Perspectives of multimessenger astrophysics

Mauricio Bustamante

Niels Bohr Institute, University of Copenhagen

Invisibles23 School August 21–26, 2023

VILLUM FONDEN

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3\\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$

$$\pi^{0} \rightarrow \gamma + \gamma$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \nu_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$

$$n \text{ (escapes)} \rightarrow p + e^{-} + \nu_{e}^{-}$$

Neutrino energy = Proton energy / 20 Gamma-ray energy = Proton energy / 10

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$

$$\pi^{0} \rightarrow \gamma + \gamma$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \nu_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$

$$n \text{ (escapes)} \rightarrow p + e^{-} + \nu_{e}^{-}$$

1 PeV 20 PeV

Neutrino energy = Proton energy / 20 Gamma-ray energy = Proton energy / 10

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$

$$\pi^{0} \rightarrow \gamma + \gamma$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \nu_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$

$$n \text{ (escapes)} \rightarrow p + e^{-} + \nu_{e}^{-}$$

1 PeV 20 PeV

Neutrino energy = Proton energy / 20 Gamma-ray energy = Proton energy / 10

Gravitational waves Radio, infrared, optical X-rays & gamma rays Neutrinos

Ultra-high-energy cosmic rays

1896: radioactivity discovered (uranium, radium)

1896: radioactivity discovered (uranium, radium) **1911:** cosmic rays discovered

1896: radioactivity discovered (uranium, radium) **1911:** cosmic rays discovered Pierre Curie 1956: neutrino discovered

Cosmic rays discovered

The state at the beginning of the 20th century:

- (1) ambient radiation was already known to exist
- (2) believed to be mainly coming from the ground

Problem: they had measured *only* up to ~1 km of altitude

Physics is a risky business

Victor Hess – 1911-1913, balloon flights up to 5.3 km

Physics is a risky business

Victor Hess – 1911-1913, balloon flights up to 5.3 km

"Unknown penetrating radiation" = cosmic rays

... and that's one way to get a Nobel Prize in Physics

The cosmic ray spectrum at Earth

The cosmic ray spectrum at Earth

The cosmic ray spectrum at Earth

So what *are* cosmic rays?

Low energies: from the Sun
– mostly electrons + protons

Higher energies: from supernovae inside the Milky Way

protons and nuclei

Highest energies: from beyond the Milky Way – protons + heavier nuclei

So what *are* cosmic rays?

Low energies: from the Sun
– mostly electrons + protons

Higher energies: from supernovae inside the Milky Way

– protons and nuclei

We will talk about these

Highest energies: from beyond the Milky Way – protons + heavier nuclei

The UHECR all-particle spectrum

What are they?

Protons and nuclei with energies above 10¹⁷ eV

Is that a lot?

Yes.

10⁵–10⁸ times higher than LHC protons

A 10²⁰-eV <u>proton</u> has the kinetic energy of a kicked football

We know no particles more energetic than UHECRs

So what's making them?

Good question. We don't know.

Whatever it is, it is one of the most violent processes in the Universe

(Ok, fine: extragalactic non-thermal astrophysical sources that act as cosmic particle accelerators)

Why is it so hard?

UHECRs don't travel in straight lines (the Universe is magnetized)

+

UHECRs are rare (the Universe is opaque to them)

Are we getting closer?

Yes.

We detect a growing number of UHECRs and

we can use neutrinos, too (more on this later)

Redshift z = 0

At production:
Each source injects
UHECRs

At production

UHECR sources distributed in redshift

During propagation

UHECR sources distributed in redshift

During propagation

During propagation

UHECR production

UHECR sources are messy

Astrophysical accelerators inevitably make high-energy secondaries

Fermi acceleration

Central emitter

Upstream to downstream

Charged particle

Shock front

In each crossing, the particle gains energy

$$\Delta E \propto v_{\rm shock}$$

Downstream to upstream

Average energy of a particle after one crossing: $E = k E_0$

Probability that the particle remains in the acceleration region after one crossing: P

Relativistic outflow

After *n* collisions, $N = N_0 P^n$ particle remain, with energy $E = E_0 k^n$

Energy spectrum: $N(E)dE \propto E^{-1 + \frac{\ln P}{\ln k}} dE$

$$\left\langle \frac{\Delta E}{E} \right\rangle = \frac{4}{3} \left(\frac{v}{c} \right)$$
 and $P = 1 - P_{\rm esc} = 1 - \frac{4}{3} \left(\frac{v}{c} \right) \Rightarrow N(E) dE \propto E^{-2} dE$

Hillas criterion

A necessary condition to accelerate charged particles is confinement within the acceleration region.

