
ServiceX In ATLAS
G. Watts (UW/Seattle)

2

Really
aggravated with
myself for not
being able to

join you!

Please say hi to Tal and Alex!

3

I don’t have to leave for
days!

I have great views from
my hotel…

Don’t Worry! Be Happy!!!

ServiceX In Atlas

• There are two backends useful in ATLAS:
• xAOD – handles R21, R22, and R24 data formats

• Uproot – anything that uproot can handle

I will talk about the xAOD backend in this talk

The uproot backend (Mason Proffitt):
• Recently been extended to run natively all the adl benchmarks
• Is in the process of being converted to use dask-awkward
• One remaining axis tracking issues, and…
• One outstanding issue in dask-awkward.

4

https://github.com/dask-contrib/dask-awkward/issues/252

ATLAS Analysis Data Workflow

5

Users Running Analysis
run Sys Errors

Users Running Analysis
run Calibration and Sys
Errors

Or direct
analysis

Versions

6

Software Release You Extract Your Analysis Data “AOD Fix”

Calibration & Systematics Tags Custom to your analysis, data period, and “time”

(Important) Versioning

Reconstructed
Software
Release

Corrections Applied
(Corrections Versions)

Defines the Data
Format and EDM,
and after-reco bug
fixes

Defined by the
Combined
Performance (Object)
groups

Release Series:
• 21 – for Run 2
• 22&24 for Run 3
• Not compatible
• Many sub releases for analysis (R22 has

~250 sub-releases with bug fixes, features
– new one every few weeks)

Released ‘in-time’ with conferences:
• Calibration files, via cvmfs and https
• Configured by job configuration
• Systematic Errors are currently tightly tied

to this system

7

ServiceX Web REST Interface

Code Generator

Transformer Transformer Transformer

Transformer Transformer Transformer

Transformer Transformer Transformer

Results Database

Data Finder

Responsible for generating
code (python, C++, etc.) that

the transformers will run.

Turns user’s dataset
identifier into a list of files to

be transformed

Responsible for extracting
required data using code from
code generator and file from

data finder into output format
and pushing it to the results

database.

1 User must be able to specify what “version”
of everything they want

2
Transformers must be running correct and
expected versions and load corrections
properly

One other tricky aspect
• ATLAS objects don’t always return pointers or C++ objects or

references
• Since no assumptions can be made, the func_adl translator needs

to know basic C++ type information.
• Currently use ROOT type system to understand ATLAS EDM… so

works very poorly for templated functions!

