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Target

● Process 200TB in 20 minutes
○ Assume read 10% → 20TB/20*60s = 133Gbps
○ Assume each event is 2KB and 10% is streamed → 

133*10^6/8*0.2 = 83.5Mevents/s
○ Assume 25 kevents/core/second =>  needs 3340 cores
○ 133Gbps/35 nodes → 3.8Gbps per node
○ Each core 133 Gpbs/3340 = 40Mbps
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Sanity Check
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Target UChicago AF

Disk 200 TB >1 PB

Network 133 Gbps 200 Gbps WAN
>200 Gbps LAN

CPU 3340 CPU Cores 4560 CPU Cores (K8S)

● The target is well-scoped for the UChicago AF



Throughput test setup

● Coffea-casa Dask workers read data from ~800 files across 15 fast 
compute nodes with 25Gbps links

● Each Dask worker requests a few selected columns via: 

uproot.open(filename)["Events"].arrays(arrays_to_read) 

● Compared three file access methods:
○ Locally, via CephFS shared filesystem:

■ 19 hyperconverged nodes with spinning disks and 10Gbps links
○ Remotely, via XRootD at UNL:

■ https://xrootd-local.unl.edu:1094//store/user/AGC/nanoAOD/
○ Remotely, via XRootD with a local XCache at UChicago
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https://xrootd-local.unl.edu:1094//store/user/AGC/nanoAOD/


Local filesystem throughput scaling with number of workers

● From left to right the 
number or workers: 
50(~1GB/s), 100(~2GB/s), 
200(~3GB/s), 400(5GB/s), 
800(5GB/s)

● Scales almost linearly in the 
beginning

● 10-20MBps per worker
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Remote files throughput scaling with number of workers

● Scales linearly from 50, 
100 and 200 workers, 
bottlenecked somewhere 
from 200 workers to 400 
workers

● Total is 40MBps/node * 15 
nodes = 600MBps

● Per workers is 600MBps / 
200 workers = 
3MBps/worker
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Remote files throughput with xcache

● xcache.af.uchicago.edu:10
94

● Xcache at UChicago AF: 
2*25Gbps links
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Misc data points

● Cat file to /dev/null  – 113MBps
● Cat file to /dev/null after os cache - 3300MBps
● uproot.iterate(f"{fname}:Events", expressions = arrays_to_read)

○ Read a few columns –50MBps(filesize/time)
○ Read a few columns with os cache - 823MBps
○ Read all the columns - 35MBps
○ Read all the columns with os cache - 113MBps
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Running the benchmark as htcondor job directly vs in dask

● Dask worker are also Docker 
universe HTCondor jobs, we can 
control the number of workers 
via the scaling parameters

● With direct HTCondor jobs, we 
run one task as one job, so there 
will be 787 jobs running 
concurrently ,this will be similar 
to the 800 Dask worker case

● The data throughput graph 
shows the similar results indeed
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Meeting the Challenge

● What needs to be improved to hit our target of 
200TB in 20min?
○ Identify and resolve bottlenecks in the Dask pipeline
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ServiceX data Access

Tested current production version (1.1.4).

Two instanced deployed on UC AF (xAOD and Uproot).

Allocated 1k cores for the tests.

Each dataset run concurrently (using ServicexDataBinder).

Datasets:

● Uproot - 6 datasets - 3TB in 21k files
● xAOD - 9 datasets - 136TB in 117k files
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ServiceX - Uproot

Reading a single variable. 

When reading remotely, it takes hours.

All requests stay at 10 transformers - default 
minimal scale.
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Reading fully cached data: 16 minutes.

CPU utilization never goes above 15%, so 
horizontal autoscalers never trigger 
(default is 30%).

Had to manually lower HOA to 10%, then 
it scales up but not very fast. 



ServiceX Uproot

Never scales up to use all cores.

XCache and S3 endpoints basically idle.

Not all requests start right away - some more 
optimization possible in file path finding.

Factor 4-5 speedup probably possible.
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S3 endpoint



ServiceX xAOD - single dataset
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Reading a single dataset (30885 files ~30TB ). 

Single Jet collection, simple cut selection. 

Selection fully cached in xcache. 

Transformer CPU utilization at 70-80%.

Transformers scaled up to the limit of 750 cores.

We can do much better with startup - write a 
custom HPA. 

Once that’s done, the next limiting factor will be 
number of CPUs available (our xCache can support 
up to ~3500 transformers like this).

Plato at 750 transformers 
reached.



ServiceX xAOD
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Reading a single Jet collection, simple cut selection. 

When reading remotely, it takes whole morning, several retries.

When cached CPU utilization at 70-80%. 

At this scale path lookups take considerable time (some of the 
lookups expired from the cache - TTL: 1 day).

Processing fully cached data: 1.5 hours. 

Took ~40 min to get all the datasets looked up and 
started. 

Scaled up to ~900 cores.

Sometimes transformers would suddenly scale down. 
It appears not all the input data was in the XCache.



ServiceX xAOD

Only a little bit of space to 
optimize transformers.
Requests take time to ramp up. 
x 3 improvement possible. 
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S3 endpoint


