi D_{R_{j}}^{I}+Y_{i j}^{u} \overline{Q_{L_{i}}^{I}} \tilde{\phi} U_{R_{j}}^{I}+\text { h.c. }
\end{aligned}
$$

Upon electroweak symmetry breaking:

$$
\langle\phi\rangle=\binom{0}{v / \sqrt{2}} \Rightarrow \text { charged lepton and quark masses }
$$

Non diagonal Yukawa matrices Y^{u} and $Y^{d} \Rightarrow$ mismatch between quark mass eigenstates and weak gauge eigenstates

Standard Model - Counting Parameters

Yukawa Sector has many parameters, but not all physical
Symmetry argument for parameter counting:
Ex. Hydrogen Atom in uniform magnetic field (along \hat{z})
$B=0: S O(3)$ symmetry $\Rightarrow 3$ degenerate energy eigenvalues
$B \neq 0: S O(3) \rightarrow S O(2)$ symmetry
1 unbroken generator $\rightarrow 2$ rotation on $x y$ plane
2 broken generators \rightarrow allow to align $B \| \hat{z}$
$O_{x z} O_{y z}\left(B_{x}, B_{y}, B_{z}\right)=\left(0,0, B_{z}^{\prime}\right)$

Standard Model - Accidental Symmetries

Standard Model has the following accidental global symmetries

$$
U(1)_{B} \times U(1)_{e} \times U(1)_{\mu} \times U(1)_{\tau}
$$

$U(1)_{B}$: baryon number
$U(1)_{e}: L_{e}$ lepton number
$U(1)_{\mu}: L_{\mu}$ lepton number
$U(1)_{\tau}: L_{\tau}$ lepton number

Total lepton number

$$
L=L_{e}+L_{\mu}+L_{\tau}
$$

Standard Model - Counting Parameters

- Gauge theory w/ matter content:
- Gauge kinetic terms: global symmetries G_{f}
- Potential respecting gauge symmetries may break $G_{f} \rightarrow H_{f}$ (global symmetry of the entire model)
- Breaking of G_{f} allow freedom to rotate away unphysical parameters

$$
N_{\text {phys }}=N_{\text {general }}-N_{\text {broken }}
$$

$N_{\text {broken }}$: number of broken generators

Group Work: Counting Parameters

- General complex $n \times n$ matrices
- How many real parameters?
- How many phases?
- For Hermitian Matrices
- How many real parameters?
- How many phases?
- For Unitary Matrices
- How many real parameters?
- How many phases?

Group Work: Counting Parameters

- General complex $n \times n$ matrices
- n^{2} Real parameters
- n^{2} Phases
- For Hermitian Matrices
- $n(n+1) / 2$ Real parameters
- $n(n-1) / 2$ Phases
- For Unitary Matrices
- $n(n-1) / 2$ Real parameters
- $n(n+1) / 2$ Phases

Standard Model - Counting Parameters

- Applying to Standard Model Quark Sector
- Gauge Kinetic terms:

$$
G_{f}=U(3)_{Q} \times U(3)_{U} \times U(3)_{D}
$$

- $U(3): 9$ generators (3 real, 6 imaginary)
- Total number of generators of $G_{f}=27$
- Yukawa Interactions, Y^{u}, Y^{d} : complex 3×3 matrices

Group Work: Counting Parameters

- How many general parameters do Y^{u}, Y^{d} have?
- What is the global symmetry of the entire model (quark sector only)?
- How many broken generators?
- How many physical parameters?

Group Work: Counting Parameters

- General parameters in $Y^{u}, Y^{d}=36$
- Global symmetry: $U(3)_{Q} \times U(3)_{U} \times U(3)_{D} \rightarrow U(1)_{B}$

$$
\begin{aligned}
& U(1)_{B}: 1 \text { generator (1 phase) } \\
& N_{\text {broken }}=27-1=26 \\
& N_{\text {physical }}=N_{\text {general }}-N_{\text {broken }}=36-26=10 \\
& N_{\text {physical }}^{r}=18-9=9 \\
& \quad N_{\text {physical }}^{i}=18-17=1
\end{aligned}
$$

Group Work: Counting Parameters

- General parameters in $Y^{u}, Y^{d}=36$
- Global symmetry: $U(3)_{Q} \times U(3)_{U} \times U(3)_{D} \rightarrow U(1)_{B}$

$$
\begin{aligned}
& U(1)_{B}: 1 \text { generator (1 phase) } \\
& N_{\text {broken }}=27-1=26 \\
& N_{\text {physical }}=N_{\text {general }}-N_{\text {broken }}=36-26=10 \\
& \\
& \quad N_{\text {physical }}^{r}=18-9=9 \Rightarrow 6 \text { masses, } 3 \text { angles } \\
& \quad N_{\text {physical }}^{i}=18-17=1 \Rightarrow 1 \mathrm{CP} \text { phase }
\end{aligned}
$$

Standard Model - Discrete Symmetries

- Any local Lorentz invariant QFT respect CPT
- CPT invariance: T violation $\Leftrightarrow C P$ violation
- In SM: C, P maximally violated
- Violation independent of parameters
- SM can violate CP, depending on values of Yukawa couplings

$$
Y_{i j} \overline{\psi_{L_{i}}} \phi \psi_{R_{j}}+Y_{i j}^{*} \overline{\psi_{R_{j}}} \phi^{\dagger} \psi_{L_{i}}
$$

Under CP transformation: $\mathcal{O} \rightarrow \mathcal{O}^{\dagger}, \quad c \rightarrow c$

$$
\overline{\psi_{L_{i}}} \phi \psi_{R_{j}} \rightarrow \overline{\psi_{R_{j}}} \phi^{\dagger} \psi_{L_{i}}, \quad Y_{i j}, Y_{i j}^{*} \text { unchanged }
$$

- CP invariant?

Standard Model - Discrete Symmetries

- Any local Lorentz invariant QFT respect CPT
- CPT invariance: T violation $\Leftrightarrow C P$ violation
- In SM: C, P maximally violated
- Violation independent of parameters
- SM can violate CP, depending on values of Yukawa couplings

$$
Y_{i j} \overline{\psi_{L_{i}}} \phi \psi_{R_{j}}+Y_{i j}^{*} \overline{\psi_{R_{j}}} \phi^{\dagger} \psi_{L_{i}}
$$

Under CP transformation: $\mathcal{O} \rightarrow \mathcal{O}^{\dagger}, \quad c \rightarrow c$

$$
\overline{\psi_{L_{i}}} \phi \psi_{R_{j}} \rightarrow \overline{\psi_{R_{j}}} \phi^{\dagger} \psi_{L_{i}}, \quad Y_{i j}, Y_{i j}^{*} \text { unchanged }
$$

- CP invariant if $Y_{i j}=Y_{i j}^{*}$

Standard Model - Discrete Symmetries

- SM can violate CP, depending on values of Yukawa couplings

$$
Y_{i j} \overline{\psi_{L_{i}}} \phi \psi_{R_{j}}+Y_{i j}^{*} \overline{\psi_{R_{j}}} \phi^{\dagger} \psi_{L_{i}}
$$

- CP invariant if $Y_{i j}=Y_{i j}^{*}$
- 1 CP phase in quark sector
- More precisely, CP is violated in the SM quark sector, iff

$$
\mathfrak{J}\left(\operatorname{det}\left[Y^{d} Y^{d \dagger}, Y^{u} Y^{u \dagger}\right]\right) \neq 0
$$

Standard Model - CKM Matrix

- Most measurements done in mass basis: Higgs acquiring VEV

$$
\begin{aligned}
\mathfrak{R}\left(\phi^{0}\right) & \rightarrow\left(v+H^{0}\right) / \sqrt{2} \\
Q_{L_{i}}^{I} & =\binom{U_{L_{i}}^{I}}{D_{L_{i}}^{I}}
\end{aligned}
$$

Yukawa interactions \rightarrow mass terms

$$
-\mathscr{L}_{M}^{q}=\left(M_{d}\right)_{i j} \overline{D_{L_{i}}^{I}} D_{R_{j}}^{I}+\left(M_{u}\right)_{i j} \overline{U_{L_{i}}^{I}} U_{R_{j}}^{I}+\text { h.c., } M_{q}=\frac{v}{\sqrt{2}} Y^{q}
$$

- Mismatch between weak eigenstates and mass eigenstates

Group Work: Normal Modes of Coupled Pendulums

Standard Model - CKM Matrix

- Interaction \rightarrow Mass basis: diagonal mass matrices

$$
-\mathscr{L}_{M}^{q}=\overline{D_{L_{i}}^{I}}\left(M_{d}\right)_{i j} D_{R_{j}}^{I}+\overline{U_{L_{i}}^{I}}\left(M_{u}\right)_{i j} U_{R_{j}}^{I}+\text { h.c. }
$$

