# **Benchmarking discussion**

Fengping Hu, Lincoln Bryant, Ilija Vukotic Enrico Fermi Institute University of Chicago

IRIS-HEP AGC workshop 2023 05.05.2023





÷.





#### • Process 200TB in 20 minutes

- Assume read  $10\% \rightarrow 20TB/20*60s = 133Gbps$
- Assume each event is 2KB and 10% is streamed  $\rightarrow$  133\*10^6/8\*0.2 = 83.5Mevents/s
- Assume 25 kevents/core/second => needs 3340 cores
- 133Gbps/35 nodes  $\rightarrow$  3.8Gbps per node
- Each core 133 Gpbs/3340 = 40Mbps

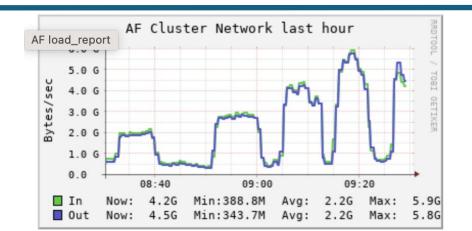


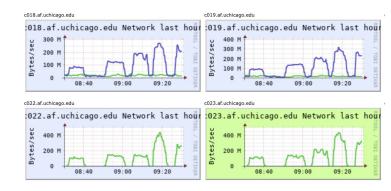
|         | Target         | UChicago AF                   |
|---------|----------------|-------------------------------|
| Disk    | 200 TB         | >1 PB                         |
| Network | 133 Gbps       | 200 Gbps WAN<br>>200 Gbps LAN |
| CPU     | 3340 CPU Cores | 4560 CPU Cores (K8S)          |

• The target is well-scoped for the UChicago AF

#### Throughput test setup




- Coffea-casa Dask workers read data from ~800 files across 15 fast compute nodes with 25Gbps links
- Each Dask worker requests a few selected columns via:

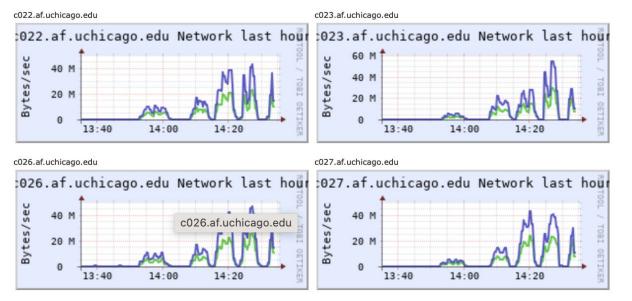

uproot.open(filename)["Events"].arrays(arrays\_to\_read)

- Compared three file access methods:
  - Locally, via CephFS shared filesystem:
    - 19 hyperconverged nodes with spinning disks and 10Gbps links
  - Remotely, via XRootD at UNL:
    - https://xrootd-local.unl.edu:1094//store/user/AGC/nanoAOD/
  - Remotely, via XRootD with a local XCache at UChicago

#### Local filesystem throughput scaling with number of workers

- From left to right the number or workers: 50(~1GB/s), 100(~2GB/s), 200(~3GB/s), 400(5GB/s), 800(5GB/s)
- Scales almost linearly in the beginning
- 10–20MBps per worker

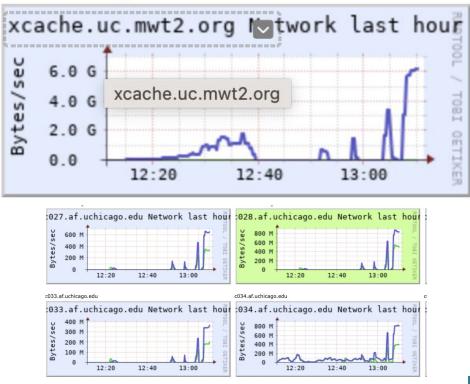









#### Remote files throughput scaling with number of workers


- Scales linearly from 50, 100 and 200 workers, bottlenecked somewhere from 200 workers to 400 workers
- Total is 40MBps/node \* 15 nodes = 600MBps
- Per workers is 600MBps / 200 workers = 3MBps/worker