Confinement holds until

Larmor radius (R_L) = Size of region (R)

$$rac{E_{
m max}}{ZeB}=eta\Gamma R$$

$$\Rightarrow E_{
m max}=\eta^{-1}eta\Gamma ZeBR$$
 Acceleration efficiency

Alves Batista et al. (inc. MB), Front. Astron. Space Sci. 2019

Hillas criterion

A necessary condition to accelerate charged particles is confinement within the acceleration region

Confinement holds until

Larmor radius (R_L) = Size of region (R)

$$\frac{E_{\text{max}}}{ZeB} = \beta \Gamma R$$

$$\Rightarrow E_{\text{max}} = \eta^{-1} \beta \Gamma ZeBR$$

Hillas, Ann. Rev. Astron. Astrophys. 1984

Alves Batista et al. (inc. MB), Front. Astron. Space Sci. 2019

Hillas criterion

But not sufficient!

A necessary condition to accelerate charged particles is confinement within the acceleration region

Confinement holds until

Larmor radius (R_L) = Size of region (R)

$$rac{E_{
m max}}{ZeB}=eta\Gamma R$$

$$\Rightarrow E_{
m max}=\eta^{-1}eta\Gamma ZeBR$$
Acceleration efficiency

Alves Batista et al. (inc. MB), Front. Astron. Space Sci. 2019

UHECR propagation

Calculating the UHECR flux at Earth

Redshift = 0

Redshift z = 0

At production:
Each source injects
UHECRs

During propagation:
UHECRs lose energy
and photodisintegrate
by interacting with cosmic
photon backgrounds

a: Scale factor n_p : Real number density

Comoving number density of protons (GeV⁻¹ cm⁻³): $Y_p(E,z) = a^3(z) n_p(E,z) = \frac{1}{(1+z)^3} n_p(E,z)$

a: Scale factor n_p : Real number density

Comoving number density of protons (GeV⁻¹ cm⁻³): $Y_p(E,z) = a^3(z)n_p(E,z) = \frac{1}{(1+z)^3}n_p(E,z)$

Solve a propagation equation:

$$\dot{Y}_p = \partial_E(HEY_p) + \partial_E(b_{e^+e^-}Y_p) + \partial_E(b_{p\gamma}Y_p) + \mathcal{L}_{CR}$$

a: Scale factor n_p : Real number density

Comoving number density of protons (GeV⁻¹ cm⁻³): $Y_p(E,z) = a^3(z)n_p(E,z) = \frac{1}{(1+z)^3}n_p(E,z)$

Solve a propagation equation:

$$\dot{Y}_p = \underbrace{\partial_E(HEY_p)}_{+} + \partial_E(b_{e^+e^-}Y_p) + \partial_E(b_{p\gamma}Y_p) + \mathcal{L}_{CR}$$

Energy loss due to adiabatic cosmological expansion

a: Scale factor n_v : Real number density

Comoving number density of protons (GeV⁻¹ cm⁻³): $Y_p(E,z) = a^3(z)n_p(E,z) = \frac{1}{(1+z)^3}n_p(E,z)$

Solve a propagation equation:

Energy loss rates:
$$b \equiv -\frac{dE}{dt}$$

equation: Energy loss rates:
$$b \equiv -\frac{dE}{dt}$$

$$\dot{Y}_p = \partial_E(HEY_p) + \partial_E(b_{e^+e^-}Y_p) + \partial_E(b_{p\gamma}Y_p) + \mathcal{L}_{\mathrm{CR}}$$

Energy loss due to adiabatic cosmological expansion

a: Scale factor n_p : Real number density

Comoving number density of protons (GeV⁻¹ cm⁻³): $Y_p(E,z) = a^3(z)n_p(E,z) = \frac{1}{(1+z)^3}n_p(E,z)$

Solve a propagation equation:

Energy loss rates:
$$b \equiv -\frac{dE}{dt}$$

$$\dot{Y}_p = \underbrace{\partial_E(HEY_p)}_{+} + \underbrace{\partial_E(b_{e^+e^-}Y_p)}_{+} + \underbrace{\partial_E(b_{p\gamma}Y_p)}_{+} + \underbrace{\mathcal{L}_{CR}}_{+}$$