- Diagonalization: bi-unitary transformation

$$
\begin{gathered}
V_{u_{L}} M_{u} V_{u_{R}}^{\dagger}=M_{u}^{\mathrm{diag}}, \quad V_{d_{L}} M_{d} V_{d_{R}}^{\dagger}=M_{d}^{\mathrm{diag}} \\
q_{L_{i}}=\left(V_{q_{L}}\right)_{i j} q_{L_{j},}^{I} \quad q_{R_{i}}=\left(V_{q_{R}}\right)_{i j} q_{R_{j},}^{I} \quad q=u, d
\end{gathered}
$$

Standard Model - CKM Matrix

- Weak Charged Current Interactions:

$$
\begin{gathered}
q_{L_{i}}=\left(V_{q_{L}}\right)_{i j} q_{L_{j}}^{I}, \quad q_{R_{i}}=\left(V_{q_{R}}\right)_{i j} q_{R_{j}}^{I}, \quad q=u, d \\
-\mathscr{L}_{W^{ \pm}}^{q}=\frac{g}{\sqrt{2}} \overline{u_{L_{i}}^{I}} \gamma^{\mu} d_{L_{i}}^{I} W_{\mu}^{+}+\text {h.c. } \\
=\frac{g}{\sqrt{2}} \overline{u_{L_{i}}} \gamma^{\mu}\left(V_{u_{L}} V_{d_{L}}^{\dagger}\right)_{i j} d_{L_{j}} W_{\mu}^{+}+\text {h.c. }
\end{gathered}
$$

Cabibbo-Kobayashi-Maskawa (CKM) Matrix

$$
V=V_{u_{L}} V_{d_{L}}^{\dagger} \quad, \quad V V^{\dagger}=\rrbracket
$$

Standard Model - CKM Matrix

Cabibbo-Kobayashi-Maskawa (CKM) Matrix $V=V_{u_{L}} V_{d_{L}}^{\dagger}$

- V not diagonal $\Rightarrow W^{ \pm}$gauge bosons couple to mass eigenstates of quarks of different generations
- SM: Only flavor-changing quark interactions
- Elements of CKM matrix:

$$
V=\left(\begin{array}{ccc}
V_{u d} & V_{c d} & V_{t d} \\
V_{u s} & V_{c s} & V_{t s} \\
V_{u b} & V_{c b} & V_{t b}
\end{array}\right)
$$

Standard Model - CKM Matrix

Parametrization not unique:
PDG convention

$$
V=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
$$

Standard Model - CKM Matrix

PDG convention

$$
\begin{aligned}
V_{C K M}= & \left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta_{13}} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta_{13}} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)= \\
& \left(\begin{array}{ccc}
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta_{13}} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta_{13}} & s_{13} e^{-i \delta_{13}} \\
c_{12} c_{23} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta_{13}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta_{13}} & c_{23} c_{13}
\end{array}\right)
\end{aligned}
$$

Standard Model - CKM Matrix

Parametrization not unique:
Wolfstein Rapametrization

$$
\begin{aligned}
& V=\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{1}{2} \lambda^{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right) \\
& \lambda \sim 0.22
\end{aligned}
$$

Standard Model - CKM Matrix

Different parametrizations: freedom of phase rotation
Parametrization independent measure for CPV
Jarlskog invariant

$$
\mathfrak{J}\left(V_{i j} V_{k l} V_{i l}^{*} V_{k j}^{*}\right)=J_{C K M} \sum_{m, n=1}^{3} \epsilon_{i k m} \epsilon_{j l n}, \quad(i, j, k, l=1,2,3)
$$

In terms of explicit parametrizations given above

$$
J_{C K M}=c_{12} c_{23} c_{13}^{2} s_{12} s_{23} s_{13} \sin \delta \approx \lambda^{6} A^{2} \eta
$$

Group Work: CP Violation

- In terms of flavor parameters, sufficient conditions for CPV in SM quark sector: $\Delta m_{i j}^{2}=m_{i}^{2}-m_{j}^{2}$

$$
\Delta m_{t c}^{2} \Delta m_{t u}^{2} \Delta m_{c u}^{2} \Delta m_{b s}^{2} \Delta m_{b d}^{2} \Delta m_{s d}^{2} J_{C K M} \neq 0
$$

Requirements on SM for CPV?

Group Work: CP Violation

- In terms of flavor parameters, sufficient conditions for CPV in SM quark sector: $\Delta m_{i j}^{2}=m_{i}^{2}-m_{j}^{2}$

$$
\Delta m_{t c}^{2} \Delta m_{t u}^{2} \Delta m_{c u}^{2} \Delta m_{b s}^{2} \Delta m_{b d}^{2} \Delta m_{s d}^{2} J_{C K M} \neq 0
$$

Requirements on SM for CPV

- Within each quark sector, no mass degeneracy
- None of the mixing angles should be 0 or $\pi / 2$
- Phase should be neither 0 or π

Group Work: n Generations

For the CKM-like matrix describing the flavor couplings of n generations of upand down-type quarks, how many free parameters are there?

How many angles and phases?

Group Work: n Generations

- CKM-like matrix for n generations:

$$
2 n^{2}-n^{2}-(2 n-1)=(n-1)^{2} \text { free parameters }
$$

- A general $n \times n$ orthogonal matrix:

$$
\frac{1}{2} n(n-1) \text { angles describing rotations among } n \text { dimensions }
$$

- Remaining free paraders are phases

$$
(n-1)^{2}-\frac{1}{2} n(n-1)=\frac{1}{2}(n-1)(n-2)
$$

\Rightarrow need at least 3 generations to have CPV in CKM matrix

Standard Model - Unitarity Triangle

- Unitarity Triangle of CKM Matrix: relations among matrix elements

$$
\sum_{i} V_{i d} V_{i s}^{*}=0
$$

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

- CKM: all unitarity triangles have same areas $=J_{C K M} / 2$
- Angles of unitarity triangles
$\alpha \equiv \arg \left[-\frac{V_{t t} V_{b}^{*}}{V_{u d} V_{u b}^{*}}\right], \quad \beta \equiv \arg \left[-\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{b b}^{*}}\right], \quad \gamma \equiv \arg \left[-\frac{V_{u d} V_{w b}^{*}}{V_{c d} V_{c b}^{*}}\right]$
Another common convention

$$
\phi_{1}=\beta, \quad \phi_{2}=\alpha, \quad \phi_{3}=\gamma
$$

Flavor Changing Neutral Currents

- Flavor changing charged currents: only source of flavor violating interactions in SM
- No fundamental reason why there cannot be FCNCs
- Experimentally, FCNCs are highly suppressed
- In SM: no tree level FCNCs; generated at loop level
- In NP: FCNCs place stringent constraints
- Distinction:
- Non-diagonal couplings
- Diagonal couplings
- Universal couplings: diagonal in any basis
- Non-universal couplings: diagonal with different strengths; become non-diagonal in a different basis

Flavor Changing Neutral Currents

- Four neutral bosons that could mediate neutral currents:
- Gluons, photons, Z-boson, (Higgs boson)
- Gluons, Photons (massless):
- Exact gauge symmetries: Only couple to fermions through gauge kinetic terms
- Canonical kinetic terms \Rightarrow universal and flavor conserving couplings
- Gauge symmetry protects FCNCs

Group Work: FCNCs

- Z-boson mediated neutral current:
- Couplings to fermions $\propto\left(T_{3}-q \sin ^{2} \theta_{w}\right)$
- In interaction basis

$$
\begin{aligned}
-\mathscr{L}_{Z}= & \frac{g}{\cos \theta_{w}}\left[\overline{u_{L_{i}}^{I}} \gamma^{\mu}\left(\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{w}\right) u_{L_{i}}^{I}+\overline{u_{R_{i}}^{I}} \gamma^{\mu}\left(-\frac{2}{3} \sin ^{2} \theta_{w}\right) u_{R_{i}}^{I}\right. \\
& \left.+\overline{d_{L_{i}}^{I}} \gamma^{\mu}\left(\frac{1}{2}+\frac{1}{3} \sin ^{2} \theta_{w}\right) d_{L_{i}}^{I}+\overline{d_{R_{i}}^{I}} \gamma^{\mu}\left(\frac{1}{3} \sin ^{2} \theta_{w}\right) d_{R_{i}}^{I}\right] Z_{\mu}+\text { h.c. }
\end{aligned}
$$

- What happen when going to physical basis?

