
DOMA R/D and Analysis Grand
Challenge

Jayjeet Chakraborty, Carlos Maltzahn
UC Santa Cruz

Today’s Agenda

● HL-LHC and DOMA
● Malloy QL for HEP data analysis
● Data management using Skyhook

2

The HL-LHC

● High-Luminosity Large Hadron Collider
● Major upgrade to the original LHC
● To be started in around 2028-2029

3

● 5-7.5x increase in the number of collisions
● Will generate an increased number of events,

about 30x increase
● Total working dataset sizes will be in exabytes

https://home.cern/resources/faqs/high-luminosity-lhc

DOMA Team at IRIS-HEP

● Working on R/D of data delivery,
access, organization, and
management technologies

● Several projects within DOMA:
○ XCache
○ Coffea
○ IDDS
○ TPC
○ SeviceX
○ Modelling Data Workflows
○ SkyhookDM

4

https://iris-hep.org/doma.html

Malloy QL for HEP data analysis

5

Data sample emitted by the HL-LHC

● Fields of primitive types (int, float,
etc), structs, and list<structs>

● Primary key: event
● Originally stored in ROOT files, but

we use Parquet for analysis

6

Present Query Languages in HEP analysis

● Basic requirements:
○ Independent on the underlying file format or data structures
○ Identical query interface irrespective of whether executing locally or remotely, or single or

multiple machines
○ Easy to write and comprehend
○ Provides necessary language features for operating on HEP data (jagged, nested, awkward)

● Examples:
○ Func ADL (Python)
○ Groot (Go)
○ RDataFrame (C++)
○ NAIL (Natural Analysis Implementation Language) (Python)
○ SQL

7

Example Analysis Query in SQL

SELECT

 HistogramBin(MET.pt, 0, 2000, 100) AS x,

 COUNT(*) AS y

FROM table

WHERE ARRAY_LENGTH(Muon) >= 2 AND

 (SELECT COUNT(*) AS mass

 FROM UNNEST(Muon) m1 WITH OFFSET i

 CROSS JOIN UNNEST(Muon) m2 WITH OFFSET j

 WHERE

 m1.charge <> m2.charge AND i < j AND

 SQRT(2*m1.pt*m2.pt*(COSH(m1.eta-m2.eta)-COS(m1.phi-m2.phi))) BETWEEN 60

AND 120) > 0

GROUP BY x

ORDER BY x

x y

10.0 39

30.0 15

50.0 2

70.0 1

8

Example Analysis Query in Python

x y

10.0 39

30.0 15

50.0 2

70.0 1

9

Example Analysis Query in Python

x y

10.0 39

30.0 15

50.0 2

70.0 1

10

Learning and using different language and framework

specific query language can be an extra overhead for

Physicists. What if there was a single simple language

?

Malloy

● An experimental language for describing data relationships and
transformations

● Allows writing better understandable queries using uncomplicated semantics
● Aims to generate the most optimized SQL query possible for performance
● Designed to work with multidimensional data
● Works with BigQuery, Postgres, and DuckDB so far

11

https://www.malloydata.dev/

Brief introduction to Malloy’s syntax

● Source: a table or a computation result set
● Query: a pipelined set of stages each stage defining a query operation

12

SQL to Malloy translation: #Q2

13

SQL to Malloy translation: #Q2

14

SQL to Malloy translation: #Q4

15

SQL to Malloy translation: #Q4

16

Current limitations of Malloy

● Many in-built engine specific functions aren’t implemented yet
○ Some functions such as those with lambda expressions also need language parser updates

● Bugs in handling lists
● No support for UDFs of any form
● Bugs in handling struct type field
● No support for substrait plan generation

17

Our contributions

● Many in-built engine specific functions aren’t implemented yet
○ Some functions such as those with lambda expressions also need language parser updates

● Bugs in handling lists
● No support for UDFs of any form
● Bugs in handling struct type field
● No support for substrait plan generation

18

Workload: ADL benchmarks

19

Benchmarks

20

Note: Malloy is not particularly designed for better performance, it just tries to generate the most
optimized SQL possible

https://github.com/JayjeetAtGithub/malloy-hep

Data Management using Skyhook

21

What is Skyhook ?

● An open-source project aiming to bridge the gap between compute and data
● A data management system that

○ Can accelerate queries by offloading parts of query to the storage servers
■ Reduced data movement
■ Low metadata requirement on the client

○ Provides a bunch of open-source choices for
■ Query interfaces
■ Distributed Task Schedulers
■ Execution engines
■ Object storage systems
■ File/Table formats
■ Communication/Transport protocols

○ Presents a lower barrier to computational storage as compared to CSDs

22

https://github.com/skyhookdm

Query Interface and Compiler

SELECT g, SUM(y) AS z
FROM ‘s3://bucket’
WHERE x > 99
GROUP BY g
ORDER BY z

relations:
read: ‘s3://bucket’
project: g, z
group_by: g
order_by: z
aggregate: sum(y) as z 23

Distributed Task Schedulers

24

Query Execution Engine

25

Query Execution Engine

26

SIMD based vectorized operations

Scalar, complex, and nested types such as
maps, structs, lists, tensors

Supports Arrow, Parquet, ORC file formats

Understands standard query plan
representations such as Substrait

Distributed Object Storage System

27

File Format

28

ROOT

Putting ‘em together,

29

Object Store

Execution Engine

Client

Skyhook

Query
Plan

Query
Plan

Columnar
Data

Buffers

30

Object Store

Execution Engine

Client

Skyhook

Query
Plan

Query
Plan

Columnar
Data

Buffers

31

Dask/Coffea/Spark

Object Store

Execution Engine

Client

Skyhook

Query
Plan

Query
Plan

Columnar
Data

Buffers

32

RDMA for Columnar Data Transport

● Accelerating query execution by offloading to storage shifts the bottleneck to
the transport layer

○ Most systems use TCP/IP protocols for data transport e.g. Arrow Flight
○ Moving data via TCP/IP requires data to be copied multiple times between the device, user

space, and the kernel space
○ We explore using RDMA for fast zero-copy transfer of columnar data
○ We use the Mochi thallium framework from Argonne National Labs for prototyping our protocol

33

https://arrow.apache.org/blog/2019/10/13/introducing-arrow-flight/
https://mochi.readthedocs.io/en/latest/thallium.html

Benchmarks

34

https://github.com/JayjeetAtGithub/thallium-flight-benchmark

Benchmarks

35

Selectivity is when our query a select
a certain percentage of rows out of

every row group

https://github.com/JayjeetAtGithub/thallium-flight-benchmark

Benchmarks

36

Selectivity is when our query a select
a certain percentage of rows out of

every row group

https://github.com/JayjeetAtGithub/thallium-flight-benchmark

Thank You !
Questions ?

37

