Perspectives of

 multimessenger astrophysicsMauricio Bustamante

Niels Bohr Institute, University of Copenhagen

U N IVERSITY OF COPENHAGEN

VILLUM FONDEN

Gamma rays

Cosmic rays

The multi-messenger connection: a simple picture

$$
p+\mathrm{Y}_{\text {target }} \rightarrow \Delta^{+} \rightarrow \begin{cases}p+\pi^{0}, & \mathrm{Br}=2 / 3 \\ n+\pi^{+}, & \mathrm{Br}=1 / 3\end{cases}
$$

The multi-messenger connection: a simple picture

$$
\rightarrow \begin{cases}p+\pi^{0}, & \mathrm{Br}=2 / 3 \\ n+\pi^{+}, & \mathrm{Br}=1 / 3\end{cases}
$$

The multi-messenger connection: a simple picture

$\rightarrow \begin{cases}p+\pi^{0}, & \mathrm{Br}=2 / 3 \\ n+\pi^{+}, & \mathrm{Br}=1 / 3\end{cases}$

The multi-messenger connection: a simple picture

$$
\begin{aligned}
& \hat{p}^{+}+Y_{\text {target }} \rightarrow \Delta^{+} \rightarrow \begin{cases}p+\pi^{0}, & \mathrm{Br}=2 / 3 \\
n+\pi^{+}, & \mathrm{Br}=1 / 3\end{cases} \\
& \pi^{0} \rightarrow p+p \\
& \pi^{+} \rightarrow \mu^{+}+v_{\mu} \rightarrow v_{\mu} \mp e^{+}+v_{e}+v_{\mu} \\
& n \text { (escapes) } \rightarrow p+e^{-}+v_{e}^{-}
\end{aligned}
$$

The multi-messenger connection: a simple picture

$$
\begin{aligned}
& p+\mathrm{Y}_{\text {target }} \rightarrow \Delta^{+} \rightarrow\left\{\begin{array}{l}
p+\pi^{0}, \mathrm{Br}=2 / 3 \\
n+\pi^{+}, \mathrm{Br}=1 / 3
\end{array}\right. \\
& \pi^{0} \rightarrow p+p \\
& \pi^{+} \rightarrow \mu^{+}+v_{\mu} \rightarrow v_{\mu} \mp e^{+}+v_{e}+v_{\mu} \\
& n \text { (escapes) } \rightarrow p+e^{-}+v_{e}^{-}
\end{aligned}
$$

Neutrino energy = Proton energy / 20
Gamma-ray energy = Proton energy / 10

The multi-messenger connection: a simple picture

$$
\begin{aligned}
& p+\mathrm{Y}_{\text {target }} \rightarrow \Delta^{+} \rightarrow\left\{\begin{array}{l}
p+\pi^{0}, \mathrm{Br}=2 / 3 \\
n+\pi^{+}, \mathrm{Br}=1 / 3
\end{array}\right. \\
& \pi^{0} \rightarrow p+p \\
& \pi^{+} \rightarrow \mu^{+}+v_{\mu} \rightarrow v_{\mu} \mp e^{+}+v_{e}+v_{\mu} \\
& n \text { (escapes) } \rightarrow p+e^{-}+v_{e}^{-}
\end{aligned}
$$

$$
1 \mathrm{PeV} \quad 20 \mathrm{PeV}
$$

Neutrino energy = Proton energy / 20
Gamma-ray energy = Proton energy / 10

The multi-messenger connection: a simple picture

$$
\begin{aligned}
& p+\mathrm{Y}_{\text {target }} \rightarrow \Delta^{+} \rightarrow\left\{\begin{array}{l}
p+\pi^{0}, \mathrm{Br}=2 / 3 \\
n+\pi^{+}, \mathrm{Br}=1 / 3
\end{array}\right. \\
& \pi^{0} \rightarrow p+p \\
& \pi^{+} \rightarrow \mu^{+}+v_{\mu} \rightarrow v_{\mu} \mp e^{+}+v_{e}+v_{\mu} \\
& n \text { (escapes) } \rightarrow p+e^{-}+v_{e}^{-}
\end{aligned}
$$

$$
1 \mathrm{PeV} \quad 20 \mathrm{PeV}
$$

Neutrino energy = Proton energy / 20
Gamma-ray energy = Proton energy / 10

 optical

Gravitational waves

X-rays \& gamma rays

Ultra-high-energy cosmic rays

A story more than 100 years old

A story more than 100 years old

1896: radioactivity discovered (uranium, radium)

A story more than 100 years old

1896: radioactivity discovered (uranium, radium) 1911: cosmic rays discovered

A story more than 100 years old

 1896: radioactivity discovered (uranium, radium) 1911: cosmic rays discovered

1956: neutrino discovered

A story more than 100 years old

 1896: radioactivity discovered (uranium, radium) 1911: cosmic rays discovered

1962: ultra-high-energy CRs 1956: neutrino discovered

A story more than 100 years old

 1896: radioactivity discovered (uranium, radium) 1911: cosmic rays discovered

2013: high-energy neutrinos 1962: ultra-high-energy CRs 1956: neutrino discovered

A story more than 100 years old

1896: radioactivity discovered (uranium, radium) 1911: cosmic rays discovered

2013: high-energy neutrinos 1962: ultra-high-energy CRs
1956: neutrino discovered

A story more than 100 years old

1896: radioactivitv discovered (uranium. radium) 1911• cosmic rays discovered
These are the most energetic particles in the known Universe

Where do they come from?