Group Work: FCNCs

- Z-boson mediated neutral current:
- In interaction basis

$$
\begin{aligned}
-\mathscr{L}_{Z}= & \frac{g}{\cos \theta_{w}}\left[\overline{u_{L_{i}}^{I}} \gamma^{\mu}\left(\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{w}\right) u_{L_{i}}^{I}+\overline{u_{R_{i}}^{I}} \gamma^{\mu}\left(-\frac{2}{3} \sin ^{2} \theta_{w}\right) u_{R_{i}}^{I}\right. \\
& \left.+\overline{d_{L_{i}}^{I}} \gamma^{\mu}\left(\frac{1}{2}+\frac{1}{3} \sin ^{2} \theta_{w}\right) d_{L_{i}}^{I}+\overline{d_{R_{i}}^{I}} \gamma^{\mu}\left(\frac{1}{3} \sin ^{2} \theta_{w}\right) d_{R_{i}}^{I}\right] Z_{\mu}+\text { h.c. }
\end{aligned}
$$

- In physical basis

$$
\begin{aligned}
-\mathscr{L}_{Z} & =\frac{g}{\cos \theta_{w}}\left[\overline{u_{L_{i}}}\left(V_{u_{L}}\right)_{i k} \gamma^{\mu}\left(\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{w}\right)\left(V_{u_{L}}^{\dagger}\right)_{k j} u_{L_{j}}\right] Z_{\mu} \\
& =\frac{g}{\cos \theta_{w}}\left[\overline{u_{L_{i}}} \gamma^{\mu}\left(\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{w}\right) u_{L_{i}}\right] Z_{\mu}
\end{aligned}
$$

Flavor Changing Neutral Currents

- Z-boson mediated neutral current
- $V_{u_{L}} V_{u_{L}}^{\dagger}=\mathbb{1}$,
- compared to W-mediated charged current, $V_{u_{L}} V_{d_{L}}^{\dagger}=V_{C K M}$
- Generally, fields can mix if they belong to same representation under unbroken generators
- Theorem: To prevent FCNCs in gauge sector: particles with same unbroken gauge quantum numbers must also have same quantum numbers under the broken gauge group
- Homework: SM satisfies this criterion

Probing the CKM Matrix

- Elements of CKM matrix

$$
V_{C K M}=\left(\begin{array}{lll}
0.97446 & 0.22452 & 0.00365 \\
0.22438 & 0.97359 & 0.04214 \\
0.00896 & 0.04133 & 0.99911
\end{array}\right) \pm\left(\begin{array}{lll}
0.00010 & 0.00044 & 0.00012 \\
0.00044 & 0.00011 & 0.00076 \\
0.00024 & 0.00974 & 0.00003
\end{array}\right)
$$

$$
\left|V_{C K M}\right| \sim\left(\begin{array}{ccc}
1 & \lambda & \lambda^{3} \\
\lambda & 1 & \lambda^{2} \\
\lambda^{3} & \lambda^{2} & 1
\end{array}\right) \quad J_{q} \sim 10^{-5}
$$

Consistency:
Impressive precision in the measurements in quark flavor sector.

Why BSM?

- SM: tested to high accuracy, good low energy effective description of Nature
- Reasons for Beyond the Standard Model (BSM) New Physics
- Neutrino Mass
- Dark Matter
- Matter-antimatter asymmetry of the Universe
- Strong CP Problem
- Gauge Hierarchy Problem
- Flavor Puzzle
- Gravity
- Understanding of Charge quantization

[Picture credit: Symmetry Magazine]

Macroscopic Quantum Mechanics at Work

Neutrino3

Superposed waves

states
produced

states
detected

Standard Model of Particle Physics

Helicity of Neutrinos*

M. Goldhaber, L. Grodzins, and A. W. Sunyar Brookhaven National Laboratory, Upton, New York (Received December 11, 1957)

ACOMBINED analysis of circular polarization and resonant scattering of γ rays following orbital electron capture measures the helicity of the neutrino. We have carried out such a measurement with Eu ${ }^{152 m}$, which decays by orbital electron capture. If we assume the most plausible spin-parity assignment for this isomer compatible with its decay scheme, ${ }^{1} 0-$, we find that the neutrino is "left-handed," i.e., $\boldsymbol{\sigma}_{\nu} \cdot \hat{p}_{\nu}=-1$ (negative helicity).
only LH neutrinos have been observed

all particles have both left-handed and right-handed partners, except for neutrinos

Fermion Mass Generation

- Two types of mass terms:
- Dirac masses
- couple left and right handed fields

$$
m_{D} \overline{\psi_{L}} \psi_{R}+h . c .
$$

- it always involve two different fields
- the additive quantum numbers of the two fields are opposite
- there are four d.o.f. with the same mass

Fermion Mass Generation

- Majorana masses
- couple a left-handed or right-handed field to itself

$$
m_{M} \overline{\psi_{R}^{c}} \psi_{R}, \quad \psi^{c}=C \bar{\psi}^{T}
$$

- there can be only two d.o.f. with the same mass
- additive quantum numbers of the two fields are the same \Rightarrow break all the $U(1)$ symmetries
- can only be written for neutral fermions

Neutrino Mass in the SM

- SM implies exactly massless neutrinos
- no $V_{R} \Rightarrow$ neutrinos are massless
- no Higgs $S U(2)$ triplet \Rightarrow no Majorana mass $\Delta L L$
- SM renormalizable \Rightarrow no Majorana mass term from dim-5 operator HHLL
- Unlike $m_{\gamma}=0$ prediction, the $m_{\nu}=0$ prediction is somewhat accidental

Mass Spectrum of Elementary Particles in SM

Mysteries of Masses and Flavor Mixing in SM

- Charged current weak interaction mediated by $\mathrm{W}^{ \pm}$gauge boson:

$$
\frac{g}{\sqrt{2}}\left(\overline{u_{L}}\right)_{i} V_{i j} \gamma^{\mu}\left(d_{L}\right)_{j} W_{\mu}^{+}
$$

3 mixing angles +1 phase

Cabibbo, 1963;
Kobayashi, Maskawa, 1973

Nobel prize to KM in 2008

Mysteries of Masses and Flavor Mixing in SM

- Neutrino Masses are degenerate (all zero)
- mass eigenstates = weak eigenstates
- Accidental symmetries in SM
- lepton flavor numbers: L_{e}, L_{μ}, L_{τ}
- no processes cross family lines in lepton sector
- As a result
- no neutrino oscillation
- lepton flavor violation decays forbidden

- total lepton number conserved: $L=L_{e}+L_{\mu}+L_{\tau}$

Neutrino Oscillation \Rightarrow Massive Neutrinos

- Neutrino Masses are non-degenerate (at least two are non-zero)
- mass eigenstates \neq weak eigenstates
- Accidental symmetries in SM
- Broken lepton flavor numbers: L_{e}, L_{μ}, L_{τ}
- Processes cross family lines in lepton sector now possible
- As a result
- neutrino oscillation
- lepton flavor violation decays?

- total lepton number? L ? $L_{e}+L_{\mu}+L_{\tau} \Leftrightarrow \begin{gathered}\text { ARE NEUTRINOS } \\ \text { THIRIR OWN? } \\ \text { ANTIPRRTCLLES }\end{gathered}$

What if Neutrinos Have Mass?

- Similar to the quark sector, there can be a mismatch between mass eigenstates and weak eigenstates
- weak interactions eigenstates: $\mathrm{V}_{\mathrm{e}}, \mathrm{V}_{\mu}, \mathrm{V}_{\mathrm{T}}$

$$
\frac{g}{\sqrt{2}} \overline{\ell_{L}} U_{\ell i} \gamma^{\mu}\left(\nu_{L}\right)_{i} W_{\mu}^{-}
$$

- mass eigenstates: $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$

Maki, Nakagawa, Sakata, I962;

- Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix

$$
\left(\begin{array}{l}
v_{e} \\
v_{\mu} \\
v_{\tau}
\end{array}\right)=\left(\begin{array}{lll}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \rightarrow \begin{gathered}
3 \text { mixing angles } \\
+1 \text { (3) phase(s) for } \\
\text { Dirac (Majorana) } \\
\text { neutrinos }
\end{gathered}
$$

Recall: n Generations

- CKM-like matrix for n generations: For Dirac fermions

$$
2 n^{2}-n^{2}-(2 n-1)=(n-1)^{2} \text { free parameters }
$$

- A general $n \times n$ orthogonal matrix:

$$
\frac{1}{2} n(n-1) \text { angles describing rotations among } n \text { dimensions }
$$

- Remaining free parameters are phases

$$
(n-1)^{2}-\frac{1}{2} n(n-1)=\frac{1}{2}(n-1)(n-2)
$$

\Rightarrow need at least 3 generations to have CPV in CKM matrix

Recall: n Generations

What happens for Majorana neutrinos? How many unphysical parameters can we rotate away by phase redefinition?

What is the smallest number of families in order to have CPV?

Recall: n Generations

- CKM-like matrix for n generations: For Majorana fermions?

$$
\begin{gathered}
2 n^{2}-n^{2}-(2 n-1)=(n-1)^{2} \\
\text { free parameters } \\
n^{2}-n
\end{gathered}
$$

- A general $n \times n$ orthogonal matrix:

$$
\frac{1}{2} n(n-1) \text { angles describing rotations among } n \text { dimensions }
$$

- Remaining free parameters are phases

$$
\left.n^{2}-n+1\right)^{2}-\frac{1}{2} n(n-1)=\frac{1}{2}(n-1)(n-2) \frac{1}{2} n(n-1)
$$

\Rightarrow need at least 2 generations to have CPV for Majorana neutrinos

Where Do We Stand?