8

What does a proper configuration look like?
DEBUG:servicex.servicex:JSON to be sent to servicex: {'selection': '(call Select (call MetaData (call MetaData (call SelectMany (call MetaData (call MetaData (call MetaData (call
MetaData (call MetaData (call MetaData (call MetaData (call MetaData (call MetaData (call MetaData (call EventDataset \'bogus.root\') (dict (list \'metadata_type\' \'name\'
\'include_files\' \'container_type\' \'element_type\' \'contains_collection\' \'link_libraries\') (list \'add_atlas_event_collection_info\' \'Jets\' (list \'xAODJet/JetContainer.h\')
\'DataVector<xAOD::Jet_v1>\' \'xAOD::Jet_v1\' True (list \'xAODJet\')))) (dict (list \'metadata_type\' \'name\' \'script\') (list \'add_job_script\' \'sys_error_tool\' (list \'# pulled
from:https://gitlab.cern.ch/atlas/athena/-/blob/21.2/PhysicsAnalysis/Algorithms/JetAnalysisAlgorithms/python/JetAnalysisAlgorithmsTest.py\' \'# Set up the systematics
loader/handler service:\' \'from AnaAlgorithm.DualUseConfig import createService\' \'from AnaAlgorithm.AlgSequence import AlgSequence\' \'calibrationAlgSeq = AlgSequence()\'
"sysService = createService(\'CP::SystematicsSvc\', \'SystematicsSvc\', sequence = calibrationAlgSeq)" "sysService.systematicsList = [\'NOSYS\']" \'# Add sequence to job\')))) (dict
(list \'metadata_type\' \'name\' \'script\' \'depends_on\') (list \'add_job_script\' \'pileup_tool\' (list \'from AsgAnalysisAlgorithms.PileupAnalysisSequence import
makePileupAnalysisSequence\' \'\' \'# Use the sh object (sample Handler) to get the first tile and extract the filename\' \'# from it, which can then be used to fetch the MC
campaign. `calib.datatype`\' \'# should contain `data` or `mc`\' \'pileupSequence = makePileupAnalysisSequence(\' \' "mc", files=sh.at(0).fileName(0)\' \')\'
\'pileupSequence.configure(inputName={}, outputName={})\' \'print(pileupSequence) # For debugging\' \'\' \'calibrationAlgSeq += pileupSequence\') (list \'sys_error_tool\')))) (dict
(list \'metadata_type\' \'name\' \'script\' \'depends_on\') (list \'add_job_script\' \'corrections_jet\' (list \'jetContainer = "AntiKt4EMPFlowJets"\' \'from
JetAnalysisAlgorithms.JetAnalysisSequence import makeJetAnalysisSequence\' \'\' \'jetSequence = makeJetAnalysisSequence("mc", jetContainer)\'
\'jetSequence.configure(inputName=jetContainer, outputName=jetContainer + "_Base_%SYS%")\' \'jetSequence.JvtEfficiencyAlg.truthJetCollection =
"AntiKt4TruthDressedWZJets"\' \'try:\' \' jetSequence.ForwardJvtEfficiencyAlg.truthJetCollection = (\' \' "AntiKt4TruthDressedWZJets"\' \')\' \'except AttributeError:\' \'
pass\' \'\' \'calibrationAlgSeq += jetSequence\' \'print(jetSequence) # For debugging\' \'\' \'# Include, and then set up the jet analysis algorithm sequence:\' \'from
JetAnalysisAlgorithms.JetJvtAnalysisSequence import makeJetJvtAnalysisSequence\' \'\' \'jvtSequence = makeJetJvtAnalysisSequence("mc", jetContainer, enableCutflow=True)\'
\'jvtSequence.configure(\' \' inputName={"jets": jetContainer + "_Base_%SYS%"},\' \' outputName={"jets": jetContainer + "Calib_%SYS%"},\' \')\' \'calibrationAlgSeq +=
jvtSequence\' \'print(jvtSequence) # For debugging\' \'output_jet_container = "AntiKt4EMPFlowJetsCalib_%SYS%"\' \'# Output jet_collection = AntiKt4EMPFlowJetsCalib_NOSYS\')
(list \'pileup_tool\')))) (dict (list \'metadata_type\' \'name\' \'script\' \'depends_on\') (list \'add_job_script\' \'corrections_muon\' (list "muon_container = \'Muons\'" \'from
MuonAnalysisAlgorithms.MuonAnalysisSequence import makeMuonAnalysisSequence\' "muonSequence = makeMuonAnalysisSequence(\'mc\', workingPoint=\'Medium.NonIso\',
postfix = \'Medium_NonIso\')" \'muonSequence.configure(inputName = muon_container,\' " outputName = muon_container + \'Calib_MediumNonIso_%SYS%\')"
\'calibrationAlgSeq += muonSequence\' \'print(muonSequence) # For debugging\' \'output_muon_container = "MuonsCalib_MediumNonIso_%SYS%"\' \'# Output
muon_collection = MuonsCalib_MediumNonIso_NOSYS\') (list \'corrections_jet\')))) (dict (list \'metadata_type\' \'name\' \'script\' \'depends_on\') (list \'add_job_script\'
\'corrections_electron\' (list \'from EgammaAnalysisAlgorithms.ElectronAnalysisSequence import makeElectronAnalysisSequence\' "electronSequence =
makeElectronAnalysisSequence(\'mc\', \'MediumLHElectron.NonIso\', postfix = \'MediumLHElectron_NonIso\')" "electronSequence.configure(inputName = \'Electrons\'," "
outputName = \'Electrons_MediumLHElectron_NonIso_%SYS%\')" \'calibrationAlgSeq += electronSequence\' \'print(electronSequence) # For debugging\'
\'output_electron_container = "Electrons_MediumLHElectron_NonIso_%SYS%"\' \'# Output electron_collection = Electrons_MediumLHElectron_NonIso_NOSYS\') (list
\'corrections_muon\')))) (dict (list \'metadata_type\' \'name\' \'script\' \'depends_on\') (list \'add_job_script\' \'corrections_photon\' (list \'#TODO: Get photon
correcoutput_tau_container," \' },\' \' outputName = {\' " \'electrons\' : \'Electrons_MediumLHElectron_NonIso_OR_%SYS%\'," " \'photons\' : \'Photons_OR_%SYS%\'," "
\'muons\' : \'MuonsCalib_MediumNonIso_OR_%SYS%\'," " \'jets\' : \'AntiKt4EMPFlowJetsCalib_OR_%SYS%\'," " \'taus\' : \'TauJets_Tight_OR_%SYS%\'" \' })\'
\'calibrationAlgSeq += overlapSequence\' \'# Output electron_collection = Electrons_MediumLHElectron_NonIso_OR_NOSYS\' \'# Output photon_collection = Photons_OR_\' \'#
Output muon_collection = MuonsCalib_MediumNonIso_OR_NOSYS\' \'# Output jet_collection = AntiKt4EMPFlowJetsCalib_OR_NOSYS\' \'# Output tau_collection =
TauJets_Tight_OR_NOSYS\') (list \'corrections_tau\')))) (dict (list \'metadata_type\' \'name\' \'script\' \'depends_on\') (list \'add_job_script\' \'add_calibration_to_job\' (list
\'calibrationAlgSeq.addSelfToJob(job)\' \'print(job) # for debugging\') (list \'corrections_overlap\')))) (lambda (list e) (call (attr e \'Jets\') \'AntiKt4EMPFlowJetsCalib_OR_NOSYS\')))
(dict (list \'metadata_type\' \'type_string\' \'method_name\' \'return_type\') (list \'add_method_type_info\' \'xAOD::Jet_v1\' \'pt\' \'double\'))) (dict (list \'metadata_type\'
\'name\' \'body_includes\') (list \'inject_code\' \'xAODJet/versions/Jet_v1.h\' (list \'xAODJet/versions/Jet_v1.h\')))) (lambda (list j) (call (attr j \'pt\'))))', 'result-destination': 'object-
store', 'result-format': 'root-file', 'chunk-size': '1000', 'workers': '20', 'codegen': 'atlasxaod', 'did': 'local_dataset'}