Energy loss due to adiabatic cosmological expansion

Energy loss due to pair production:

$$p + \gamma \rightarrow p + e^+ + e^-$$

a: Scale factor n_p : Real number density

Comoving number density of protons (GeV⁻¹ cm⁻³): $Y_p(E,z) = a^3(z)n_p(E,z) = \frac{1}{(1+z)^3}n_p(E,z)$

Solve a propagation equation:

Energy loss rates:
$$b \equiv -\frac{dE}{dt}$$

$$\dot{Y}_p = \partial_E(HEY_p) + \partial_E(b_{e^+e^-}Y_p) + \partial_E(b_{p\gamma}Y_p) + \mathcal{L}_{CR}$$

Energy loss due to adiabatic cosmological expansion

Energy loss due to pair production:

$$p + \gamma \rightarrow p + e^+ + e^-$$

Energy loss due to photohadronic int.:

$$p + \gamma \rightarrow p + \pi^{0}$$

$$p + \gamma \rightarrow n + \pi^{+}$$
+ other process
+ *n* beta-decay into *p*

a: Scale factor n_p : Real number density

Comoving number density of protons (GeV⁻¹ cm⁻³): $Y_p(E,z) = a^3(z) n_p(E,z) = \frac{1}{(1+z)^3} n_p(E,z)$

Solve a propagation equation:

Energy loss rates:
$$b \equiv -\frac{dE}{dt}$$

$$\dot{Y}_p = \partial_E(HEY_p) + \partial_E(b_{e^+e^-}Y_p) + \partial_E(b_{p\gamma}Y_p) + \mathcal{L}_{CR}$$

Energy loss due to adiabatic cosmological expansion

Energy loss due to pair production:

$$p + \gamma \rightarrow p + e^+ + e^-$$

Energy loss due to photohadronic int.:

$$p + \gamma \rightarrow p + \pi^{0}$$

 $p + \gamma \rightarrow n + \pi^{+}$
+ other process
+ n beta-decay into p

Cosmic-ray injection by UHECR sources

a: Scale factor n_p : Real number density

Comoving number density of protons (GeV⁻¹ cm⁻³): $Y_p(E,z) = a^3(z)n_p(E,z) = \frac{1}{(1+z)^3}n_p(E,z)$

Solve a propagation equation:

$$\dot{Y}_p = \partial_E(HEY_p) + \partial_E(b_{e^+e^-}Y_p) + \partial_E(b_{p\gamma}Y_p) + \mathcal{L}_{CR}$$

Recast in terms of redshift using

$$\frac{dz}{dt} = -(1+z)H(z)$$

with Hubble parameter

$$H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}$$

a: Scale factor n_p : Real number density

Comoving number density of protons (GeV⁻¹ cm⁻³): $Y_p(E,z) = a^3(z)n_p(E,z) = \frac{1}{(1+z)^3}n_p(E,z)$

Solve a propagation equation:

$$\dot{Y}_p = \partial_E(HEY_p) + \partial_E(b_{e^+e^-}Y_p) + \partial_E(b_{p\gamma}Y_p) + \mathcal{L}_{CR}$$

Recast in terms of redshift using

$$\frac{dz}{dt} = -(1+z)H(z)$$

with Hubble parameter

$$H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}$$

$$\partial_z Y_p(E, z) = \frac{-1}{(1+z)H(z)} \left\{ \partial_E (H(z)EY_p(E, z)) + \partial_E (b_{e^+e^-}(E, z)Y_p(E, z)) + \partial_E (b_{p\gamma}(E, z)Y_p(E, z)) + \mathcal{L}_{CR}(E, z) \right\}$$

a: Scale factor n_p : Real number density

Comoving number density of protons (GeV⁻¹ cm⁻³): $Y_p(E,z) = a^3(z)n_p(E,z) = \frac{1}{(1+z)^3}n_p(E,z)$

Solve a propagation equation:

$$\dot{Y}_p = \partial_E(HEY_p) + \partial_E(b_{e^+e^-}Y_p) + \partial_E(b_{p\gamma}Y_p) + \mathcal{L}_{CR}$$