2013: high-energy neutrinos 1962: ultra-high-energy CRs

1956: neutrino discovered

Cosmic rays discovered

The state at the beginning of the $20^{\text {th }}$ century:
(1) ambient radiation was already known to exist
(2) believed to be mainly coming from the ground

Problem: they had measured only up to $\sim 1 \mathrm{~km}$ of altitude

Physics is a risky business

Victor Hess - 1911-1913, balloon flights up to 5.3 km

Physics is a risky business

Victor Hess - 1911-1913, balloon flights up to 5.3 km

"Unknown penetrating radiation" $=$ cosmic rays
... and that's one way to get a Nobel Prize in Physics

The cosmic ray spectrum at Earth

\leftarrow Less energetic More energetic \rightarrow

The cosmic ray spectrum at Earth

\leftarrow Less energetic More energetic \rightarrow

The cosmic ray spectrum at Earth

\leftarrow Less energetic More energetic \rightarrow

So what are cosmic rays?

Low energies: from the Sun - mostly electrons + protons

Higher energies: from supernovae inside the Milky Way

- protons and nuclei

Highest energies: from beyond the Milky Way

- protons + heavier nuclei

So what are cosmic rays?

> Low energies: from the Sun
> - mostly electrons + protons

Higher energies: from supernovae inside the Milky Way

- protons and nuclei

We will talk about these

Highest energies: from beyond the Milky Way

- protons + heavier nuclei

The UHECR all-particle spectrum

What are they?

Protons and nuclei with energies above $10^{17} \mathrm{eV}$

Is that a lot?

Yes.

$10^{5}-10^{8}$ times higher than LHC protons
A $10^{20}-\mathrm{eV}$ proton has the kinetic energy of a kicked football
We know no particles more energetic than UHECRs

So what's making them?

Good question. We don't know.

Whatever it is, it is one of the most violent processes in the Universe
(Ok, fine: extragalactic non-thermal astrophysical sources that act as cosmic particle accelerators)

Why is it so hard?

UHECRs don't travel in straight lines

 (the Universe is magnetized)$$
+
$$

UHECRs are rare

(the Universe is opaque to them)

Are we getting closer?

Yes.
We detect a growing number of UHECRs and
we can use neutrinos, too
(more on this later)

- $z=0$

At production:
Each source injects
UHECRs

Redshift
 UHECR sources distributed in redshift

At production

Redshift

 UHECR sources distributed in redshift

During propagation

At production

Redshift
 UHECR sources distributed in redshift

During propagation

Redshift
 UHECR sources distributed in redshift

During propagation

UHECR production

UHECR sources are messy

Man-made accelerators

Acceleration
E.m. fields

Beam dumps

In vacuum
Ordered

Precisely regulated

Astrophysical accelerators

downstream \rightarrow upstream

downstream \leftarrow upstream

In a medium
Messy
Fully unregulated

Astrophysical accelerators inevitably make high-energy secondaries

How are cosmic rays made?

How are cosmic rays made?

How are cosmic rays made?

How are cosmic rays made?

How are cosmic rays made?

How are cosmic rays made?

$$
1 \text { : } 1
$$

How are cosmic rays made?

How are cosmic rays made?

Electron

Fermi acceleration

Upstream to downstream
Charged particle

Downstream to upstream
In each crossing, the particle gains energy
$\Delta E \propto v_{\text {shock }}$

Average energy of a particle after one crossing: $E=k E_{0}$
Probability that the particle remains in the acceleration region after one crossing: P
After n collisions, $N=N_{0} P^{n}$ particle remain, with energy $E=E_{0} k^{n}$
Energy spectrum: $N(E) d E \propto E^{-1+\frac{\ln P}{\ln k}} d E$
$\left\langle\frac{\Delta E}{E}\right\rangle=\frac{4}{3}\left(\frac{v}{c}\right)$ and $P=1-P_{\mathrm{esc}}=1-\frac{4}{3}\left(\frac{v}{c}\right) \Rightarrow N(E) d E \propto E^{-2} d E$

Hillas criterion

A necessary condition to accelerate charged particles is confinement within the acceleration region.

Charged particle (Ze)

Confinement holds until
Larmor radius $\left(R_{L}\right)=$ Size of region (R)

$$
\begin{gathered}
\frac{E_{\max }}{Z e B}=\beta \Gamma R \\
\Rightarrow E_{\max }=\eta^{-1} \beta \Gamma Z e B R
\end{gathered}
$$

Hillas criterion

A necessary condition to accelerate charged particles is confinement within the acceleration region

Confinement holds until
Larmor radius $\left(R_{L}\right)=$ Size of region (R)

$$
\begin{gathered}
\frac{E_{\max }}{Z e B}=\beta \Gamma R \\
\Rightarrow E_{\max }=\eta^{-1} \beta \Gamma Z e B R
\end{gathered}
$$

Hillas criterion

A necessary condition to accelerate charged particles is confinement within the acceleration region

Confinement holds until
Larmor radius $\left(R_{L}\right)=$ Size of region (R)

$$
\begin{gathered}
\frac{E_{\max }}{Z e B}=\beta \Gamma R \\
\Rightarrow E_{\max }=\eta^{-1} \beta \Gamma Z e B R
\end{gathered}
$$

UHECR propagation

Calculating the UHECR flux at Earth

- $z=0$

At production:
Each source injects
UHECRs

Redshift
UHECR sources distributed in redshift (e.g., as star-formation rate)

At production:
Each source injects
UHECRs

Redshift

UHECR sources distributed in redshift (e.g., as star-formation rate)

During propagation:
UHECRs deflected by extragalactic and Galactic magnetic fields

At production: Each source injects UHECRs

UHE $p+$ nuclei

UHECR sources distributed in redshift (e.g., as star-formation rate)

During propagation:
UHECRs deflected by extragalactic and Galactic
magnetic fields
At production:
Each source injects
UHECRs

During propagation:
UHECRs lose energy and photodisintegrate by interacting with cosmic photon backgrounds
Energy loss by pair production

UHECR sources distributed in redshift (e.g., as star-formation rate)

During propagation:
UHECRs deflected by extragalactic and Galactic magnetic fields