#### Remote files throughput with xcache

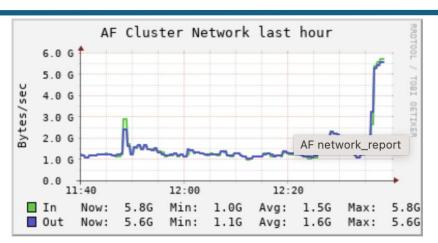
- xcache.af.uchicago.edu:10
  94
- Xcache at UChicago AF: 2\*25Gbps links

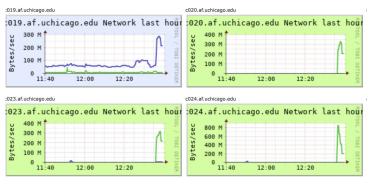






#### Misc data points





- Cat file to /dev/null 113MBps
- Cat file to /dev/null after os cache 3300MBps
- uproot.iterate(f"{fname}:Events", expressions = arrays\_to\_read)
  - Read a few columns –50MBps(filesize/time)
  - Read a few columns with os cache 823MBps
  - Read all the columns 35MBps
  - Read all the columns with os cache 113MBps



#### Running the benchmark as htcondor job directly vs in dask

- Dask worker are also Docker universe HTCondor jobs, we can control the number of workers via the scaling parameters
- With direct HTCondor jobs, we run one task as one job, so there will be 787 jobs running concurrently ,this will be similar to the 800 Dask worker case
- The data throughput graph shows the similar results indeed





÷.

## **Meeting the Challenge**



- What needs to be improved to hit our target of 200TB in 20min?
  - Identify and resolve bottlenecks in the Dask pipeline



#### ServiceX data Access



- Tested current production version (1.1.4).
- Two instanced deployed on UC AF (xAOD and Uproot).
- Allocated 1k cores for the tests.
- Each dataset run concurrently (using ServicexDataBinder).
- Datasets:
- Uproot 6 datasets 3TB in 21k files
- xAOD 9 datasets 136TB in 117k files



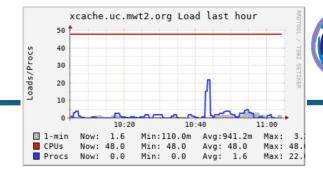
## ServiceX – Uproot

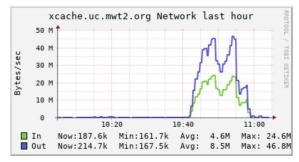


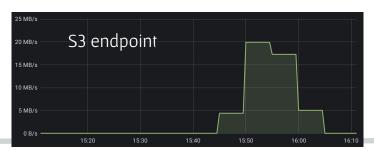
| Dataset                          | Files | Size[GB] |  |
|----------------------------------|-------|----------|--|
| <pre>single_top_tW_nominal</pre> | 50    | 8        |  |
| <pre>single_top_s_nominal</pre>  | 114   | 10       |  |
| t_chan_nominal                   | 2506  | 365      |  |
| ttbar_scaleup                    | 917   | 178      |  |
| ttbar_PS_var                     | 443   | 93       |  |
| ttbar_nominal                    | 7066  | 1355     |  |
| wjetsnominal                     | 10199 | 1048     |  |
| Sum:                             | 21295 | 3057     |  |

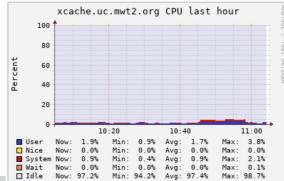
#### Reading a single variable.

When reading remotely, it takes hours. All requests stay at 10 transformers – default minimal scale.


#### Reading fully cached data: 16 minutes.


- CPU utilization never goes above 15%, so horizontal autoscalers never trigger (default is 30%).
- Had to manually lower HOA to 10%, then it scales up but not very fast.


| Title                    | Submitted by  | Start time          | Finish time         | Status   | Files completed |
|--------------------------|---------------|---------------------|---------------------|----------|-----------------|
| ttbarnominal             | Ilija Vukotic | 2023-05-01 22:05:54 | 2023-05-01 22:22:30 | Complete | 7065 of 7065    |
| single_top_tWnominal     | Ilija Vukotic | 2023-05-01 22:05:53 | 2023-05-01 22:06:23 | Complete | 50 of 50        |
| ttbarPS_var              | Ilija Vukotic | 2023-05-01 22:05:54 | 2023-05-01 22:14:30 | Complete | 443 of 443      |
| ttbar_scaleup            | Ilija Vukotic | 2023-05-01 22:05:53 | 2023-05-01 22:15:43 | Complete | 917 of 917      |
| single_top_t_channominal | Ilija Vukotic | 2023-05-01 22:05:53 | 2023-05-01 22:13:33 | Complete | 2506 of 2506    |
| single_top_s_channominal | llija Vukotic | 2023-05-01 22:05:53 | 2023-05-01 22:06:43 | Complete | 114 of 114      |
| wjetsnominal             | llija Vukotic | 2023-05-01 22:05:53 | 2023-05-01 22:21:25 | Complete | 10199 of 10199  |