Recast in terms of redshift using

$$\frac{dz}{dt} = -(1+z)H(z)$$

with Hubble parameter

$$H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}$$

$$\begin{aligned} \mathcal{J}_z Y_p(E,z) &= \frac{-1}{(1+z)H(z)} \left\{ \partial_E(H(z)EY_p(E,z)) + \partial_E(b_{e^+e^-}(E,z)Y_p(E,z)) \right. \\ &\quad + \partial_E(b_{p\gamma}(E,z)Y_p(E,z)) + \mathcal{L}_{\mathrm{CR}}(E,z) \right\} \end{aligned}$$
 Evolve this equation from $z_{\mathrm{max}} \sim 4$ to Earth $(z=0)$

$$\partial_z Y_p(E, z) = \frac{-1}{(1+z)H(z)} \left\{ \partial_E (H(z)EY_p(E, z)) + \partial_E (b_{e^+e^-}(E, z)Y_p(E, z)) + \partial_E (b_{p\gamma}(E, z)Y_p(E, z)) + \mathcal{L}_{CR}(E, z) \right\}$$

Cosmic-ray injection by UHECR sources

Each source injects UHECRs with a spectrum (GeV⁻¹ s⁻¹)

 $Q_{\rm CR}(E) \propto E^{-\gamma} e^{-E/E_{\rm max}}$ $\mathcal{L}_{\rm CR} = Q_{\rm CR}(E(1+z))\mathcal{H}_{\rm CR}(z)$ \mathcal{H}

The number density of sources evolves with redshift (Mpc⁻³)

$$\partial_z Y_p(E, z) = \frac{-1}{(1+z)H(z)} \left\{ \partial_E (H(z)EY_p(E, z)) + \partial_E (b_{e^+e^-}(E, z)Y_p(E, z)) + \partial_E (b_{p\gamma}(E, z)Y_p(E, z)) + \mathcal{L}_{CR}(E, z) \right\}$$

Adiabatic cosmological expansion

Energy at Earth =
$$\frac{\text{Energy at production}}{1+z}$$

$$\partial_z Y_p(E, z) = \frac{-1}{(1+z)H(z)} \left\{ \partial_E (H(z)EY_p(E, z)) + \partial_E (b_{e^+e^-}(E, z)Y_p(E, z)) + \partial_E (b_{p\gamma}(E, z)Y_p(E, z)) + \mathcal{L}_{CR}(E, z) \right\}$$

Interaction with cosmological backgrounds (pair production + photohadronic)

2

At each energy, the energy loss length is dominated by the fastest energy-loss process

CIB number density is \ll CMB number density, so there are fewer UHECR interactions on CIB photons ($b_{\text{CIB}} \ll b_{\text{CMB}}$)

CIB number density is \ll CMB number density, so there are fewer UHECR interactions on CIB photons ($b_{\text{CIB}} \ll b_{\text{CMB}}$)

The Universe is opaque to UHECRs

Photohadronic processes:

$$p + \gamma \to \Delta \to \begin{cases} p + \pi^0 \\ n + \pi^+ \\ \downarrow \nu_{\mu} + \nu_{\mu} + \nu_{e} + e^+ \end{cases}$$

Pair production:

$$p + \gamma \rightarrow p + e^{-} + e^{+}$$

Greisen-Zatsepin-Kuzmin (GZK) cut-off:

$$E_p \approx \frac{0.16 \text{ GeV}^2}{0.66 \text{ meV}} \approx 2 \cdot 10^{11} \text{ GeV}$$

(Assuming only photohadronic interaction)

Accounting also for pair production and CMB width:

$$E_p \approx 5 \cdot 10^{10} \text{ GeV}$$

Target photon spectra (at z = 0):

CIB: optical (stars) + infrared (dust remission)

$$n_{v}(z) = (1+z)^{3} n_{v}(z=0)$$
 (exact only for CMB)

The Universe is opaque to UHECRs

Photohadronic processes:

$$p + \gamma \to \Delta \to \begin{cases} p + \pi^0 \\ n + \pi^+ \\ \downarrow \nu_{\mu} + \nu_{\mu} + \nu_{e} + e^+ \end{cases}$$

Pair production:

$$p + \gamma \rightarrow p + e^- + e^+$$

Greisen-Zatsepin-Kuzmin (GZK) cut-off:

$$E_p \approx \frac{0.16 \text{ GeV}^2}{0.66 \text{ meV}} \approx 2 \cdot 10^{11} \text{ GeV}$$

(Assuming only photohadronic interaction)

Accounting also for pair production and CMB width:

$$E_p \approx 5 \cdot 10^{10} \text{ GeV}$$

Mean free path:

$$(n_{\gamma} \langle \sigma \rangle_{p\gamma})^{-1} = (413 \text{ cm}^{-3} \times 200 \text{ µbarn})^{-1}$$