Detection:
UHECRs detected at Earth
At production:
Each source injects
UHECRs

Calculating the UHECR flux at Earth

Comoving number density of protons $\left(\mathrm{GeV}^{-1} \mathrm{~cm}^{-3}\right): Y_{p}(E, z)=a^{3}(z) n_{p}(E, z)=\frac{1}{(1+z)^{3}} n_{p}(E, z)$

Calculating the UHECR flux at Earth

Comoving number density of protons $\left(\mathrm{GeV}^{-1} \mathrm{~cm}^{-3}\right): Y_{p}(E, z)=a^{3}(z) n_{p}(E, z)=\frac{1}{(1+z)^{3}} n_{p}(E, z)$
Solve a propagation equation:

$$
\dot{Y}_{p}=\partial_{E}\left(H E Y_{p}\right)+\partial_{E}\left(b_{e^{+} e^{-}} Y_{p}\right)+\partial_{E}\left(b_{p \gamma} Y_{p}\right)+\mathcal{L}_{\mathrm{CR}}
$$

Calculating the UHECR flux at Earth

Comoving number density of protons $\left(\mathrm{GeV}^{-1} \mathrm{~cm}^{-3}\right): Y_{p}(E, z)=a^{3}(z) n_{p}(E, z)=\frac{1}{(1+z)^{3}} n_{p}(E, z)$
Solve a propagation equation:

$$
\dot{Y}_{p}=\underbrace{\partial_{E}\left(H E Y_{p}\right)}+\partial_{E}\left(b_{e^{+} e^{-}} Y_{p}\right)+\partial_{E}\left(b_{p \gamma} Y_{p}\right)+\mathcal{L}_{\mathrm{CR}}
$$

$\begin{aligned} & \text { Energy loss due to adiabatic } \\ & \text { cosmological expansion }\end{aligned}$

Calculating the UHECR flux at Earth

Comoving number density of protons $\left(\mathrm{GeV}^{-1} \mathrm{~cm}^{-3}\right): Y_{p}(E, z)=a^{3}(z) n_{p}(E, z)=\frac{1}{(1+z)^{3}} n_{p}(E, z)$
Solve a propagation equation:
Energy loss rates: $b \equiv-\frac{d E}{d t}$

$$
\dot{Y}_{p}=\underbrace{\partial_{E}\left(H E Y_{p}\right)}+\partial_{E}\left(b_{e^{+} e^{-}} Y_{p}\right)+\partial_{E}\left(b_{p \gamma} Y_{p}\right)+\mathcal{L}_{\mathrm{CR}}
$$

Energy loss due to adiabatic cosmological expansion

Calculating the UHECR flux at Earth

Comoving number density of protons $\left(\mathrm{GeV}^{-1} \mathrm{~cm}^{-3}\right): Y_{p}(E, z)=a^{3}(z) n_{p}(E, z)=\frac{1}{(1+z)^{3}} n_{p}(E, z)$
Solve a propagation equation:
Energy loss rates: $b \equiv-\frac{d E}{d t}$

Energy loss due to adiabatic cosmological expansion

Energy loss due to pair production:

$$
p+\gamma \rightarrow p+e^{+}+e^{-}
$$

Calculating the UHECR flux at Earth

Comoving number density of protons $\left(\mathrm{GeV}^{-1} \mathrm{~cm}^{-3}\right): Y_{p}(E, z)=a^{3}(z) n_{p}(E, z)=\frac{1}{(1+z)^{3}} n_{p}(E, z)$
Solve a propagation equation:
Energy loss rates: $b \equiv-\frac{d E}{d t}$

Calculating the UHECR flux at Earth

Comoving number density of protons $\left(\mathrm{GeV}^{-1} \mathrm{~cm}^{-3}\right): Y_{p}(E, z)=a^{3}(z) n_{p}(E, z)=\frac{1}{(1+z)^{3}} n_{p}(E, z)$
Solve a propagation equation:
Energy loss rates: $b \equiv-\frac{d E}{d t}$

Energy loss due to adiabatic cosmological expansion

Energy loss due to pair production:

$$
p+\gamma \rightarrow p+e^{+}+e^{-}
$$

Energy loss due to photohadronic int.:

$$
\begin{gathered}
p+\gamma \rightarrow p+\pi^{0} \\
p+\gamma \rightarrow n+\pi^{+} \\
+ \text {other process } \\
+n \text { beta-decay into } p
\end{gathered}
$$

er er er

Cosmic-ray injection
by UHECR sources

Calculating the UHECR flux at Earth

Comoving number density of protons $\left(\mathrm{GeV}^{-1} \mathrm{~cm}^{-3}\right): Y_{p}(E, z)=a^{3}(z) n_{p}(E, z)=\frac{1}{(1+z)^{3}} n_{p}(E, z)$
Solve a propagation equation:

$$
\dot{Y}_{p}=\partial_{E}\left(H E Y_{p}\right)+\partial_{E}\left(b_{e^{+} e^{-}} Y_{p}\right)+\partial_{E}\left(b_{p \gamma} Y_{p}\right)+\mathcal{L}_{\mathrm{CR}}
$$

