

Current status of the 10 TeV collider

Kyriacos Skoufaris and **Christian Carli** With special thanks to K. Oide, P. Raimondi, D. Schulte and R. Tomas 06-March-2023

Outline

- 10TeV Muon Collider
 - Final Focusing Scheme
 - Chromatic Correction & Matching Schemes
 - Arc
 - Tracking studies
- Summary Outlook

10TeV Muon Collider

Parameters	$\mathbf{S}_{\mathbf{Y}}$
Particle energy	
Particle momentum	
Luminosity per IP	
Bunch population	
Transverse normalized rms emittance	$arepsilon_{ni}$
Transverse geometric rms emittance	$arepsilon_{gs}$
Longitudinal emittance $(4\pi \sigma_E \sigma_T)$	
Longitudinal geometric emittance $\left(\frac{\varepsilon_l c}{4\pi E_{0\mu}}\right)$	
Rms bunch length	
Relative rms energy spread	
Beta function at IP	eta_{a}^{z}
Power per beam with 5 Hz repetition rate	I

TABLE I. 10 TeV center of mass energy muon collider.

ymbol	\mathbf{Unit}	10 TeV cc
E	${ m GeV}$	5000
P_0	${ m GeV}~{ m c}^{-1}$	5000
\mathcal{L}	$10^{34} { m cm^{-2} s^{-1}}$	20
N_p	10^{12}	1.8
$\varepsilon_{x} = \varepsilon_{ny}$	$\mu{ m m}$	25
$c_x = \varepsilon_{gy}$	nm	0.523
$arepsilon_l$	${ m eVs}$	0.31_{-}
$arepsilon_{lg}$	mm	70
σ_z	mm	1.5
δ	%	0.1
$k_x^\star=eta_y^\star$	mm	1.5
D beam	MW	7.2

10TeV Muon Collider - In a nutshell 1.5mm β*

- = ~500Km β s in the Final Focusing (FF) scheme (also large δ =0.1%).
 - => Enormous chromatic aberrations of the optical functions (described by Montague functions).
 - => Necessity for a local Chromatic Correction (CC) scheme right after the FF triplet.
 - => Use of dipole-sextupol kicks at areas with large betas and dispersion.
 - => The CC generate significant positive momentum compaction factor (α_p) and should be controlled (keep the bunch length short) in the arcs among other parameters.

Muon decay (short lifetime $\tau_0 \sim 2.2 \mu s$ or $\tau_{5TeV} \sim 0.1s$)

- => The resulting neutrinos even from a short straight piece of collider generate a narrow "radiation cone" that is an issue at the location, where they reach the earth surface
 - => The planned shape of the collider is like a race track (2 straight sections for IPs)
 - => Extensive use of dipoles and combined function magnets

10TeV Muon Collider v0.4 (Recap)

10TeV Muon Collider - Tracking Studies v0.4 • Vo.4 CC with dipole-sextuple doublets incorporating an I or -I transform between the sextuples of a family.

• Every dipole-sextuple magnet is 1m long with sextupolar components weaker than 0.2T (increase of dispersion with the addition of dipoles between sextuples pairs of all sets).

10TeV Muon Collider - Tracking Studies v0.4

• Due to small deviations from the I and -I transforms (of the order of $\Delta Q \sim 10^{-5}$), the DA even for particles with $\delta = 0$ is quite weak (DA< 2σ).

10TeV Muon Collider v0.5 (Current design)

10TeV Muon Collider - Final Focusing Scheme

- L* = 6m and a triplet is used for the Final Focusing (FF).
- The maximum allowed magnetic field at the FF scheme is assumed to be the 20T.
- Due to the fast increase (decrease) of the β functions right after the IP, the first magnet is split in shorter ones with different gradient, reducing that way the length of the FF scheme.
- The quadrupoles in the FF scheme are used to control the $\beta_x \& \beta_y$ and to obtain a point to parallel matching ($\alpha_{x,y} = 0$) at the end of the FF scheme.
- Inclusion of a drift section for a smoother reduction/control of the beta values (β_{x},β_{y}) at the end of the FF scheme. This help to keep the Montague chromatic functions at smaller values in the chromatic correction section.

- Easier control of βs

10

10TeV Muon Collider - Final Focusing Scheme

- become very large.
- Together with the large momentum spread ($\delta = 10^{-3}$), these W values indicate large degradation.