 $\approx 10^{25} \text{ cm}$
 $\approx 4 \text{ Mpc}$

Energy-loss scale:

$$L = (E/\Delta E)(n_{\gamma} \langle \sigma \rangle_{p\gamma})^{-1}$$

$$\approx (1/0.2) \times 4 \text{ Mpc}$$

$$\approx 20 \text{ Mpc}$$

A more detailed calculation yields

$$L_{\rm GZK} \approx 100 \, {\rm Mpc}$$

The Universe is opaque to UHECRs

Photohadronic processes:

$$p + \gamma \to \Delta \to \begin{cases} p + \pi^0 \\ n + \pi^+ \\ \downarrow \nu_{\mu} + \bar{\nu}_{\mu} + \nu_{e} + e^+ \end{cases}$$

Pair production:

$$p + \gamma \rightarrow p + e^- + e^+$$

Greisen-Zatsepin-Kuzmin (GZK) cut-off:

$$E_p \approx \frac{0.16 \text{ GeV}^2}{0.66 \text{ meV}} \approx 2 \cdot 10^{11} \text{ GeV}$$

(Assuming only photohadronic interaction)

Accounting also for pair production and CMB width

$$E_p \approx 5 \cdot 10^{10} \text{ GeV}$$

The Universe is *also* opaque to PeV gamma rays

Pair production:

$$\gamma_{\rm astro} + \gamma_{\rm cosmo} \rightarrow e^{-} + e^{+}$$

Inverse Compton scattering:

$$e^{\pm} + \gamma_{\text{cosmo}} \rightarrow e^{\pm} + \gamma$$

PeV gamma rays cascade down to MeV-GeV:

Putting it all together...

$$\partial_z Y_p(E, z) = \frac{-1}{(1+z)H(z)} \left\{ \partial_E (H(z)EY_p(E, z)) + \partial_E (b_{e^+e^-}(E, z)Y_p(E, z)) + \partial_E (b_{p\gamma}(E, z)Y_p(E, z)) + \mathcal{L}_{CR}(E, z) \right\}$$

Evolve numerically from
$$z_{\text{max}} \sim 4$$
 to Earth $(z = 0)$

Diffuse UHECR proton flux at Earth (GeV⁻¹ cm⁻² s⁻¹ sr⁻¹):

$$J_p(E) = \frac{c}{4\pi} n_p(E,z=0)$$
 This factor converts density to flux

39

Compare our predicted flux to the measured flux:

Minimize the function with respect to $J_{p,0}$ and δ_E

Note: This is a simplified setup; in reality, many flux parameters are jointly varied

Compare our predicted flux to the measured flux:

Minimize the function with respect to $J_{p,0}$ and δ_E

Note: This is a simplified setup; in reality, many flux parameters are jointly varied

The UHECR all-particle spectrum – more features!

The UHECR all-particle spectrum – more features!

 $\ln(10)\frac{4\pi}{c}E^2J(E)$

15 years of Auger data (2004–2019)!

~215k events above $2.5 \times 10^{18} \text{ eV}$

Use *hybrid* events detected by surface

- + fluorescence detectors to calibrate
- Allows us to measure energies of other events robustly

CR luminosity density above 5 \times 10¹⁸ eV: 6×10^{44} erg Mpc⁻³ yr⁻¹

(could be AGN or starburst galaxies)

Two complementary criteria to constrain potential UHECR source classes—

Two complementary criteria to constrain potential UHECR source classes—

UHECR sources distributed in redshift (e.g., as star-formation rate)

What about the cosmogenic neutrinos?

Co-evolve UHECRs and cosmogenic neutrinos:

UHECRs:
$$\partial_z Y_p(E,z) = \frac{-1}{(1+z)H(z)} \left\{ \partial_E (H(z)EY_p(E,z)) + \partial_E (b_{e^+e^-}(E,z)Y_p(E,z)) + \partial_E (b_{p\gamma}(E,z)Y_p(E,z)) + \mathcal{L}_{CR}(E,z) \right\}$$

Neutrinos: $\partial_z Y_\nu(E,z) = \frac{-1}{(1+z)H(z)} \left\{ \partial_E (H(z)EY_\nu(E,z)) + \mathcal{L}_\nu(E,z) \right\}$

Note: We can propagate gamma rays by adding an additional equation for them

The position of the ν bump is determined by the Δ -resonance production threshold,

$$E_p E_\gamma \approx 0.2 \text{ GeV}^2$$

and the relation between neutrino energy and proton energy,

$$E_{\nu} \approx E_p/20$$
.