Recast in terms of redshift using

$$
\frac{d z}{d t}=-(1+z) H(z)
$$

with Hubble parameter

$$
H(z)=H_{0} \sqrt{\Omega_{m}(1+z)^{3}+\Omega_{\Lambda}}
$$

Calculating the UHECR flux at Earth

Comoving number density of protons $\left(\mathrm{GeV}^{-1} \mathrm{~cm}^{-3}\right): Y_{p}(E, z)=a^{3}(z) n_{p}(E, z)=\frac{1}{(1+z)^{3}} n_{p}(E, z)$
Solve a propagation equation:

$$
\begin{gathered}
\dot{Y}_{p}=\partial_{E}\left(H E Y_{p}\right)+\partial_{E}\left(b_{e^{+} e^{-}} Y_{p}\right)+\partial_{E}\left(b_{p \gamma} Y_{p}\right)+\mathcal{L}_{\mathrm{CR}} \\
\text { Recast in terms of redshift using } \\
\frac{d z}{d t}=-(1+z) H(z) \\
\text { with Hubble parameter } \\
H(z)=H_{0} \sqrt{\Omega_{m}(1+z)^{3}+\Omega_{\Lambda}} \\
\partial_{z} Y_{p}(E, z)=\frac{-1}{(1+z) H(z)}\left\{\partial_{E}\left(H(z) E Y_{p}(E, z)\right)+\partial_{E}\left(b_{e^{+} e^{-}}(E, z) Y_{p}(E, z)\right)\right. \\
\left.+\partial_{E}\left(b_{p \gamma}(E, z) Y_{p}(E, z)\right)+\mathcal{L}_{\mathrm{CR}}(E, z)\right\}
\end{gathered}
$$

Calculating the UHECR flux at Earth

Comoving number density of protons $\left(\mathrm{GeV}^{-1} \mathrm{~cm}^{-3}\right): Y_{p}(E, z)=a^{3}(z) n_{p}(E, z)=\frac{1}{(1+z)^{3}} n_{p}(E, z)$
Solve a propagation equation:

$$
\dot{Y}_{p}=\partial_{E}\left(H E Y_{p}\right)+\partial_{E}\left(b_{e^{+} e^{-}} Y_{p}\right)+\partial_{E}\left(b_{p \gamma} Y_{p}\right)+\mathcal{L}_{\mathrm{CR}}
$$

Recast in terms of redshift using

$$
\frac{d z}{d t}=-(1+z) H(z)
$$

with Hubble parameter

$$
H(z)=H_{0} \sqrt{\Omega_{m}(1+z)^{3}+\Omega_{\Lambda}}
$$

$$
\begin{aligned}
& \partial_{z} Y_{p}(E, z)=\frac{-1}{(1+z) H(z)}\left\{\partial_{E}\left(H(z) E Y_{p}(E, z)\right)+\partial_{E}\left(b_{e^{+} e^{-}}(E, z) Y_{p}(E, z)\right)\right. \\
&\left.+\partial_{E}\left(b_{p \gamma}(E, z) Y_{p}(E, z)\right)+\mathcal{L}_{\mathrm{CR}}(E, z)\right\}
\end{aligned}
$$

Calculating the UHECR flux at Earth

$$
\begin{gathered}
\partial_{z} Y_{p}(E, z)=\frac{-1}{(1+z) H(z)}\left\{\partial_{E}\left(H(z) E Y_{p}(E, z)\right)+\partial_{E}\left(b_{e^{+} e^{-}}(E, z) Y_{p}(E, z)\right)\right. \\
\left.+\partial_{E}\left(b_{p \gamma}(E, z) Y_{p}(E, z)\right)+\mathcal{L}_{\mathrm{CR}}(E, z)\right\}
\end{gathered}
$$

Cosmic-ray injection by UHECR sources

Each source injects UHECRs with a spectrum $\left(\mathrm{GeV}^{-1} \mathrm{~s}^{-1}\right)$

$$
Q_{\mathrm{CR}}(E) \propto E^{-\gamma} e^{-E / E_{\max }}
$$

Calculating the UHECR flux at Earth

$$
\begin{gathered}
\partial_{z} Y_{p}(E, z)=\frac{-1}{(1+z) H(z)}\left\{\partial_{E}\left(H(z) E Y_{p}(E, z)\right)+\partial_{E}\left(b_{e^{+} e^{-}}(E, z) Y_{p}(E, z)\right)\right. \\
\left.+\partial_{E}\left(b_{p \gamma}(E, z) Y_{p}(E, z)\right)+\mathcal{L}_{\mathrm{CR}}(E, z)\right\}
\end{gathered}
$$

Adiabatic cosmological expansion

$$
\text { Energy at Earth }=\frac{\text { Energy at production }}{1+z}
$$

Calculating the UHECR flux at Earth

$$
\begin{aligned}
& \partial_{z} Y_{p}(E, z)=\frac{-1}{(1+z) H(z)}\left\{\partial_{E}\left(H(z) E Y_{p}(E, z)\right)+\partial_{E}\left(b_{e^{+} e^{-}}(E, z) Y_{p}(E, z)\right)\right. \\
&\left.+\partial_{E}\left(b_{p \gamma}(E, z) Y_{p}(E, z)\right)+\mathcal{L}_{\mathrm{CR}}(E, z)\right\}
\end{aligned}
$$

Interaction with cosmological backgrounds (pair production + photohadronic)

$$
p+\gamma \rightarrow \Delta
$$

Energy threshold to produce a Δ (1232) resonance:

Optical/UV emission from stars, reprocessed into infrared by dust

$$
p_{p}+p_{\gamma}=p_{\Delta}
$$

Calculating the UHECR flux at Earth

2

At each energy, the energy loss length is dominated by the fastest energy-loss process

Calculating the UHECR flux at Earth

The Universe is opaque to UHECRs

Photohadronic processes:
$p+\gamma \rightarrow \Delta \rightarrow\left\{\begin{array}{l}\begin{array}{l}\text { • } \gamma+\gamma \\ p+\pi^{0}\end{array} \\ n+\pi^{+} \\ \left\lfloor\nu_{\mu}+\bar{v}_{\mu}+v_{\mathrm{e}}+e^{+}\right.\end{array}\right.$
Pair production:
$p+\gamma \rightarrow p+e^{-}+e^{+}$
Greisen-Zatsepin-Kuzmin (GZK) cut-off:

$$
E_{p} \approx \frac{0.16 \mathrm{GeV}^{2}}{0.66 \mathrm{meV}} \approx 2 \cdot 10^{11} \mathrm{GeV}
$$