• Due to strong focusing quadrupoles ($\beta^*=1.5$ mm), the Montague chromatic functions ($W_{x,y}$) that describe the optics perturbation for off-momentum particles w.r.t on-momentum ones

chromatic effects that have to be compensated carefully in order to avoid performance

• The maximum allowed magnetic field is assumed to be the 16T.

<u>Chromatic Correction (CC) scheme</u>

- The CC scheme include 2 sets (doublets) of combined function dipole-sextupole magnets and each set is placed at positions with large β_q , where q=x or y, for the correction of the W_q at the end of CC scheme.
- Each set include a pair of dipole-sextupole magnets with the same k_2 and are separated by -I transform at x and y planes for the compensation of the RDTs excited by the sextupolar component.

<u>Matching scheme (CC-Arc)</u>

- The $\beta_{x,y}$, $\alpha_{x,y}$, D_x and D_{px} are matched by controlling the strength of six dipolequadrupole and the dipole length separating the dipole-quadrupole magnets.
- The matching of the D_x and D_{px} is facilitated by controlling its value at the end of the CC scheme (keeping it to small values).

Colour code for lattice elements:

- **Red** dipoles
- Blue quadrupoles
- Hashed blue dipolequadrupoles
- Red + Gold dipole-sextupoles (all 1m long)

• The non zero δ^*W is improved in newer version.

10TeV Muon Collider - Arc

- is generated in order to keep η_p small and stay below transition ($\eta_p, \alpha_p < 0$).
- The maximum allowed magnetic field is assumed to be the 16T.
- (each one is made out of 2 FODO cells).
- controlled.
- dipole-sextupole magnets separated by a -I transform.
- The phase advance per FMC cell is $3\pi/2$ (-I transform every second cell).

• The CC scheme produces a large positive contribution to the momentum compaction factor (α_p) and phase slip ($\eta_p \sim \alpha_p - 4.5 \times 10^{-10}$) thus, a negative contribution from the arcs

• Each arc section consist of repeated Flexible Momentum Compaction (FMC) cells

• The integrated strength of a set of dipoles located at areas with negative dispersion controls the α_p while with another set of dipoles, the 2π closing of the trajectory is

• The linear chromaticity at x and y planes is controlled with a set of combined function

10TeV Muon Collider - Arc

• Quite smaller betas and dispersion in version 0.5, reducing that way the magnets aperture by almost a facto 2.

10TeV Muon Collider - Full Lattice

10TeV Muon Collider - Tracking Studies

- Large higher order chromaticity, leads to insufficient momentum acceptance.
- Most probably, caused by slight betatron phase errors w.r.t. quads of inner triplet and sextuples in CC.
- Efforts to reduce these phase errors with next v0.6.

10TeV Muon Collider - Trackina Studies

10TeV Muon Collider - Trackina Studies

Particle ID

₽

Particle

10TeV Muon Collider v0.6 (New design)

10TeV Muon Collider - Final Focusing

Summary

- Minimization of the areas without dipolar components in order to evenly distribute the muon decay products (mostly the neutrino flux) and to minimize the collider length.
- Extensive use of combined function magnets (dipole-quadrupole, dipole- sextupole, etc) with independent control of their multipolar components.
- The new final focusing controls the Montague chromatic functions and higher order chromatic effects.
- Arc design with Flexible Momentum Compaction cells that control the momentum compaction factor, the linear chromaticity and the 2π closing of the trajectory with independent knobs.

Outlook

- Complete lattice based on the improved CC sections.
- Study of non-linear dynamics and acceptances with this lattice -> non-linear momentum compaction.
- Proper modelling of combined function X-poles (higher order effects).
- Best location to include the straight sections.
- Estimation of the following parameters as well their tolerances:
 - minimum aperture (impedance, cold bore, coil insulation, thermal insulation between shielding and cold bore, ...)
 - maximum allowed magnetic fields the strength of each multipole component in combined function, fringe field, power supply stability
 - maximum beta values (outside the IR) -> collider length -> Luminosity
 - chromatisity values (for stability), use of octuples
 - control of high order chromatic effects

Thank you for your time!

All the **presented studies** are **work in progress** thus, any input is very welcome.

home.cern

