

Introduction to CERN and its Industrial Control Systems

October 2022

Fernando Varela (Fernando. Varela. rodriguez@CERN.CH)

Head of the Framework and Technology section
Industrial Control Systems Group of the Beams Department

Outline

- Short intro to CERN
- Industrial Controls at CERN
- CERN-Siemens/ETM partnership

CERN as Organisation

- European Organization for Nuclear Research
 - Started in 1954 to promote research on nuclear Physics in Europe and not to be left behind the US and the Soviet Union
 - Precursor of many collaboration projects that came afterwards
 - International organization
 - 22 member states (mainly Europe plus Israel)
 - Numerous associated members and observers
 - Open to worldwide scientific community: 17500 people
 - 12200 visiting scientists, 70 countries, 110 nationalities, 600 institutes
 - 2600 employees, 500 students, 800 fellows
 - Budget: 1.1 mld CHF

CERN Mission

Nuclear today? Not at all

Fundamental research

Antimatter

Higgs Boson

Fundamental research

How is this done?

CERN: European Centre for Particle Physics

Accelerator Complex

LINAC LINear Accelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Materials

LHC Particle Detectors

How everything fits together?

But that's not all...

Web®

1989 - 2019

http://cern.ch/web30

12 March 2019

Looking ahead 600

LHC future

What's beyond?

- Proposals for the future colliders at CERN
 - Compact Linear Collider (CLIC)
 - Conceptual study
 - 11-50 km linear, 3 TeV; in stages
 - ~2035?
 - FCC (Future Circular Collider)
 - Conceptual study
 - 100 km, 100 TeV
 - Projects are complementary
 - SPS→LEP→LHC→....

- Update of the European Strategy for Particle Physics
 - Guide the direction of the field to mid-2020 and beyond
 - May 2019 (The Open Symposium)
 - January 2020 (The Strategy Drafting Session)

CERN Industrial Controls

LHC: world largest particle accelerator

27 km, 100m underground, Four major detectors: ALICE, ATLAS, CMS and LHCb

Industrial Controls at CERN

Cooling & Ventilation

Vacuum

Detector Controls

Cryogenics

Gas Distribution

Environment & Radiation

Electric Grid

Interlocks and Safety

..and many others

Industrial Control challenges

- Goal: maximize and optimize physics data-taking by maximizing uptime and optimal operation of detectors, accelerators and technical infrastructure
- Additional specific requirements:
 - Environment:
 - radiation areas, strong magnetic field up to 4T
 - Unprecedented number of I/O
 - (3 M h/w channels in ATLAS)
 - Data volumes and rates
 - (e.g. QPS 200.000 changes/s)
 - Large distributed and interconnected systems
 - Complexity (control logic, multiple technologies)
 - Highly de-centralized instrumentation (>27 km)
 - CERN electrical grid ~ Canton of Geneva

Visualization, Business Logic, Archiving Data Analytics

Architecture & Figures

Anomaly detection, fault prediction, root-cause analysis

850 SCADA Applications 400 Industrial PCs 10 RAC Oracle DBs 200 TB stored per year

600 PLCs 200 OPC UA Servers 60 RT Front-End Computers (Industrial PCs)

Hundreds of Power Supplies
Thousands of Fieldbuses
10 M Hardware I/O

Approach to Industrial Controls

- Use of Industrial (COTS) solutions whenever possible
 - Custom radiation-tolerate electronics and middleware
- Standardization at all layers of the controls chain (also ISA, IEC)
 - Restricting the number of technologies and protocols
- Development of generic Industrial Controls Frameworks
 - Joint COntrols Project (JCOP) and UNICOS
- ~850 industrial controls applications were developed using these frameworks

ATLAS Embedded Local Monitor Board

Standardized Technology Stack

SUPERVISION, Visualization and programming

- WinCC OA (PVSS) SCADA (standard)
- Legacy systems: PCVue32, FactoryLink, WinCC

CONTROL

- SIEMENS, Schneider (standards)
- Industrial PCs: SIEMENS IPC, Kontron

FIELD LAYER

- Industrial instrumentation: Sensors, actuators
- Industrial customized actuators: Profibus PA positioners
- Home made electronics: ELMB, Signal Conditioners (CRYO), Power supplies

COMMUNICATIONS

- Fieldbuses: Profibus, WorldFIP, CAN, Profinet, Ethernet/IP
- In house developments: White rabbit
- OPC

SIEMENS

ICS Building Blocks

WinCC OA as key in element in the standardization of CERN Industrial Control Systems

SCADA evaluation

Selection of technologies for the LHC era

- Started in 1996
- Use of industrial products/standards
- Many technologies evaluated
- SCADA, middleware, fieldbuses, PLCs, etc.