So the neutrino spectrum peaks at

$$E_{\nu} \approx \frac{0.01 \text{ GeV}}{E_{\gamma}/\text{GeV}}$$

Let's put this to test ▶

Position of the v bump from $p\gamma$:

$$E_{\nu} pprox rac{0.01 \text{ GeV}}{E_{\gamma}/\text{GeV}}$$

Position of the v bump from $p\gamma$:

$$E_{\nu} \approx \frac{0.01 \text{ GeV}}{E_{\gamma}/\text{GeV}}$$

Why are v from n decay lower-energy?

The *n* and *p* mass are very similar ...

... so there is little energy left for *e*, **v**

Cosmogenic neutrinos Cosmogenic v 10^{-6} NeuCosm A 2012 IceCube 2010-2012 **UHECRs** 10^{-7} · HiRes-I HiRes-II 10^{-8} $E_0^3 J_p [\text{GeV}^2 \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}]$ dip model, $\gamma = 2.5$, SFR, CIB1 10^{-9} $E_0^2 J_{\nu}$ (all flavours) dip model, $\gamma = 2.5$, SFR, CIB1 $-E_{p,\text{max}} = 10^{20.5} \text{ eV}$ $E_{p,\text{max}} = 10^{20.5} \text{eV}$ 10^{-10} $E_{p,\text{max}} = 10^{20} \,\text{eV}$ $---- E_{p,\text{max}} = 10^{20} \text{ eV}$ $E_{p,\text{max}} = 10^{21.5} \text{eV}$ $E_{p,\text{max}} = 10^{21.5} \text{ eV}$ 10^{1} 12 9 10 11 10^{-11} $\log\left(\frac{E_0}{\text{GeV}}\right)$ Varying the 6 10 maximum 12 $Q_{\rm CR}(E) \propto E^{-\gamma} e^{-E/E_{\rm max}}$ proton energy 54

Cosmogenic neutrinos—they come from afar

Use more recent data:

UHECR flux measured by Telescope Array

Assume pure-proton flux:

UHECR injected spectrum is

$$Q_{\rm CR}(E) \propto E^{-\gamma} e^{-E/E_{\rm max}}$$

Source number density:

Evolves with redshift as

$$\mathcal{H}_{\rm CR}(z) \propto (1+z)^m$$

Minimize χ^2 function over γ , E_{max} , and m

E_{max} [GeV]

γ

Redshift = 0

Extragalactic $B \sim nG$ (?)

Galactic $B \sim \mu G$

Not to scale 59

Redshift z = 0

Extragalactic $B \sim nG$ (?)

Larger charge bends more

Magnetic field intensity

$$\delta_{
m rms} pprox 0.8^{\circ} Z igg(rac{10 \; {
m EeV}}{E} igg) igg(rac{L}{10 \; {
m Mpc}} igg)^{1/2} igg(rac{L_c}{{
m Mpc}} igg)^{1/2} igg(rac{B_{
m rms}}{n {
m G}} igg)$$
 Larger charge bends more L_c : field coherence length

Redshift = 0

Larger charge bends more

Longer trajectories bend more

Magnetic field intensity

$$\delta_{\rm rms} \approx 0.8^{\circ} Z \left(\frac{10 \text{ EeV}}{E}\right) \left(\frac{L}{10 \text{ Mpc}}\right)^{1/2} \left(\frac{L_c}{\text{Mpc}}\right)^{1/2} \left(\frac{B_{\rm rms}}{n{\rm G}}\right)$$

Larger charge bends more

 L_c : field coherence length

Scattering on magnetic fields

Jansson & Farrar, ApJ 2012

Scattering on magnetic fields

Galactic *B* ~μG

Galactic deflections of 60-EeV protons

Auger Collab., Astropart. Phys. 2007

Jansson & Farrar, ApJ 2012

Practical matters

How to compute the UHECR spectrum, mass composition, anisotropy?

Write your own code from scratch: Great for learning, gets complicated fast

PriNCe: Fast solver of the transport equation of UHECRs + cosmogenic neutrinos github.com/joheinze/PriNCe

SimProp: Original Monte-Carlo propagator of UHECRs and secondaries, updated augeraq.sites.lngs.infn.it/SimProp

CRPropa: Widely used Monte-Carlo propagator of UHECRs, neutrinos, gamma rays, including magnetic deflection crpropa.desy.de

Others: Hermes (arXiv:1305.4364), TransportCR (sourceforge.net), ...