- Latest 3 neutrino global analysis:

Gonzalez-Garcia, Maltoni, Schwetz (NuFIT), 2111.03086

		Normal Ordering (Best Fit)		Inverted Ordering ($\Delta \chi^{2}=7.0$)	
		bfp $\pm 1 \sigma$	3σ range	bfp $\pm 1 \sigma$	3σ range
	$\sin ^{2} \theta_{12}$	$0.304_{-0.012}^{+0.012}$	$0.269 \rightarrow 0.343$	$0.304_{-0.012}^{+0.013}$	$0.269 \rightarrow 0.343$
	$\theta_{12} /{ }^{\circ}$	$33.45{ }_{-0.75}^{+0.77}$	$31.27 \rightarrow 35.87$	$33.45{ }_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$
	$\sin ^{2} \theta_{23}$	$0.450_{-0.016}^{+0.019}$	$0.408 \rightarrow 0.603$	$0.570_{-0.022}^{+0.016}$	$0.410 \rightarrow 0.613$
	$\theta_{23} /{ }^{\circ}$	$42.1{ }_{-0.9}^{+1.1}$	$39.7 \rightarrow 50.9$	$49.0_{-1.3}^{+0.9}$	$39.8 \rightarrow 51.6$
	$\sin ^{2} \theta_{13}$	$0.02246_{-0.00062}^{+0.0062}$	$0.02060 \rightarrow 0.02435$	$0.02241_{-0.00062}^{+0.00074}$	$0.02055 \rightarrow 0.02457$
	$\theta_{13} /{ }^{\circ}$	$8.62_{-0.12}^{+0.12}$	$8.25 \rightarrow 8.98$	$8.61{ }_{-0.12}^{+0.14}$	$8.24 \rightarrow 9.02$
	$\delta_{\mathrm{CP}} /{ }^{\circ}$	230_{-25}^{+36}	$144 \rightarrow 350$	$278{ }_{-30}^{+22}$	$194 \rightarrow 345$
	$\frac{\Delta m_{21}^{2}}{10^{-5} \mathrm{eV}^{2}}$	$7.42_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.04$	$7.42_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.04$
	$\frac{\Delta m_{3 \ell}^{2}}{10^{-3} \mathrm{eV}^{2}}$	$+2.510_{-0.027}^{+0.027}$	$+2.430 \rightarrow+2.593$	$-2.490_{-0.028}^{+0.026}$	$-2.574 \rightarrow-2.410$

- hints of $\theta_{23} \neq \pi / 4$
- expectation of Dirac CP phase δ
- slight preference for normal mass ordering

Open Questions - Neutrino Properties

ARE NEUTRINOS THEIR OWN ANTIPARTICLES?

WHAT ARE THE MASSES OF THE THREE KNOWN? NEUTRINO TYPES?

ARE THERE MORE THAN THREE?

DOES THE HIGGS GIVE MASS?
TO NEUTRINOS?

Majorana vs Dirac?
CP violation in lepton sector?
Absolute mass scale of neutrinos?
Mass ordering: sign of $\left(\Delta \mathrm{m}_{13}{ }^{2}\right)$?
Sterile neutrino(s)?
Precision: $\theta_{23}>\pi / 4, \theta_{23}<\pi / 4, \theta_{23}=\pi / 4$?
a suite of current and upcoming experiments to address these puzzles

Open Questions - Neutrino Properties

ARE NEUTRINOS THEIR OWN' ANTI PARTICLES?

WHAT ARE THE MASSES OF THE THREE RNOWN'? NEUTRINO TYPES?

are There More THAN THREE?

DOES THE HIGGS GIVE MASS? TO NEUTRINOS?

Majorana vs Dirac?
CP violation in lepton sector?
Absolute mass scale of neutrinos?
Mass ordering: sign of $\left(\Delta \mathrm{m}_{13}{ }^{2}\right)$?
Sterile neutrino(s)?
Precision: $\theta_{23}>\pi / 4, \theta_{23}<\pi / 4, \theta_{23}=\pi / 4$?
a suite of current and upcoming experiments to address these puzzles

To understand these properties \Rightarrow BSM Physics

Part II: Flavor Symmetries

Where Do We Stand?

The known knowns:
normal hierarchy:

Open Questions - Theoretical

Smallness of neutrino mass:
$m_{v} \ll m_{e, u, d}$

Open Questions - Theoretical

Flavor structure:

quark mixing

weak interaction eigenstates- s
-b

leptonic mixing

Group Work: Parameter Counting in SM

How many free physical parameters are there in the Yukawa sector of SM w/ 3 RH neutrinos (assuming Majorana neutrinos)?

Fermion mass and hierarchy

 problem $=\rightarrow$ Many (22) free parameters (out of 28) in the Yukawa sector of SMWhere do fermion mass hierarchy, flavor mixing, and CP violation come from?

Where do fermion mass hierarchy, flavor mixing, and CP violation come from?

Is there a simpler organization principle?

Where do fermion mass hierarchy, flavor mixing, and CP violation come from?
Is there a simpler organization principle?
Where do neutrinos get their masses?

Where do fermion mass hierarchy,
flavor mixing, and CP violation come from?

Is there a simpler organization principle?
Where do neutrinos get their masses?
Is it the Higgs or something else that gives neutrino masses?

Matter-Antimatter Asymmetry

Early Universe

Universe Now
[Picture credit: H. Murayama]

What is the origin of matter antimatter asymmetry? Why do we exist?

Neutrino Mass beyond the SM

- Two options:
- add RH neutrinos $N(1,1)_{0} \Rightarrow$ Dirac mass $m_{D} \bar{\nu}_{L} \nu_{R}$
- why Yukawa couplings are small
- why there are no large Majorana mass terms for RH neutrinos
- add Higgs $\operatorname{SU}(2)$ triplet $\Delta \Rightarrow$ Majorana mass $\Delta L L$
- why $\langle\Delta\rangle \ll\langle H\rangle$
- Generally, in these models
- new fields are introduced only to generate neutrino mass
- there is no understanding of why neutrinos are light

Neutrino Mass beyond the SM

- The SM is an effective low energy theory, with NR terms. NP effects are suppressed by powers of small parameter

$$
\frac{M_{W}}{\Lambda}
$$

- Neutrino masses are generated by so-called Weinberg operator

$$
H H \ell_{i} l_{j}
$$

Group Work: Mass Dimension

What is the mass dimension of the Weinberg Operator, $H H \ell_{i} \ell_{j}$? How does it appear in the Lagrangian?

Neutrino Mass beyond the SM

- The SM is an effective low energy theory, with NR terms. NP effects are suppressed by powers of small parameter

$$
\frac{M_{W}}{\Lambda}
$$

- Neutrino masses are generated by so-called Weinberg operator, dim-5

$$
\frac{\lambda_{i j}}{\Lambda} H H \ell_{i} \ell_{j} \Rightarrow m_{\nu}=\lambda_{i j} \frac{v^{2}}{\Lambda}
$$

$\lambda_{i j}$ are dimensionless couplings
Λ is some high scale

Group Work: Weinberg Operator

What symmetry/symmetries does the Weinberg operator break?

$$
\frac{H H \ell_{i} \ell_{j}}{\Lambda}
$$

Neutrino Mass beyond the SM

$$
\frac{\lambda_{i j}}{\Lambda} H H \ell_{i} l_{j} \Rightarrow m_{\nu}=\lambda_{i j} \frac{v^{2}}{\Lambda}
$$

- promoting SM to an effective field theory implies

$$
m_{v} \neq 0
$$

- m_{v} is small because it arises from NR terms (Λ is high)
- Neutrino mass therefore probe the high energy physics
- Both total lepton number and family lepton numbers are broken
\Rightarrow lepton mixing and CP violation expected

Seesaw Mechanism

- Consider one generation SM with an additional singlet $N(1,1)_{0}$

$$
\mathcal{L}_{m_{\nu}}=\frac{1}{2} M_{N} N N+Y_{\nu} H L N
$$

$M_{N} \gg v$ is a Majorana mass of the RH neutrino the 2nd term: Dirac mass term

- In the $\left(v_{L}, N_{R}\right)$ basis, the neutrino mass matrix is

$$
m_{\nu}=\left(\begin{array}{cc}
0 & m_{D} \\
m_{D} & M_{N}
\end{array}\right) \quad m_{D}=Y_{\nu} v
$$

Group Work: Seesaw Mechanism

$$
m_{\nu}=\left(\begin{array}{cc}
0 & m_{D} \\
m_{D} & M_{N}
\end{array}\right)
$$

Assuming $M_{N} \gg v$, what are the two eigenvalues at leading order?

Seesaw Mechanism

$$
m_{\nu}=\left(\begin{array}{cc}
0 & m_{D} \\
m_{D} & M_{N}
\end{array}\right)
$$

- Assuming $M_{N} \gg v$ to first order,

$$
m_{N_{R}}=M_{N}, m_{\nu_{L}}=\frac{m_{D}^{2}}{M_{N}}, \quad\left(\mathrm{EFT}: \quad m_{\nu}=\lambda \frac{v^{2}}{M}\right)
$$

- the new physics scale M is identified with M_{N}
- the seesaw scale can be generalized to three generations
- seesaw is realized in, e.g. Left-Right, Pati-Salam, and GUT models

Group Work: Seesaw Mechanism

$$
m_{\nu}=\left(\begin{array}{cc}
0 & m_{D} \\
m_{D} & M_{N}
\end{array}\right)
$$

What is needed to populate the (11)
entry with a non-vanishing
contribution?