SCADA evaluation

- Extensive market survey (hundreds of SCADA, 40 companies contacted for specs)
- Evaluation 1997-99 (>10 man-year effort, 6 products evaluated)
- Very long list of criteria
- PVSS (WinCC OA) selected in year 2000 after CERN tender
 - Since 2007: PVSS II -> WinCC Open Architecture

Why WinCC OA?

Scalability

- Large Distributed Systems
- Millions of I/Os
- Datapoints: Structured tags
- High troughput

Openness

- CTRL, C++ API
- API Managers, Drivers, CtrlExt, EWO
- Multiplatform

Partnership with the company

WinCC OA-based Control systems at CERN

Projects: the LHC

- Cryogenics and instrumentation
 - 11k actuators, 5k control loops
 - 50k I/O tags, 100 PLCs, 40 FECs
 - 26 SCADA servers, 1.5 M tags
- Vacuum
- Magnet Protection Systems
- Powering and interlocks

LHC: 9'600 Magnets for Beam Control

1232 superconducting dipoles for bending: 14m, 35t, 8.3T, 12kA

LHC Cryogenics

LHC Cryogenics Controls

- 27 km of decentralized instrumentation and control
- 50k I/O, 11k actuators, ~5k feedback control loops
- Control: ~100 PLCs (Siemens, Schneider),~40 FECs (industrial PCs)
- Supervision: 26 SCADA servers : 1.5 million TAGS

WinCC OA HMI in the CCC

Electro-pneumatic positioner, SIPART PS2

Instruments	Range	Total
TT (temperature)	1.6-300K	9500
PT (pressure)	0-20 bar	2200
LT (level)	Various	540
EH (heaters)	Various	2500
CV (Control Valves)	0 - 100 %	3800
PV/QV (On Off Valves)		2000

Tunnel Instrumentation

RadTol in-house electronics for signal conditioning and actuation

Logging DB Gb/day

Projects: Experiments

- A variety of Control Systems
 - Detector Control Systems
 - Run Control Systems
 - Detector Safety Systems
 - Gas Control Systems
 - Magnet Control Systems
 - Vacuum Control Systems
- For
 - The 4 LHC experiments
 - Smaller experiments COMPASS, NA62
 - Low-energy experiments: ISOLDE
 - Other experiments: CAST, CLOUD

Detector Control System

- Up to 160 Interconnected WinCC OA Systems
- Up to 3 M I/O
- Up to 10 M variables (dpes)
- Common Oracle Database
- Synchronized through **FSM** and **Expert System**
- A single non-experience operator

Distributed Supervision Architecture in ATLAS

Projects: Technical Infrastructure

Electrical network

Cooling and Ventilation

Radiation and Environment Monitoring

Geometry and alignment

Testbench systems

CERN Electrical Network

WinCC OA for Electrical Distribution

Acquisition Devices 215,000+ Tags / 20,000+ Devices / Heterogeneous Manufacturers and Protocols

WinCC OA HMI for Electrical Grid

20 years of Successful Partnership

Long-term partnership

- Different collaboration models with Siemens & ETM
 - CERN specifications + feedback
 - Joint Workshops (with source code)
 - Openlab

Many results

- WinCC OA Distributed Systems
- WinCC OA Oracle Archiver optimization
- WinCC OA User Interface technology (Qt based), WebUI, CTRL++
- WinCC OA Driver development (Modbus, S7)
- ML applied to ICS
- Distributed Complex Event Processing
- PLC Security

Current work

- Next Generation Archiver
- Industrial Edge & Device Monitoring

- Reference site and visit organisation for potential customers
- Regular follow up meetings
 - Annual meetings to review roadmaps, get information about new products and releases (Nuremberg, Eisenstadt)
 - Regular meetings to follow up on support issues

Ongoing and future Challenges

Ongoing and Future Challenges

- Migration of Archiving from Oracle to Influx DB and PostgreSQL/Timescale DB
 - Integration of Machine Learning and AI to reduce operation and maintenance cost:
 - Predictive maintenance
 - System Optimization
 - Smarter control system that can guide operators in the event of problems or to take automatic corrective actions
- Integration of Industrial Edge and IoT devices

Some selected ML results (1/4)

Some selected ML results (2/4)

Root-cause analysis in the event of major events (Alarm flood)

Alarms flooding

Some selected ML results (3/4)

Event lists generated by the same fault

Identify and detect fault / abnormal pattern for Diagnosis and Prognostics

Provide experts with Root-cause and Gap Analysis using Rules and Patterns Mining

Forecasts, Trends and Early-Warnings to increase Operating Hours

Achievements:

- ✓ Identification of the root of the problem
- ✓ Algorithm learns patterns and use them to forecast possible faults
- ✓ Early warning to operators to intervene

Some selected ML results (4/4)

Visual feedback and alarms in WinCC OA as result of ML analysis