(Assuming only photohadronic interaction)
Accounting also for pair production and CMB width:

$$
E_{p} \approx 5 \cdot 10^{10} \mathrm{GeV}
$$

Target photon spectra (at $z=0$):
CMB: Microwave (black body, <є> ~ 0.66 meV)

$$
n_{\mathrm{Y}}(z)=(1+z)^{3} n_{\mathrm{Y}}(z=0)(\text { exact only for } \mathrm{CMB})
$$

The Universe is opaque to UHECRs

Photohadronic processes:

Pair production:
$p+\gamma \rightarrow p+e^{-}+e^{+}$
Greisen-Zatsepin-Kuzmin (GZK) cut-off:

$$
E_{p} \approx \frac{0.16 \mathrm{GeV}^{2}}{0.66 \mathrm{meV}} \approx 2 \cdot 10^{11} \mathrm{GeV}
$$

(Assuming only photohadronic interaction)
Accounting also for pair production and CMB width:

$$
E_{p} \approx 5 \cdot 10^{10} \mathrm{GeV}
$$

Mean free path:

$$
\begin{aligned}
\left(n_{\gamma}\langle\sigma\rangle_{p \gamma}\right)^{-1}= & \left(413 \mathrm{~cm}^{-3} \times 200 \mu \text { barn }\right)^{-1} \\
& \approx 10^{25} \mathrm{~cm} \\
& \approx 4 \mathrm{Mpc}
\end{aligned}
$$

Energy-loss scale:

$$
\begin{aligned}
L & =(E / \Delta E)\left(n_{\gamma}\langle\sigma\rangle_{p \gamma}\right)^{-1} \\
& \approx(1 / 0.2) \times 4 \mathrm{Mpc} \\
& \approx 20 \mathrm{Mpc}
\end{aligned}
$$

A more detailed calculation yields

$$
L_{\mathrm{GZK}} \approx 100 \mathrm{Mpc}
$$

The Universe is opaque to UHECRs

Photohadronic processes:
$p+\gamma \rightarrow \Delta \rightarrow\left\{\begin{array}{l}\begin{array}{l}\text { • } \gamma+\gamma \\ p+\pi^{0} \\ n+\pi^{+} \\ \hookrightarrow v_{\mu}+\bar{v}_{\mu}+v_{e}+e^{+}\end{array}\end{array}\right.$
Pair production:
$p+\gamma \rightarrow p+e^{-}+e^{+}$
Greisen-Zatsepin-Kuzmin (GZK) cut-off:

$$
E_{p} \approx \frac{0.16 \mathrm{GeV}^{2}}{0.66 \mathrm{meV}} \approx 2 \cdot 10^{11} \mathrm{GeV}
$$

(Assuming only photohadronic interaction)
Accounting also for pair production and CMB width

$$
E_{p} \approx 5 \cdot 10^{10} \mathrm{GeV}
$$

[^0]

The Universe is also opaque to PeV gamma rays

Pair production:
$\gamma_{\text {astro }}+\gamma_{\text {cosmo }} \rightarrow e^{-}+e^{+}$
Inverse Compton scattering:

$$
e^{ \pm}+\gamma_{\text {cosmo }} \rightarrow e^{ \pm}+\gamma
$$

PeV gamma rays cascade down to $\mathrm{MeV}-\mathrm{GeV}$:

Calculating the UHECR flux at Earth

Putting it all together...

$$
\begin{gathered}
\partial_{z} Y_{p}(E, z)=\frac{-1}{(1+z) H(z)}\left\{\partial_{E}\left(H(z) E Y_{p}(E, z)\right)+\partial_{E}\left(b_{e^{+} e^{-}}(E, z) Y_{p}(E, z)\right)\right. \\
\left.+\partial_{E}\left(b_{p \gamma}(E, z) Y_{p}(E, z)\right)+\mathcal{L}_{\mathrm{CR}}(E, z)\right\}
\end{gathered}
$$

Diffuse UHECR proton flux at Earth $\left(\mathrm{GeV}^{-1} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}\right)$:

$$
J_{p}(E)=\frac{c}{4 \pi} n_{p}(E, z=0)
$$

This factor converts density to flux

Calculating the UHECR flux at Earth

Old UHECR data (just as example)

Calculating the UHECR flux at Earth

Compare our predicted flux to the measured flux:

Minimize the function with respect to $J_{p, 0}$ and δ_{E}

Note: This is a simplified setup; in reality, many flux parameters are jointly varied

Calculating the UHECR flux at Earth

Compare our predicted flux to the measured flux:

Minimize the function with respect to $J_{p, 0}$ and δ_{E}

Note: This is a simplified setup; in reality, many flux parameters are jointly varied

Calculating the UHECR flux at Earth

The UHECR all-particle spectrum

The UHECR all-particle spectrum

The UHECR all-particle spectrum

The UHECR all-particle spectrum

The UHECR all-particle spectrum

The UHECR all-particle spectrum

The UHECR all-particle spectrum

The UHECR all-particle spectrum

The UHECR all-particle spectrum

The UHECR all-particle spectrum - more features!

The UHECR all-particle spectrum - more features!
 $\ln (10) \frac{4 \pi}{c} E^{2} J(E)$

15 years of Auger data (2004-2019)!
$\sim 215 \mathrm{k}$ events above $2.5 \times 10^{18} \mathrm{eV}$

Use hybrid events detected by surface + fluorescence detectors to calibrate -Allows us to measure energies of other events robustly

CR luminosity density above $5 \times 10^{18} \mathrm{eV}$:

$$
6 \times 10^{44} \mathrm{erg} \mathrm{Mpc} \mathrm{Mr}^{-1}
$$

(could be AGN or starburst galaxies)

Luminosity density of UHECR sources

Luminosity density of UHECR sources

Two complementary criteria to constrain potential UHECR source classes-

Luminosity density of UHECR sources

Two complementary criteria to constrain potential UHECR source classes-

$$
z=0
$$

UHECR sources distributed in redshift (e.g., as star-formation rate)

During propagation:
UHECRs deflected by extragalactic and Galactic

What about the cosmogenic neutrinos?