Neutrino Mass beyond the SM

- SM: effective low energy theory

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{\mathcal{O}_{5 D}}{M}+\frac{\mathcal{O}_{6 D}}{M^{2}}+\ldots
$$

new physics effects

- only one dim-5 operator: most sensitive to high scale physics

$$
\begin{gathered}
\frac{\lambda_{i j}}{M} H H L_{i} L_{j} \Rightarrow m_{\nu}=\lambda_{i j} \frac{v^{2}}{M} \\
\text { - } \mathrm{m}_{\mathrm{v}} \sim\left(\Delta \mathrm{~m}^{2} \mathrm{~atm}\right)^{1 / 2} \sim 0.1 \mathrm{eV} \text { with } \mathrm{v} \sim 100 \mathrm{GeV}, \lambda \sim \mathrm{O}(1) \Rightarrow \mathrm{M} \sim 10^{1014} \mathrm{GeV} \\
\text { - Lepton number violation } \Delta \mathrm{L}=2 \leftrightarrows \text { Majorana fermions }
\end{gathered}
$$

Group Work: UV Completion for Weinberg Operator

Schematically, how do you UV complete the
Weinberg Operator? What can be the "portal" particles?

Neutrino Mass beyond the SM

Type-I seesaw

$N_{R}: S U(3)_{c} \times S U(2)_{w} x U(1)_{Y} \sim(1,1,0)$
Minkowski, 1977; Yanagida, 1979; Glashow, 1979; Gell-mann, Ramond, Slansky,1979; Mohapatra, Senjanovic, 1979;

3 possible portals

Type-III seesaw

$$
\Sigma=\left(\Sigma^{+}, \Sigma^{0}, \Sigma^{-}\right)
$$

$\Sigma_{\mathrm{R}}: \operatorname{SU}(3)_{\mathrm{c}} \times \mathrm{SU}(2)_{\mathrm{w}} \times \mathrm{U}(1)_{\mathrm{Y}} \sim(1,3,0)$
Foot, Lew, He, Joshi, 1989; Ma, 1998

Why are neutrinos light? Seesaw Mechanism

- Adding the right-handed neutrinos:

$$
\begin{gathered}
\left(\begin{array}{ll}
v_{L} & v_{R}
\end{array}\right)\left(\begin{array}{cc}
0 & m_{D} \\
m_{D} & M_{R}
\end{array}\right)\binom{v_{L}}{v_{R}} \\
m_{v} \sim m_{\text {light }} \sim \frac{m_{D}^{2}}{M_{R}} \ll m_{D} \\
m_{\text {heavy }}
\end{gathered} \sim M_{R} \quad l
$$

For

$$
m_{v_{3}} \sim \sqrt{\Delta m_{a t m}^{2}}
$$

If $m_{D} \sim m_{t} \sim 180 \mathrm{GeV}$
$\Longrightarrow \mathrm{M}_{\mathrm{R}} \sim 10^{15} \mathrm{GeV}$ (GUT !!)

Minkowski, I977; Yanagida, 1979; Gell-Mann,

Ultimate Goal of Grand Unification

- Maxwell: electric and magnetic forces are different aspects of electromagnetism
- Einstein: early attempt to unify electric force and gravity

Weinberg, Salam, Glashow: electroweak Theory
Nobel prize 1979
We are getting there.....

Grand Unification

- Motivations:
- Electromagnetic, weak, and strong forces have very different strengths
- But their strengths become the same at $10^{16} \mathrm{GeV}$ if there is supersymmetry

$$
10^{16} \mathrm{GeV} \sim 10-30 \text { meters }
$$

- To obtain $m_{v} \sim\left(\Delta \mathrm{~m}^{2} \mathrm{~atm}\right)^{1 / 2}$,

$$
m_{D} \sim m_{\text {top }}, \quad M_{R} \sim 10^{15} \mathrm{GeV}
$$

- Neutrino oscillations probe physics at unification scale!

Grand Unification

quarks and leptons are close relatives
matter fields come in 3 copies
charge quantization
can be understood
$16=10+5^{\star}+1$
RH neutrino predicted

u	$\uparrow \downarrow \uparrow \uparrow$
u	$\uparrow \downarrow \uparrow \downarrow$
u	$\uparrow \downarrow \downarrow \uparrow$
d	$\downarrow \uparrow \uparrow \uparrow$
d	$\downarrow \uparrow \uparrow \downarrow$
d:	$\downarrow \uparrow \downarrow \uparrow$
u^{c} :	$\downarrow \downarrow \uparrow \downarrow \downarrow$
$\mathrm{u}^{\text {c }}$	$\downarrow \downarrow \downarrow \uparrow \downarrow\rangle$
$\mathrm{u}^{\text {c }}$	$\downarrow \downarrow \downarrow \downarrow \uparrow$
$\mathrm{d}^{\text {c }}$	$\uparrow \uparrow \uparrow \downarrow \downarrow$
$\mathrm{d}^{\text {c }}$	$\uparrow \uparrow \downarrow \uparrow \downarrow\rangle$
$\mathrm{d}^{\text {c }}$	$\uparrow \uparrow \downarrow \downarrow \uparrow$
e	$\downarrow \uparrow \downarrow \downarrow \downarrow$
v_{e} :	$\uparrow \downarrow \downarrow \downarrow \downarrow$
e^{c} :	$\downarrow \downarrow \uparrow \uparrow \uparrow\rangle$
$\mathrm{v}_{\mathrm{e}}{ }^{\text {c }}$	$\uparrow \uparrow \uparrow \uparrow \uparrow\rangle$

Grand Unification Naturally Accommodates Seesaw

origin of the heavy scale $\Rightarrow U(1)_{B-L}$
exotic mediators \Rightarrow predicted in many GUT theories, e.g. $\mathrm{SO}(10)$
exotic mediators for Type II, III harder to get from string theory

Dienes, March-Russell, 1996

$$
\begin{aligned}
16 & =(3,2,1 / 6) \sim\left(\begin{array}{ccc}
\mathrm{u} & \mathrm{u} & \mathrm{u} \\
\mathrm{~d} & \mathrm{~d} & \mathrm{~d}
\end{array}\right] \\
& +\left(3^{*}, 1,-2 / 3\right) \sim\left(\begin{array}{ll}
\mathrm{u}^{\mathrm{c}} & \left.\mathrm{u}^{\mathrm{c}} \mathrm{u}^{\mathrm{c}}\right)
\end{array}\right. \\
& +\left(3^{*}, 1,1 / 3\right) \sim\left(\begin{array}{ll}
\mathrm{d}^{\mathrm{c}} \mathrm{~d}^{\mathrm{c}} & \mathrm{~d}^{\mathrm{c}}
\end{array}\right) \\
& +(1,2,-1 / 2) \sim\left[\begin{array}{l}
\mathrm{v} \\
\mathrm{e}
\end{array}\right] \\
& +(1,1,1) \sim \mathrm{e}^{\mathrm{c}} \\
& +(1,1,0) \sim v^{\mathrm{c}}
\end{aligned}
$$

Flavor Structure

Flavor Structure

- there are parametrically small numbers
- $\mathrm{m}_{2} / \mathrm{m}_{3}<1, \theta_{13}<1$
- In general, large mixing \Leftrightarrow no hierarchy

$$
m=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

- $\mathrm{a} \gg \mathrm{b}, \mathrm{c} \Rightarrow \sin ^{2} \theta \ll 1, \mathrm{~m}_{1} / \mathrm{m}_{2} \ll 1$
- $\mathrm{a}, \mathrm{b}, \mathrm{c} \sim 1 \Rightarrow \operatorname{det}(\mathrm{~m}) \sim 1 \Rightarrow \sin ^{2} \theta \sim 1, \mathrm{~m}_{1} / \mathrm{m}_{2} \sim 1$
- $\mathrm{a}, \mathrm{b}, \mathrm{c} \sim 1 \Rightarrow \operatorname{det}(\mathrm{~m}) \ll 1 \Rightarrow \sin ^{2} \theta \sim 1, \mathrm{~m}_{1} / \mathrm{m}_{2} \ll 1$