• Complete job options are
transmitted down

• Along with type
information

• Gives the user a lot of
flexibility on how they
extract the data (to much
for beginners!)

• Makes the queries long
(perhaps > 10K sometimes!)

• The process of translating a
simple func_adl statement
to this is complex and not
easy to understand

• Some options has been
exposed to make it easy…
other options… 9

What stuff can you
currently (easily) control

class CalibrationEventConfig:
Name of the jet collection to calibrate and use by default
jet_collection: str
Name of the truth jets to be used for the jet calibration
jet_calib_truth_collection: str
Name of the electron collection to calibrate and use by default
electron_collection: str
The working point (e.g. xxx)
electron_working_point: str
The isolation (e.g. xxxx)
electron_isolation: str
Name of the photon collection to calibrate and use by default.
photon_collection: str
The working point (e.g. xxx)
photon_working_point: str
The isolation (e.g. xxxx)
photon_isolation: str
Name of the muon collection to calibration and use by default.
muon_collection: str
The working point (e.g. xxx)
muon_working_point: str
The isolation (e.g. xxxx)
muon_isolation: str
Name of the tau collection to calibrate and use by default.
tau_collection: str
The working point (e.g. xxxx)
tau_working_point: str
perform_overlap_removal: bool
** Data Type (data, MC, etc., used for pileup, jet corrections, etc.)
datatype: str
** Run calibrations by default (PHYSLITE vs PHYS)
calibrate: bool
** True if we can return uncalibrated (PHYSLITE doesn't)
uncalibrated_possible: bool

Distil down to only options needed:

• Some of these are per-analysis choices
• Others have to do with default selection cuts,

which have to be matched to corrections, and
other things that enable “pit of success”

How this works
1. As the query is processed, metadata is added
2. The metadata controls the job options that

configure the job
3. One can override almost anything, but making

deep changes isn’t trivial!
4. Mostly, there is x10 more metadata than C++!

10

The ATLAS configuration system gives users
100000000000000000000000’s of options. You

need zero when you start, and perhaps 20 by the
time your analysis is done.**

** slight exaggeration…

What I’ve Been Working On Recently…

Release 21 has been working well:
• Most queries up to now have all been based on

R21/Run 2 data

Release 22
• This is the new part
• In particular, getting it to work correctly along side

of R21
• R21 and R22 are subtly, but importantly, different

Release 24
• Given the way ATLAS is naming its releases, R24 is

the new R22
• So, no extra work has to be done

In github, 3 packages:

• ATLAS Type Interpreter
• Scans for all type information
• Knows the scripts for all the releases
• Produces one yaml file describing the

whole release
• Type Package Builder

• Uses the output yaml file to produce a
python package.