Co-evolve UHECRs and cosmogenic neutrinos:

UHECRs: $\quad \partial_{z} Y_{p}(E, z)=\frac{-1}{(1+z) H(z)}\left\{\partial_{E}\left(H(z) E Y_{p}(E, z)\right)+\partial_{E}\left(b_{e^{+} e^{-}}(E, z) Y_{p}(E, z)\right)\right.$ $\left.+\partial_{E}\left(b_{p \gamma}(E, z) Y_{p}(E, z)\right)+\mathcal{L}_{\mathrm{CR}}(E, z)\right\}$
(

Neutrinos: $\partial_{z} Y_{\nu}(E, z)=\frac{-1}{(1+z) H(z)}\left\{\partial_{E}\left(H(z) E Y_{\nu}(E, z)\right)+\mathcal{L}_{\nu}(E, z)\right\}$

Note: We can propagate gamma rays by adding an additional equation for them

Cosmogenic neutrinos

The position of the v bump is determined by the Δ-resonance production threshold,

$$
E_{p} E_{\gamma} \approx 0.2 \mathrm{GeV}^{2}
$$

and the relation between neutrino energy and proton energy,

$$
E_{\nu} \approx E_{p} / 20 .
$$

So the neutrino spectrum peaks at

$$
E_{\nu} \approx \frac{0.01 \mathrm{GeV}}{E_{\gamma} / \mathrm{GeV}}
$$

Let's put this to test

Cosmogenic neutrinos

Photon backgrounds

Position of the v bump from $p \gamma$: $E_{\nu} \approx \frac{0.01 \mathrm{GeV}}{E_{\gamma} / \mathrm{GeV}}$

Cosmogenic neutrinos

$$
\begin{aligned}
& \text { IceCube } 2010-2012 \\
& \text { Photon backgrounds } \\
& \text { Position of the } v \\
& \text { bump from } p \gamma \text { : } \\
& E_{\nu} \approx \frac{0.01 \mathrm{GeV}}{E_{\gamma} / \mathrm{GeV}} \\
& v \text { from } \mathrm{CMB}: E_{\nu} \approx \frac{0.01 \mathrm{GeV}}{10^{-12}}=10^{10} \mathrm{GeV}
\end{aligned}
$$

Cosmogenic neutrinos

Photon backgrounds

v from CIB:

$$
\log \left(\frac{E_{0}}{\mathrm{GeV}}\right)
$$

Cosmogenic neutrinos

Photon backgrounds

Cosmogenic neutrinos

$$
\begin{aligned}
& \text { (10 } \\
& \text { Why are } v \text { from } n \text { decay lower-energy? } \\
& \text { The } n \text { and } p \text { mass } \\
& \text { are very similar ... } \\
& \text {... so there is little } \\
& \text { energy left for } e, v
\end{aligned}
$$

Cosmogenic neutrinos

Cosmogenic v

Cosmogenic neutrinos

Cosmogenic v

Cosmogenic neutrinos-they come from afar

UHECRs cannot travel farther than the GZK horizon ($\sim 100 \mathrm{Mpc}$)

UHECRs: no cosmogenic neutrinos means no pure protons

Use more recent data:
UHECR flux measured by Telescope Array

Assume pure-proton flux:
UHECR injected spectrum is

$$
Q_{\mathrm{CR}}(E) \propto E^{-\gamma} e^{-E / E_{\max }}
$$

3D
Scan

UHECRs: no cosmogenic neutrinos means no pure protons

UHECRs (pure protons)

UHECRs: no cosmogenic neutrinos means no pure protons

UHECRs: no cosmogenic neutrinos means no pure protons

Extragalactic $B \sim \mathrm{nG}$ (?)

\xrightarrow{O}

Galactic $B \sim \mu \mathrm{G}$

Extragalactic $B \sim \mathrm{nG}(?)$

Larger charge bends more

$$
\delta_{\mathrm{rms}} \approx 0.8^{\circ} Z\left(\frac{10 \mathrm{EeV}}{E}\right)\left(\frac{L}{10 \mathrm{Mpc}}\right)^{1 / 2}\left(\frac{L_{c}}{\mathrm{Mpc}}\right)^{1 / 2}\left(\frac{B_{\mathrm{rms}}}{n \mathrm{G}}\right)
$$

Extragalactic $B \sim \mathrm{nG}$ (?)

Larger charge bends more
Longer trajectories bend more
Magnetic field intensity

$$
\delta_{\mathrm{rms}} \approx 0.8^{\circ} Z\left(\frac{10 \mathrm{EeV}}{E}\right)\left(\frac{L}{10 \mathrm{Mpc}}\right)^{1 / 2}\left(\frac{L_{c}}{\mathrm{Mpc}}\right)^{1 / 2}\left(\frac{B_{\mathrm{rms}}}{n \mathrm{G}}\right)
$$

Larger charge bends more

Scattering on magnetic fields

Faraday rotation: Polarization of e.m. waves by magnetized plasma

$$
\Delta \Psi=\mathrm{RM} \cdot \lambda^{2}
$$

Scattering on magnetic fields

Galactic $B \sim \mu \mathrm{G}$

Galactic deflections of $60-\mathrm{EeV}$ protons

Practical matters

How to compute the UHECR spectrum, mass composition, anisotropy?
Write your own code from scratch: Great for learning, gets complicated fast
PriNCe: Fast solver of the transport equation of UHECRs + cosmogenic neutrinos github.com/joheinze/PriNCe

SimProp: Original Monte-Carlo propagator of UHECRs and secondaries, updated augeraq.sites.lngs.infn.it/SimProp

CRPropa: Widely used Monte-Carlo propagator of UHECRs, neutrinos, gamma rays, including magnetic deflection
crpropa.desy.de
Others: Hermes (arXiv:1305.4364), TransportCR (sourceforge.net), ...