Texture	Hierarchy	$\left\|U_{e 3}\right\|$	$\left\|\cos 2 \theta_{23}\right\|$ (n.s. $)$	$\left\|\cos 2 \theta_{23}\right\|$	Solar Angle
$\frac{\sqrt{\Delta m_{13}^{2}}}{2}\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$	Normal	$\sqrt{\frac{\Delta m_{12}^{2}}{\Delta m_{13}^{2}}}$	$\mathrm{O}(1)$	$\sqrt{\frac{\Delta m_{12}^{2}}{\Delta m_{13}^{2}}}$	$\mathrm{O}(1)$
$\sqrt{\Delta m_{13}^{2}}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2}\end{array}\right)$	Inverted	$\frac{\Delta m_{12}^{2}}{\left\|\Delta m_{13}^{2}\right\|}$	-	$\frac{\Delta m_{12}^{2}}{\left\|\Delta m_{13}^{2}\right\|}$	$\mathrm{O}(1)$
$\frac{\sqrt{\Delta m_{13}^{2}}}{\sqrt{2}}\left(\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$	Inverted	$\frac{\Delta m_{12}^{2}}{\left\|\Delta m_{13}^{2}\right\|}$	$\mathrm{O}(1)$	$\frac{\Delta m_{12}^{2}}{\left\|\Delta m_{13}^{2}\right\|}$	$\left\|\cos 2 \theta_{12}\right\| \sim \frac{\Delta m_{12}^{2}}{\left\|\Delta m_{13}^{2}\right\|}$
$\sqrt{\Delta m_{13}^{2}}\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$	Normal ${ }^{a}$	>0.1	$\mathrm{O}(1)$	-	$\mathrm{O}(1)$

Symmetry Relations

Grand Unified Theories: GUT symmetry (vertical)

Quarks - Leptons

Family Symmetry: (horizontal)

$$
\text { e-family } \oplus \text { muon-family } \oplus \text { tau-family }
$$

Symmetry Relations

Symmetry \Rightarrow relations among parameters
 \Rightarrow reduction in number of fundamental parameters

Symmetry \Rightarrow experimentally testable correlations among physical observables

Froggatt-Nielsen Mechanism

Popular scenario for addressing flavor hierarchies: Froggatt-Nielsen scenario

Froggatt and Nielsen [1979]
E.g. effective Lagrangean for charged lepton masses

$$
\mathscr{L} \supset y_{0}^{f g}\left(\frac{\widetilde{S}}{\Lambda}\right)^{n_{f g}} \bar{e}_{\mathrm{R}}^{g} \cdot \phi^{*} \cdot \ell_{\mathrm{L}}^{f}+\text { h.c. }
$$

Froggatt-Nielsen Mechanism

Popular scenario for addressing flavor hierarchies: Froggatt-Nielsen scenario

$$
n_{f g}=q_{\mathrm{R}}^{(f)}-q_{\mathrm{L}}^{(g)}
$$

E.g. effective Lagrangean for charged lepton masses

$$
\mathscr{L} \supset y_{0}^{f g}\left(\frac{\widetilde{S}}{\Lambda}\right)^{n_{f g}} \bar{e}_{\mathrm{R}}^{g} \cdot \phi^{*} \cdot \ell_{\mathrm{L}}^{f}+\text { h.c. }
$$

Froggatt-Nielsen Mechanism

Popular scenario for addressing flavor hierarchies: Froggatt-Nielsen scenario
E.g. effective Lagrangean for charged lepton masses
$\mathscr{L} \supset y_{0}^{f g}\left(\frac{\widetilde{S}}{\Lambda}\right)^{n_{f g}} \bar{e}_{\mathrm{R}}^{g} \cdot \phi^{*} \cdot \ell_{\mathrm{L}}^{f}+$ h.c.
flavon
Assume \widetilde{S} acquires VEV $v_{\tilde{S}} \sim \lambda \Lambda$

$$
\left(\begin{array}{lll}
\lambda^{n_{11}} & \lambda^{n_{12}} & \lambda^{n_{13}} \\
\lambda^{n_{21}} & \lambda^{n_{22}} & \lambda^{n_{23}} \\
\lambda^{n_{31}} & \lambda^{n_{32}} & \lambda^{n_{33}}
\end{array}\right) .
$$

Froggatt-Nielsen Mechanism

Popular scenario for addressing flavor hierarchies: Froggatt-Nielsen scenario
E.g. effective Lagrangean for charged lepton masses

$$
\mathscr{L} \supset y_{0}^{f g}\left(\frac{\widetilde{S}}{\Lambda}\right)^{n_{f g}} \bar{e}_{\mathrm{R}}^{g} \cdot \phi^{*} \cdot \ell_{\mathrm{L}}^{f}+\text { h.c. }
$$

Assume \widetilde{S} acquires VEV $v_{\tilde{S}} \sim \lambda \Lambda$
\Rightarrow Hierarchical Yukawa couplings and nontrivial mixing angles

$$
\left(\begin{array}{lll}
\lambda^{n_{11}} & \lambda^{n_{12}} & \lambda^{n_{13}} \\
\lambda^{n_{21}} & \lambda^{n_{22}} & \lambda^{n_{23}} \\
\lambda^{n_{31}} & \lambda^{n_{32}} & \lambda^{n_{33}}
\end{array}\right) .
$$

Froggatt-Nielsen Mechanism

Popular scenario for addressing flavor hierarchies: Froggatt-Nielsen scenario
E.g. effective Lagrangean for charged lepton masses

$$
\mathscr{L} \supset y_{0}^{f g}\left(\frac{\widetilde{S}}{\Lambda}\right)^{n_{f g}} \bar{e}_{\mathrm{R}}^{g} \cdot \phi^{*} \cdot \ell_{\mathrm{L}}^{f}+\text { h.c. }
$$

Assume \widetilde{S} acquires VEV $v_{\tilde{S}} \sim \lambda \Lambda$
\Leftrightarrow Hierarchical Yukawa couplings and nontrivial mixing angles

$$
\left(\begin{array}{lll}
\lambda^{n_{11}} & \lambda^{n_{12}} & \lambda^{n_{13}} \\
\lambda^{n_{21}} & \lambda^{n_{22}} & \lambda^{n_{23}} \\
\lambda^{n_{31}} & \lambda^{n_{32}} & \lambda^{n_{33}}
\end{array}\right) .
$$

Gauging the $\mathbf{U}(1)$
symmetry, what constraints do we have on the model?

Origin of Flavor Mixing and Mass Hierarchy

Large neutrino mixing \Rightarrow discrete family symmetry

Origin of Flavor Mixing and Mass Hierarchies

- several models have been constructed based on
- GUT Symmetry [SU(5), SO(10)] \oplus Family Symmetry G_{F}
- models based on discrete family symmetry groups have been constructed
- A_{4} (tetrahedron)
- T^{\prime} (double tetrahedron)
- S_{3} (equilateral triangle)
- S_{4} (octahedron, cube)
- A_{5} (icosahedron, dodecahedron)
- Δ_{27}
- Q6

TBM and Coupled Pendulums

TBM and Coupled Pendulums

($1,0,-1$)

($1,1,1$)

Tri-bimaximal Neutrino Mixing

- Latest Global Fit (3 $\mathbf{~}$)

$$
\begin{gathered}
\sin ^{2} \theta_{23}=0.437(0.374-0.626) \\
\sin ^{2} \theta_{12}=0.308(0.259-0.359) \\
\sin ^{2} \theta_{13}=0.0234(0.0176-0.0295)
\end{gathered}
$$

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou (2020)

$$
\begin{aligned}
& {\left[\theta^{\mathrm{lep}} 23 \sim 49.2^{\circ}\right]} \\
& {\left[\theta^{\mathrm{le}}{ }_{12} \sim 33.4^{\circ}\right]} \\
& {\left[\theta^{\mathrm{lep}}, 8.57^{\circ}\right]}
\end{aligned}
$$

- Tri-bimaximal Mixing Pattern

$$
U_{T B M}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & \sqrt{1 / 3} & 0 \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & -\sqrt{1 / 2} \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & \sqrt{1 / 2}
\end{array}\right) \quad \begin{aligned}
& \sin ^{2} \theta_{\mathrm{atm}, \mathrm{TBM}}=1 / 2 \quad \sin ^{2} \theta_{\odot, \mathrm{TBM}}=1 / 3 \\
& \sin \theta_{13, \mathrm{TBM}}=0
\end{aligned}
$$

Non-Abelian Finite Family Symmetry A_{4}

- TBM mixing matrix: can be realized with finite group family symmetry based on $A_{4} \quad$ Ma, Rajasekaran (2001); Babu, Ma, Valle (2003); …
- A_{4} : even permutations of 4 objects
- How many such permutations (i.e. group elements)?