• Only R21 is on pypi right now
• Waiting until full testing before releasing

R22.
• Automated Tester and Producer

• Working towards a CI that will build the
python package given a release version

• This is brand new – and reflects the fact
that above two are too hard to use 11

https://github.com/gordonwatts/func-adl-types-atlas
https://github.com/gordonwatts/func_adl_servicex_type_generator
https://pypi.org/project/func-adl-servicex-xaodr21/
https://github.com/gordonwatts/func_adl_type_commands

Documentation

12

• Built as a Jupyter Book
• All code runs
• Includes instructions for building

working venv
• Not updated for R22 (and

physlite) yet.

Repo
Docs Served On the Web

How to:
• Access calibrated objects (jets, muons, etc)
• How to access uncalibrated objects (tracks, MC

particles, etc.)

https://github.com/gordonwatts/xaod_usage
https://gordonwatts.github.io/xaod_usage/intro.html

Final Word on Systematic Errors

13

1 ATLAS Systematic Errors have Event-Wide
implications – they are not per-object
• The entanglement is triggered by overlap

removal (x2) and the fact that things like Jet
Systematics shift jets past various cuts.

• The experiment is hard at work understanding if
both can be removed from the systematic error
calculation

2 We threw out our systematic error calculation twiki about 10 years ago and built our
current dual-use tools
• These have our EDM and the calculations deeply entangled
• Calibration & error constants are distributed by https and cvmfs
• Tools are well adapted to this infrastructure
• Calibration and errors are fairly sophisticated (often involving NN’s) and sometimes

expensive even without EDM access
• Experiment is trying to simplify systematic errors without losing fidelity
• And support RDF, python, and our C++ frameworks (quad-use calibration tools?)

Systematic Errors & Service X

14

Using the current xAOD model there are
two standard approaches:
• Create duplicate tree’s of the same

data, with shifts for each of ~100
systematic errors

• Create one tree with new branches for
each variation

Regardless, current ServiceX can handle systematic errors
• But only one per query!
• So this needs real work!

Has access to full fidelity systematic error calculation now

But…
* Not obvious yet how to feel the data to the end user…

Further ATLAS Context

15

HL-LHC Demonstrators

• To be used to help ATLAS decide where to invest resources for HL-LHC
• Outcomes of demonstrators is expected at end of summer 2024
• They don’t have to be complete – but do need to show the value proposition
• Incorporated into the ATLAS Computing TDR which is to be written over the summer/fall

Analysis Grand Challenge Demonstrator

We will demonstrate the Python-ecosystem analysis workflow from the IRIS-HEP Analysis Grand

Challenge on ATLAS internal Release 22 data and on ATLAS analysis facilities.

The IRIS-HEP Analysis Grand Challenge (AGC) seeks to demonstrate, at HL-LHC scales, the full analysis

pipeline. Data starts in post-production format, PHYS or PHYSLITE or a DAOD for ATLAS. The end result is

a limit or parameter measurement that usually comes from a statistical tool, like pyhf/cabinetry. The pipeline

includes the calculation of systematic errors. The AGC is, on the one hand, an integrative effort to make sure

tools work together and scale to the data loads we expect. It is also a testbed for the user interface.

The ATLAS version of the AGC would use a “simple” benchmark analysis, like a top quark cross-

section or a simple Exotics search. Most importantly, it would be one that had been completed on Run 2 data
(or was well understood on Run 3 data).

Because we do not yet have
OpenData (but soon?)

https://docs.google.com/document/d/1xsWEwnQKBXXjZtM8aIN2Kyhu8bUqVduSmiG-aDF590o/edit#heading=h.syvj3h6vwz5d

What about awkward-dask Integration

16

From Linsey’s talk this morning, this is an obvious integration we want to do…

AwkwardInputLayer Awkward bliss….

Current Status:
• Prototype built
• Issues to work around:

• Do not know # of input files at start of query
• How to move operations between awkward and service to minimize data transferred/efficiency

Can fake the first query, and then cache answer for later…

No answer yet, but people keep telling me
this is easy (also not crucial for v1)… ;-)

ServiceX/func_adl is delayed execution by design…

https://github.com/gordonwatts/awkward-20-testing/blob/main/notebooks/06%20-%20edm.ipynb

Conclusions

• Next Steps
• Updating documentation with new versions

• R22 & PHYS/PHYSLITE

• Automating the Package Generation

• Benchmark Analysis with no Systematic Errors

• The addition of Systematic Errors

• Some issues…
• (besides Tal’s talk!)

• How to address ATLAS’s constant changing releases!

17