UHECR detection

Space

Atmosphere

Space

Atmosphere

Space
p^{+}Incoming cosmic ray

Proton in the air

Atmosphere

Space

Atmosphere

Space

Atmosphere

Space

Atmosphere

Space p^{+}Incoming cosmic ray

Atmosphere

Space

Pion π^{+}

Atmosphere

Photons

Shower development in the atmosphere

Heitler model-simple, but illustrative:

Lower altitude

Shower development in the atmosphere

Heitler model-simple, but illustrative:

[^1]
Shower development in the atmosphere

Heitler model-simple, but illustrative:

[^2]
Shower development in the atmosphere

Heitler model-simple, but illustrative:

[^3]
Shower development in the atmosphere

Heitler model-simple, but illustrative:

[^4]
Shower development in the atmosphere

Heitler model-simple, but illustrative:

Shower development in the atmosphere

Heitler model-simple, but illustrative:

[^5]
Shower development in the atmosphere

Heitler model-simple, but illustrative:

$\begin{aligned} & \text { Lower altitude } \text { Each particle: } E_{C} \\ &(\approx 85 \mathrm{MeV} \text { in air })\end{aligned}$
Heitler, The Quantum Theory of Radiation, 1954

Shower development in the atmosphere

Heitler model-simple, but illustrative:

Higher altitude $E_{0}\{\gamma$

$$
\mathrm{n}=1
$$

Lower altitude

Each particle: E_{C}

$$
(\approx 85 \mathrm{MeV} \text { in air })
$$

The cascade reaches its maximum size $N=N_{\text {max }}$ when all particles have energy E_{C} so that

$$
E_{0}=E_{\mathrm{C}} N_{\max } .
$$

But $N_{\text {max }}=2^{n_{\mathrm{C}}}$, so

$$
n_{\mathrm{C}}=\ln \left(E_{0} / E_{\mathrm{C}}\right) / \ln 2
$$

And $X_{\text {max }}=n_{C} d$ is

$$
X_{\max }=\lambda_{\Gamma} \ln \left(E_{0} / E_{\mathrm{C}}\right)
$$

Shower development in the atmosphere

Heitler model-simple, but illustrative:

Shower development in the atmosphere

Heitler model-simple, but illustrative:

Shower development in the atmosphere

Heitler model-simple, but illustrative:

Shower development in the atmosphere

Heitler model-simple, but illustrative:

$$
\mathrm{n}=1
$$

$$
\mathrm{n}=3
$$

$$
\begin{gathered}
\text { After } n \text { lengths, } \\
\text { Number of } \pi^{+}: \\
N_{\pi}=N_{\mathrm{ch}}^{n} \\
\text { Total energy } \\
\text { in } \pi^{+}: \\
(2 / 3)^{n} E_{0} \\
\text { Per } \pi^{+}: \\
E_{\pi}=\frac{E_{0}}{\left(\frac{3}{2} N_{\mathrm{ch}}\right)^{n}}
\end{gathered}
$$

Each particle: E_{C}^{π}
Cascade development stops after n_{C} lengths, when the average pion energy E_{C} is such that the decay length of $\pi^{ \pm}$is $<\lambda_{I}$

Shower development in the atmosphere

Heitler model-simple, but illustrative:

Shower development in the atmosphere

Heitler model-simple, but illustrative:

Shower development in the atmosphere Inferring the primary UHECR energy:

Shower development in the atmosphere
 Inferring the primary UHECR energy:

Shower development in the atmosphere

Inferring the primary UHECR energy:

Pierre Auger Observatory (Malargüe, Argentina)

Pierre Auger Observatory (Malargüe, Argentina)

Shower development in the atmosphere

Inferring $X_{\max }$:

Proton-air interaction length:

Average target mass of air (needs model of density profile of atmosphere)

Shower development in the atmosphere

Shower development in the atmosphere

Inferring $X_{\max }$:

Higher altitude

Proton-air interaction length:

$$
\lambda_{\mathrm{I}}=\sigma_{p-\mathrm{air}}\left\langle m_{\text {air }}\right\rangle
$$

Shower development in the atmosphere

Inferring $X_{\text {max }}$:

Shower development in the atmosphere

Inferring $X_{\text {max }}$:

Proton-air interaction length:

$$
\lambda_{\mathrm{I}}=\sigma_{p-\mathrm{air}}\left\langle m_{\text {air }}\right\rangle
$$

Depth of first interaction:

$$
X_{1}=\lambda_{\mathrm{I}} \ln 2
$$

Each photon from π^{0} decay starts a shower of energy $\left(E_{0} / 3\right) / N_{\mathrm{ch}}$

Shower development in the atmosphere

Inferring $X_{\text {max }}$:

Proton-air interaction length:

$$
\lambda_{\mathrm{I}}=\sigma_{p-\mathrm{air}}\left\langle m_{\text {air }}\right\rangle
$$

Depth of first interaction:

$$
X_{1}=\lambda_{\mathrm{I}} \ln 2
$$

Each photon from π^{0} decay starts a shower of energy $\left(E_{0} / 3\right) / N_{\mathrm{ch}}$

Each e.m. shower reaches maximum at $\lambda_{\Gamma} \ln \left[E_{0} /\left(3 N_{\mathrm{ch}}\right) / E_{\mathrm{C}}^{e}\right]$

Shower development in the atmosphere

Inferring $X_{\text {max }}$:

Proton-air interaction length:

$$
\lambda_{\mathrm{I}}=\sigma_{p-\mathrm{air}}\left\langle m_{\text {air }}\right\rangle
$$