UHECR detection

Space

Atmosphere

Space

Incoming cosmic ray

p

Proton in the air

Atmosphere

Space

Heitler model—simple, but illustrative:

Lower altitude

Heitler model—simple, but illustrative:

Heitler, *The Quantum Theory of Radiation*, 1954 Matthews, *Astropart. Phys.* 2005

Heitler model—simple, but illustrative:

Heitler, *The Quantum Theory of Radiation*, 1954 Matthews, *Astropart. Phys.* 2005

Heitler model—simple, but illustrative:

Heitler, The Quantum Theory of Radiation, 1954 Matthews, Astropart. Phys. 2005

pair production or bremsstrahlung

Heitler model—simple, but illustrative:

 $(\approx 85 \text{ MeV in air})$

Heitler, *The Quantum Theory of Radiation*, 1954 Matthews, *Astropart. Phys.* 2005

Heitler model—simple, but illustrative:

66

Heitler model—simple, but illustrative:

Heitler, *The Quantum Theory of Radiation*, 1954 Matthews, *Astropart. Phys.* 2005

Cascade development stops after n_C lengths, when the average pion energy E_C is such that the decay length of π^{\pm} is $< \lambda_I$

Heitler model—simple, but illustrative:

Each particle: $E_{\rm C}^{\pi}$

Cascade development stops after n_C lengths, when the average pion energy E_C is such that the decay length of π^{\pm} is $< \lambda_I$

Heitler, *The Quantum Theory of Radiation*, 1954 Matthews, *Astropart. Phys.* 2005

Lower altitude

Inferring the primary UHECR energy:

Inferring the primary UHECR energy:

Heitler, *The Quantum Theory of Radiation*, 1954 Matthews, *Astropart. Phys.* 2005 At maximum: $N_{\rm max}$ particles each with $E_{\rm C}^{\pi}$

Inferring the primary UHECR energy:

Heitler, *The Quantum Theory of Radiation*, 1954 Matthews, *Astropart. Phys.* 2005

At maximum: N_{max} particles each with E_{C}^e

Inferring X_{max} :

Proton-air interaction length:

Average target mass of air (needs model of density profile of atmosphere)

Inferring X_{max} :

Proton-air interaction length:

$$\lambda_{\rm I} = \sigma_{p-{\rm air}} \langle m_{\rm air} \rangle$$

Heitler, *The Quantum Theory of Radiation*, 1954 Matthews, *Astropart. Phys.* 2005

Inferring X_{max} :

Proton-air interaction length:

$$\lambda_{\rm I} = \sigma_{p-{\rm air}} \langle m_{\rm air} \rangle$$

Depth of first interaction:

$$X_1 = \lambda_{\rm I} \ln 2$$

Inferring X_{max} :

Proton-air interaction length:

$$\lambda_{\rm I} = \sigma_{p-{\rm air}} \langle m_{\rm air} \rangle$$

Depth of first interaction:

$$X_1 = \lambda_{\rm I} \ln 2$$

Each photon from π^0 decay starts a shower of energy $(E_0/3)/N_{\rm ch}$

Inferring X_{max} :

Proton-air interaction length:

$$\lambda_{\rm I} = \sigma_{p-{\rm air}} \langle m_{\rm air} \rangle$$

Depth of first interaction:

$$X_1 = \lambda_{\rm I} \ln 2$$

Each photon from π^0 decay starts a shower of energy $(E_0/3)/N_{\rm ch}$

Each e.m. shower reaches maximum at $\lambda_{\Gamma} \ln[E_0/(3N_{\rm ch})/E_{\rm C}^e]$

Inferring X_{max} :

Proton-air interaction length:

$$\lambda_{\rm I} = \sigma_{p-{\rm air}} \langle m_{\rm air} \rangle$$

Depth of first interaction:

$$X_1 = \lambda_{\rm I} \ln 2$$

Each photon from π^0 decay starts a shower of energy $(E_0/3)/N_{\rm ch}$

Each e.m. shower reaches maximum at $\lambda_{\Gamma} \ln[E_0/(3N_{\rm ch})/E_{\rm C}^e]$

Depth of maximum of the *p*-initiated shower:

$$X_{\text{max}}^p = X_1 + \lambda_{\Gamma} \ln[E_0/(3N_{\text{ch}}E_{\text{C}}^e)]$$

Heitler, *The Quantum Theory of Radiation*, 1954 Matthews, *Astropart. Phys.* 2005