Non-Abelian Finite Family Symmetry A_{4}

- TBM mixing matrix: can be realized with finite group family symmetry based on $\mathrm{A}_{4} \quad$ Ma, Rajasekaran (2001); Babu, Ma, Valle (2003); \ldots
- A_{4} : even permutations of 4 objects

$$
\begin{aligned}
& \mathrm{S}:(\mathrm{I} 234) \rightarrow(432 \mathrm{I}) \\
& \mathrm{T}:(1234) \rightarrow(2314)
\end{aligned}
$$

- Group of order 12
- Invariant group of tetrahedron

TBM from A4 Group

$$
\mathrm{T}:(1234) \rightarrow(2314) \quad \mathrm{S}:(1234) \rightarrow(4321)
$$

$$
S^{2}=1, \quad(S T)^{3}=1, \quad T^{3}=1
$$

A4 Group Theory

Irreps: 1, 1', 1", 3

$$
S^{2}=1, \quad(S T)^{3}=1, \quad T^{3}=1
$$

$$
\begin{aligned}
1 & : S
\end{aligned}=1, T=1 .
$$

12 group elements: $1, S, T, S T, T S, T^{2}, S T^{2}, S T S, T S T, T^{2} S, T S T^{2}, T^{2} S T$

Tri-bimaximal Neutrino Mixing

- fermion charge assignments:

$$
\left(\begin{array}{l}
\ell_{1} \\
\ell_{2} \\
\ell_{3}
\end{array}\right)_{L} \sim 3, \quad e_{R} \sim 1, \quad \mu_{R} \sim 1^{\prime \prime}, \quad \tau_{R} \sim 1^{\prime}
$$

- SM Higgs ~ singlet under A_{4}
- operators for neutrino masses: $\frac{H H L L}{M}\left(\frac{\langle\xi\rangle}{\Lambda}+\frac{\langle\eta\rangle}{\Lambda}\right)$
- two scalar (flavon) fields for neutrino sector: $\quad \xi \sim 3, \quad \eta \sim 1$

$$
\mathrm{A}_{4} \rightarrow G_{T S T^{2}}: \quad\langle\xi\rangle=\xi_{0} \Lambda\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad \mathrm{A}_{4}-\text { invariant: } \quad\langle\eta\rangle=u \Lambda
$$

- product rules:

$$
3 \otimes 3=3 \oplus 3 \oplus 1 \oplus 1^{\prime} \oplus 1^{\prime \prime}
$$

Tri-bimaximal Neutrino Mixing

- Neutrino Masses: triplet flavon contribution

$$
3_{S}=\frac{1}{3}\left(\begin{array}{l}
2 \alpha_{1} \beta_{1}-\alpha_{2} \beta_{3}-\alpha_{3} \beta_{2} \\
2 \alpha_{3} \beta_{3}-\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1} \\
2 \alpha_{2} \beta_{2}-\alpha_{1} \beta_{3}-\alpha_{3} \beta_{1}
\end{array}\right) \quad 1=\alpha_{1} \beta_{1}+\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}
$$

- Neutrino Masses: singlet flavon contribution $1=\alpha_{1} \beta_{1}+\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}$
- resulting mass matrix:

$$
\begin{aligned}
M_{\nu} & =\frac{\lambda v^{2}}{M_{x}}\left(\begin{array}{ccc}
2 \xi_{0}+u & -\xi_{0} & -\xi_{0} \\
-\xi_{0} & 2 \xi_{0} & u-\xi_{0} \\
-\xi_{0} & u-\xi_{0} & 2 \xi_{0}
\end{array}\right) \quad U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right) \\
V_{\nu}^{\mathrm{T}} M_{\nu} V_{\nu} & =\operatorname{diag}\left(u+3 \xi_{0}, u,-u+3 \xi_{0} \frac{v_{u}^{2}}{M_{x}}\right.
\end{aligned}
$$

Tri-bimaximal Neutrino Mixing from A_{4}

- charged lepton sector -- without quarks
- operators for charged lepton masses

$$
(\ell \phi)_{1} e_{R}(1)+(\ell \phi)_{1^{\prime}} \mu_{R}\left(1^{\prime \prime}\right)+(\ell \phi)_{1^{\prime \prime}} \tau_{R}\left(1^{\prime}\right)
$$

- scalar sector: flavon triplet for charged lepton masses

$$
\begin{aligned}
& 1=\alpha_{1} \beta_{1}+\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2} \\
& 1^{\prime}=\alpha_{3} \beta_{3}+\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1} \\
& 1^{\prime \prime}=\alpha_{2} \beta_{2}+\alpha_{1} \beta_{3}+\alpha_{3} \beta_{1}
\end{aligned}
$$

$$
\mathrm{A}_{4} \rightarrow G_{T}: \quad\langle\phi\rangle=\phi_{0} \Lambda\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

- resulting charged lepton mass matrix $=$ diagonal

$$
V_{M N S}=V_{e, L}^{\dagger} V_{\nu}=\mathcal{I} \cdot U_{T B M}=U_{T B M}
$$

Group Work: A4 Neutrino Mass Model

$M_{\nu}=\frac{\lambda v^{2}}{M_{x}}\left(\begin{array}{ccc}2 \xi_{0}+u & -\xi_{0} & -\xi_{0} \\ -\xi_{0} & 2 \xi_{0} & u-\xi_{0} \\ -\xi_{0} & u-\xi_{0} & 2 \xi_{0}\end{array}\right) \quad U_{\mathrm{TBM}}=\left(\begin{array}{ccc}\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\ -\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\ -\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}\end{array}\right)$

Show that M_{ν} is always diagonalizable by $U_{T B M}$
What are the mass eigenvalues?

Group Work: A4 Neutrino Mass Model

$M_{\nu}=\frac{\lambda v^{2}}{M_{x}}\left(\begin{array}{ccc}2 \xi_{0}+u & -\xi_{0} & -\xi_{0} \\ -\xi_{0} & 2 \xi_{0} & u-\xi_{0} \\ -\xi_{0} & u-\xi_{0} & 2 \xi_{0}\end{array}\right) \quad U_{\mathrm{TBM}}=\left(\begin{array}{ccc}\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\ -\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\ -\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}\end{array}\right)$
$M_{e f f}^{\nu}{ }^{\text {diag }}=U_{\mathrm{TBM}}^{T} M_{e f f}^{\nu} U_{\mathrm{TBM}}=\operatorname{diag}\left(3 \alpha_{s}+\alpha_{0}, \alpha_{0}, 3 \alpha_{s}-\alpha_{0}\right) \cdot \frac{v^{2}}{\Lambda_{L}} \equiv\left(m_{1}, m_{2}, m_{3}\right)$

Neutrino Mass Matrix from A4

$$
M_{\nu}=\frac{\lambda v^{2}}{M_{x}}\left(\begin{array}{ccc}
2 \xi_{0}+u & -\xi_{0} & -\xi_{0} \\
-\xi_{0} & 2 \xi_{0} & u-\xi_{0} \\
-\xi_{0} & u-\xi_{0} & 2 \xi_{0}
\end{array}\right)
$$

2 free parameters

relative strengths
 \Rightarrow CG's

- always diagonalized by TBM matrix, independent of the two free parameters

$$
U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right)
$$

Neutrino Mixing
 Angles from
 Group Theory

- 2 independent parameters for 3 masses $\Rightarrow 1$ relation

General Structure

Example: $\operatorname{SU}(5)$ Compatibility $\Rightarrow \mathrm{T}^{\prime}$ Family Symmetry

- Double Tetrahedral Group T': double covering of A4
- Symmetries $\Rightarrow 10$ parameters in Yukawa sector $\Rightarrow 22$ physical observables
- Symmetries \Rightarrow correlations among quark and lepton mixing parameters

CP Violation in Neutrino Oscillation

- With leptonic Dirac CP phase $\delta \neq 0 \rightarrow$ leptonic CP violation
- Predict different transition probabilities for neutrinos and antineutrinos

$$
P\left(v_{a} \rightarrow v_{\beta}\right) \neq P\left(\overline{v_{a}} \rightarrow \overline{v_{\beta}}\right)
$$

- One of the major scientific goals at current and planned neutrino experiments

DUNE/LBNF

Origin of CP Violation

- CP violation \Leftrightarrow complex mass matrices
$\bar{U}_{R, i}\left(M_{u}\right)_{i j} Q_{L, j}+\bar{Q}_{L, j}\left(M_{u}^{\dagger}\right)_{j i} U_{R, i} \xrightarrow{\mathcal{C P}} \bar{Q}_{L, j}\left(M_{u}\right)_{i j} U_{R, i}+\bar{U}_{R, i}\left(M_{u}\right)_{i j}^{*} Q_{L, j}$
- Conventionally, CPV arises in two ways:
- Explicit CP violation: complex Yukawa coupling constants Y
- Spontaneous CP violation: complex scalar VEVs <h>

- Complex CG coefficients in certain discrete groups \Rightarrow explicit CP violation
- CPV in quark and lepton sectors purely from complex CG coefficients
M.-C.C., K.T. Mahanthappa, Phys. Lett. B681, 444 (2009)

CG coefficients in non-Abelian discrete symmetries
\Rightarrow relative strengths and phases in entries of Yukawa matrices
$\stackrel{f}{ }$ mixing angles and phases (and mass hierarchy)

Group Theoretical Origin of CP Violation

Basic idea
 Discrete
 symmetry \mathbf{G}

- if Z_{3} symmetric $\Rightarrow\left\langle\Delta_{1}\right\rangle=\left\langle\Delta_{2}\right\rangle=\left\langle\Delta_{3}\right\rangle \equiv\langle\Delta\rangle$ real
- Complex effective mass matrix: phases determined by group theory
$C_{i j}{ }^{k}$: complex
CG coefficients of G

$$
M=\left(\begin{array}{cc}
\left(\mathrm{L}_{1}\right. & \mathrm{L}_{2}
\end{array}\right)
$$