Depth of first interaction:

$$
X_{1}=\lambda_{\mathrm{I}} \ln 2
$$

Each photon from π^{0} decay starts a shower of energy $\left(E_{0} / 3\right) / N_{\mathrm{ch}}$

Each e.m. shower reaches maximum at $\lambda_{\Gamma} \ln \left[E_{0} /\left(3 N_{\mathrm{ch}}\right) / E_{\mathrm{C}}^{e}\right]$

Depth of maximum of the p-initiated shower:

$$
X_{\max }^{p}=X_{1}+\lambda_{\Gamma} \ln \left[E_{0} /\left(3 N_{\mathrm{ch}} E_{\mathrm{C}}^{e}\right)\right]
$$

Shower development in the atmosphere

Inferring $X_{\text {max }}$:

Proton-air interaction length:

$$
\lambda_{\mathrm{I}}=\sigma_{p-\mathrm{air}}\left\langle m_{\text {air }}\right\rangle
$$

Depth of first interaction:

$$
X_{1}=\lambda_{\mathrm{I}} \ln 2
$$

Each photon from π^{0} decay starts a shower of energy $\left(E_{0} / 3\right) / N_{\mathrm{ch}}$

Each e.m. shower reaches maximum at $\lambda_{\Gamma} \ln \left[E_{0} /\left(3 N_{\mathrm{ch}}\right) / E_{\mathrm{C}}^{e}\right]$

Large Depth of maximum of the p-initiated shower:

Lower altitude
Heitler, The Quantum Theory of Radiation, 1954 Matthews, Astropart. Phys. 2005

$X_{\max }$ and UHECR mass composition

These are general trends, but there are large variations due to systematic and statistical errors (also other experiments differ, e.g., Telescope Array)

UHECRs: more sophisticated models

Use more data:

Spectrum + mass composition ($X_{\max }$)
Five mass groups:
H, He, N, Si, Fe
Common maximum rigidity:
Max. rigidity is $R_{\max }=E_{\max } / Z$

$$
Q_{Z}(E) \propto E^{-\gamma} e^{-E /\left(Z R_{\max }\right)}
$$

Add nuclei photodisintegration:

During propagation, interaction of nuclei on CMB or EBL breaks them up,

$$
A+\gamma \rightarrow(A-1)+\gamma
$$

UHECRs: more sophisticated models

Use more data:
Spectrum + mass composition ($X_{\max }$)
Five mass groups:
$\mathrm{H}, \mathrm{He}, \mathrm{N}, \mathrm{Si}, \mathrm{Fe}$
Common maximum rigidity:
Max. rigidity is $R_{\text {max }}=E_{\text {max }} / Z$

$$
Q_{Z}(E) \propto E^{-\gamma} e^{-E /\left(Z R_{\max }\right)} \longleftarrow \text { "Peters cycle" }
$$

Add nuclei photodisintegration:

During propagation, interaction of nuclei on CMB or EBL breaks them up,

$$
A+\gamma \rightarrow(A-1)+\gamma
$$

UHECRs: more sophisticated models

Use more data:
Spectrum + mass composition ($X_{\max }$)
Five mass groups:
H, He, N, Si, Fe
Common maximum rigidity:
Max. rigidity is $R_{\max }=E_{\max } / Z$

$$
Q_{Z}(E) \propto E^{-\gamma} e^{-E /\left(Z R_{\max }\right)}
$$

Add nuclei photodisintegration:
During propagation, interaction of nuclei on CMB or EBL breaks them up,

$$
A+\gamma \rightarrow(A-1)+\gamma
$$

UHECRs: more sophisticated models

Use more data:

Spectrum + mass composition $\left(X_{\max }\right)$
Five mass groups:
H, He, N, Si, Fe
Common maximum rigidity:
Max. rigidity is $R_{\max }=E_{\max } / Z$

$$
Q_{Z}(E) \propto E^{-\gamma} e^{-E /\left(Z R_{\max }\right)} \longleftarrow \text { "Peters }
$$

Add nuclei photodisintegration:
During propagation, interaction of nuclei on CMB or EBL breaks them up,

$$
A+\gamma \rightarrow(A-1)+\gamma
$$

UHECRs: more sophisticated models

Use more data:
Spectrum + mass composition ($X_{\max }$)
Five mass groups:
$\mathrm{H}, \mathrm{He}, \mathrm{N}, \mathrm{Si}, \mathrm{Fe}$
Common maximum rigidity Max. rigidity is $R_{\max }=E_{\max } /$

Predicted flux is significantly smaller due to smaller $R_{\text {max }}$ and heavier composition

Cosmogenic neutrinos

Add nuclei photodisintegration:
During propagation, interaction of nuclei on CMB or EBL breaks them up,

$$
A+\gamma \rightarrow(A-1)+\gamma
$$

UHECR anisotropy

How do we know that UHECRs have an extragalactic origin?

1
Their energies are so large that their Larmor radius cannot be contained by the Milky Way

$$
R_{L}=\frac{E_{p}}{e B} \approx \frac{10^{18} \mathrm{eV}}{e \times 1 \mu \mathrm{G}} \gg 100 \mathrm{kpc}
$$

2 We can look at the distribution of arrival directions of UHECRs

UHECR anisotropy

Flux of UHECRs > 8 EeV (Auger, 12 years of data!):

UHECR anisotropy

Flux of UHECRs > 8 EeV (Auger, 12 years of data!):

UHECR anisotropy

Flux of UHECRs > 8 EeV (Auger, 12 years of data!):

UHECR anisotropy

Flux of UHECRs > 8 EeV (Auger, 12 years of data!):

[^0]: Greisen PRL 1966; Zatsepin \& Kuzmin, JETP 1966

[^1]: Lower altitude

[^2]: Lower altitude

[^3]: Lower altitude

[^4]: Lower altitude

[^5]: Lower altitude