Lower altitude

Inferring X_{max} :

errors from hadronic

interaction models

Proton-air interaction length:

$$\lambda_{\rm I} = \sigma_{p-{\rm air}} \langle m_{\rm air} \rangle$$

Depth of first interaction:

$$X_1 = \lambda_{\rm I} \ln 2$$

Each photon from π^0 decay starts a shower of energy $(E_0/3)/N_{\rm ch}$

Each e.m. shower reaches maximum at $\lambda_{\Gamma} \ln[E_0/(3N_{\rm ch})/E_{\rm C}^e]$

Large Depth of maximum of the *p*-initiated shower:

$$X_{\text{max}}^p = X_1 + \lambda_{\Gamma} \ln[E_0/(3N_{\text{ch}}E_{\text{C}}^e)]$$

Heitler, *The Quantum Theory of Radiation*, 1954 Matthews, *Astropart. Phys.* 2005

Lower altitude

Use more data:

Spectrum + mass composition (X_{max})

Five mass groups:

H, He, N, Si, Fe

Common maximum rigidity:

Max. rigidity is $R_{\text{max}} = E_{\text{max}}/Z$

$$Q_Z(E) \propto E^{-\gamma} e^{-E/(ZR_{\rm max})}$$

Add nuclei photodisintegration:

During propagation, interaction of nuclei on CMB or EBL breaks them up,

$$A + \gamma \rightarrow (A - 1) + \gamma$$

Heinze, Fedynitch, Boncioli, Winter, ApJ 2019

See also: Romero-Wolf & Ave, JCAP 2018

Alves Batista, Almeida, Lago, Kotera, JCAP 2019

Use more data:

Spectrum + mass composition (X_{max})

Five mass groups:

H, He, N, Si, Fe

Common maximum rigidity:

Max. rigidity is $R_{\text{max}} = E_{\text{max}}/Z$

$$Q_Z(E) \propto E^{-\gamma} e^{-E/(ZR_{\rm max})}$$
 "Peters cycle"

Add nuclei photodisintegration:

During propagation, interaction of nuclei on CMB or EBL breaks them up,

$$A + \gamma \rightarrow (A - 1) + \gamma$$

Heinze, Fedynitch, Boncioli, Winter, ApJ 2019

See also: Romero-Wolf & Ave, JCAP 2018

Alves Batista, Almeida, Lago, Kotera, JCAP 2019

Use more data:

Spectrum + mass composition (X_{max})

Five mass groups:

H, He, N, Si, Fe

Common maximum rigidity:

Max. rigidity is $R_{\text{max}} = E_{\text{max}}/Z$

$$Q_Z(E) \propto E^{-\gamma} e^{-E/(ZR_{\rm max})}$$

Add nuclei photodisintegration:

During propagation, interaction of nuclei on CMB or EBL breaks them up,

$$A + \gamma \rightarrow (A - 1) + \gamma$$

Use more data:

Spectrum + mass composition (X_{max})

Five mass groups:

H, He, N, Si, Fe

Common maximum rigidity:

Max. rigidity is $R_{\text{max}} = E_{\text{max}}/Z$

$$Q_Z(E) \propto E^{-\gamma} e^{-E/(ZR_{\rm max})}$$
 "Peters of

Add nuclei photodisintegration:

During propagation, interaction of nuclei on CMB or EBL breaks them up,

$$A + \gamma \rightarrow (A - 1) + \gamma$$

Spectrum + mass composition (X_{max})

Five mass groups:

H, He, N, Si, Fe

Common maximum rigidity

Max. rigidity is $R_{\text{max}} = E_{\text{max}} / 2$

$$Q_Z(E) \propto E^{-\gamma} e^{-E/(ZR_{\rm max})}$$

Add nuclei photodisintegration:

During propagation, interaction of nuclei on CMB or EBL breaks them up,

$$A + \gamma \rightarrow (A - 1) + \gamma$$

How do we know that UHECRs have an extragalactic origin?

Their energies are so large that their Larmor radius cannot be contained by the Milky Way

$$R_L = \frac{E_p}{eB} \approx \frac{10^{18} \text{ eV}}{e \times 1 \mu \text{G}} \gg 100 \text{ kpc}$$

We can look at the distribution of arrival directions of UHECRs

Flux of UHECRs > 8 EeV (Auger, 12 years of data!):

Auger Collab., Science 2017

Flux of UHECRs > 8 EeV (Auger, 12 years of data!):

Flux of UHECRs > 8 EeV (Auger, 12 years of data!):

Flux of UHECRs > 8 EeV (Auger, 12 years of data!):