CP Transformation

- Canonical CP transformation

$$
\begin{aligned}
& \phi(x) \stackrel{C \mathcal{P}}{\longmapsto} \eta_{C_{\mathcal{P}}} \phi^{*}(\mathcal{P} x) \\
& \quad \text { freedom of re-phasing fields }
\end{aligned}
$$

- Generalized CP transformation

Ecker, Grimus, Konetschny (1981); Ecker, Grimus, Neufeld (1987); Grimus, Rebelo (1995)

Generalized CP Transformation

setting w/ discrete symmetry G
generalized CP transformation
invariant contraction/coupling in A_{4} or T^{\prime}

$$
\left[\phi_{\mathbf{1}_{2}} \otimes\left(x_{\mathbf{3}} \otimes y_{\mathbf{3}}\right)_{\mathbf{1}_{1}}\right]_{\mathbf{1}_{0}} \propto \phi\left(x_{1} y_{1}+\omega^{2} x_{2} y_{2}+\omega x_{3} y_{3}\right)
$$

$$
\omega=\mathrm{e}^{2 \pi i / 3}
$$

canonical CP transformation maps $A_{4} / \mathrm{T}^{\prime}$ invariant contraction to something non-invariant

Group Work: Generalized CP Transformation

$$
\left[\phi_{\mathbf{1}_{2}} \otimes\left(x_{\mathbf{3}} \otimes y_{3}\right)_{\mathbf{1}_{1}}\right]_{\mathbf{1}_{0}} \propto \phi\left(x_{1} y_{1}+\omega^{2} x_{2} y_{2}+\omega x_{3} y_{3}\right)
$$

Is there a unitary transformation that can "repair" the A4 invariance once a naïve CP transformation is performed?

Generalized CP Transformation

setting w/ discrete symmetry G
generalized CP transformation
Feruglio, Hagedorn, Ziegler (2013); Holthausen, Lindner, Schmidt (2013)
invariant contraction/coupling in A_{4} or T^{\prime}

$$
\left[\phi_{\mathbf{1}_{2}} \otimes\left(x_{\mathbf{3}} \otimes y_{\mathbf{3}}\right)_{\mathbf{1}_{1}}\right]_{\mathbf{1}_{0}} \propto \phi\left(x_{1} y_{1}+\omega^{2} x_{2} y_{2}+\omega x_{3} y_{3}\right)
$$

$$
\omega=\mathrm{e}^{2 \pi i / 3}
$$

(T) canonical CP transformation maps $A_{4} / \mathrm{T}^{\prime}$ invariant contraction to something non-invariant
\Rightarrow need generalized CP transformation $\widetilde{C_{P}}: \phi \stackrel{\widetilde{C^{\prime}}}{\longmapsto} \phi^{*}$ as usual but

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \xrightarrow{\widetilde{C P}}\left(\begin{array}{l}
x_{1}^{*} \\
x_{3}^{*} \\
x_{2}^{*}
\end{array}\right) \&\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) \xrightarrow{\stackrel{\widetilde{C P}}{\hookrightarrow}}\left(\begin{array}{l}
y_{1}^{*} \\
y_{3}^{*} \\
y_{2}^{*}
\end{array}\right)
$$

How (Not) to Generalize CP

proper CP transformations

map field operators to their own Hermitean conjugates
violation of physical CP is prerequisite for a non-trivial
$\varepsilon_{i \rightarrow f}=\frac{|\Gamma(i \rightarrow f)|^{2}-|\Gamma(\bar{\iota} \rightarrow \bar{f})|^{2}}{|\Gamma(i \rightarrow f)|^{2}+|\Gamma(\bar{\imath} \rightarrow \bar{f})|^{2}}$
\Leftrightarrow connection to observed §R $^{\text {R }}$ baryogenesis \& ...

CP-like transformations

map some field operators to some other operators
ne such transformations have sometimes been called "generalized CP transformations" in the literature
however, imposing CP-like transformations does not imply physical CP conservation
\Leftrightarrow NO connection to observed SR, baryogenesis \& ...

Group Theoretical Origin of CP Violation

complex CGs \Rightarrow G and physical CP transformations do not commute

$$
\begin{aligned}
& \Phi(x) \stackrel{\widetilde{C P}}{\longmapsto} U_{\mathrm{CP}} \Phi^{*}(\mathcal{P} x) \\
& \rho_{\boldsymbol{r}_{i}}(u(g))=U_{r_{i}} \rho_{r_{i}}(g)^{*} U_{r_{i}}^{\dagger} \quad \forall g \in G \text { and } \forall i \\
& \mathbf{u} \text { has to be a class-inverting, } \\
& \quad \begin{array}{l}
\text { involutory automorphism of } \mathrm{G} \\
\Rightarrow \text { non-existence of such automorphism } \\
\quad \text { in certain groups }
\end{array} \\
& \Rightarrow \text { calculable physical CP violation in } \\
& \quad \text { generic setting }
\end{aligned}
$$

examples: $\mathrm{T}_{7}, \Delta(27), \ldots$.

The Bickerstaff-Damhus automorphism (BDA)

- Bickerstaff-Damhus automorphism (BDA) \boldsymbol{u}

$$
\begin{gathered}
\rho_{\boldsymbol{r}_{i}}(u(g))=U_{\boldsymbol{r}_{i}} \rho_{\boldsymbol{r}_{i}}(g)^{*} U_{\boldsymbol{r}_{i}}^{\dagger} \forall g \in G \text { and } \forall i \\
\text { unitary \& symmetric }
\end{gathered}
$$

- BDA vs. Clebsch-Gordan (CG) coefficients

Twisted Frobenius-Schur Indicator

- How can one tell whether or not a given automorphism is a BDA?
- Frobenius-Schur indicator:

$$
\begin{aligned}
& \mathrm{FS}\left(\boldsymbol{r}_{i}\right):=\frac{1}{|G|} \sum_{g \in G} \chi_{\boldsymbol{r}_{i}}\left(g^{2}\right)=\frac{1}{|G|} \sum_{g \in G} \operatorname{tr}\left[\rho_{\boldsymbol{r}_{i}}(g)^{2}\right] \\
& \mathrm{FS}\left(\boldsymbol{r}_{i}\right)= \begin{cases}+1, & \text { if } \boldsymbol{r}_{i} \text { is a real representation, } \\
0, & \text { if } \boldsymbol{r}_{\boldsymbol{i}} \text { is a complex representation, } \\
-1, & \text { if } \boldsymbol{r}_{i} \text { is a pseudo-real representation. }\end{cases}
\end{aligned}
$$

- Twisted Frobenius-Schur indicator

$$
\begin{aligned}
\mathrm{FS}_{u}\left(\boldsymbol{r}_{i}\right) & =\frac{1}{|G|} \sum_{g \in G}\left[\rho_{\boldsymbol{r}_{i}}(g)\right]_{\alpha \beta}\left[\rho_{\boldsymbol{r}_{i}}(u(g))\right]_{\beta \alpha} \\
\mathrm{FS}_{u}\left(\boldsymbol{r}_{i}\right) & = \begin{cases}+1 \forall i, & \text { if } u \text { is a BDA, } \\
+1 \text { or }-1 \quad \forall i, & \text { if } u \text { is class-inverting and involutory, } \\
\text { different from } \pm 1, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Three Types of Finite Groups

M.-C.C., M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner (2014)

A Novel Origin of CP Violation

- For discrete groups that do not have class-inverting, involutory automorphism, CP is generically broken by complex CG coefficients (Type I Group)
- Non-existence of such automorphism \Leftrightarrow Physical CP violation

CP Violation from Group Theory!

Discrete (flavor) symmetry \mathbf{G}

non-BDA, classinverting automorphism

Type II A groups $G_{\text {II A }}$:
there is a CP basis in which all CG's are real

Type II B groups $G_{\text {II B }}$:

there is no basis in which all CG's are real

Examples

- Type I: all odd order non-Abelian groups

group	$\mathbb{Z}_{5} \rtimes \mathbb{Z}_{4}$	T_{7}	$\Delta(27)$	$\mathbb{Z}_{9} \rtimes \mathbb{Z}_{3}$
SG	$(20,3)$	$(21,1)$	$(27,3)$	$(27,4)$

- Type IIA: dihedral and all Abelian groups

group	S_{3}	Q_{8}	A_{4}	$\mathbb{Z}_{3} \rtimes \mathbb{Z}_{8}$	$\mathrm{~T}^{\prime}$	S_{4}	A_{5}
SG	$(6,1)$	$(8,4)$	$(12,3)$	$(24,1)$	$(24,3)$	$(24,12)$	$(60,5)$

- Type IIB

group	$\Sigma(72)$	$\left(\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{4}\right) \rtimes \mathbb{Z}_{4}$
SG	$(72,41)$	$(144,120)$

Novel Origin of CP (Time Reversal) Violation

complex CGs \Rightarrow CP symmetry cannot be defined for certain groups

CP Violation from Group Theory!