## ServiceX Uproot

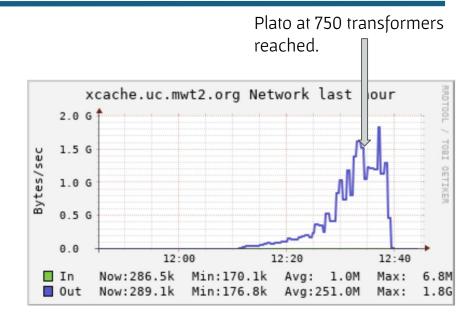
- Never scales up to use all cores.
- XCache and S3 endpoints basically idle.
- Not all requests start right away some more optimization possible in file path finding.
- Factor 4–5 speedup probably possible.












13

## ServiceX xAOD – single dataset



- Reading a single dataset (30885 files ~30TB).
- Single Jet collection, simple cut selection.
- Selection fully cached in xcache.
- Transformer CPU utilization at 70–80%.
- Transformers scaled up to the limit of 750 cores.
- We can do much better with startup write a custom HPA.
- Once that's done, the next limiting factor will be number of CPUs available (our xCache can support up to ~3500 transformers like this).





## ServiceX xAOD



| Period | Files  | Size[GB] |  |  |
|--------|--------|----------|--|--|
| К      | 9312   | 11704    |  |  |
| М      | 18747  | 24008    |  |  |
| F      | 5416   | 5800     |  |  |
| I      | 801    | 1000     |  |  |
| С      | 9567   | 12544    |  |  |
| L      | 30885  | 31006    |  |  |
| D      | 16966  | 23311    |  |  |
| Q      | 11164  | 12153    |  |  |
| 0      | 14079  | 17228    |  |  |
| Sum:   | 116937 | 138755   |  |  |

Processing fully cached data: 1.5 hours.

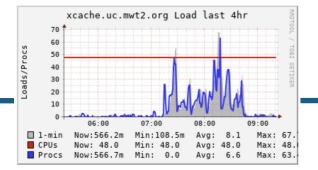
Took ~40 min to get all the datasets looked up and started.

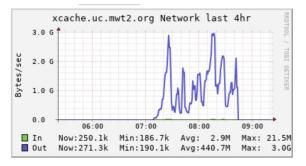
Scaled up to ~900 cores.

Sometimes transformers would suddenly scale down. It appears not all the input data was in the XCache.

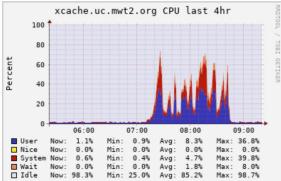
Reading a single Jet collection, simple cut selection.

When reading remotely, it takes whole morning, several retries.


When cached CPU utilization at 70-80%.


At this scale path lookups take considerable time (some of the lookups expired from the cache – TTL: 1 day).

| Title    | Submitted by  | Start time          | Finish time | Status         | Files completed | Workers |
|----------|---------------|---------------------|-------------|----------------|-----------------|---------|
| period_M | Ilija Vukotic | 2023-05-02 16:53:51 | -           | Submitted      | 0 of 0          | -       |
| period_Q | Ilija Vukotic | 2023-05-02 16:53:51 | -           | Running        | 2872 of 22328   | 74      |
| period_D | Ilija Vukotic | 2023-05-02 16:53:51 | -           | Submitted      | 0 of 0          | -       |
| period_F | Ilija Vukotic | 2023-05-02 16:53:51 | -           | Running        | 3762 of 5416    | 79      |
| period_C | Ilija Vukotic | 2023-05-02 16:53:51 | -           | Submitted      | 0 of 0          | -       |
| period_K | Ilija Vukotic | 2023-05-02 16:53:51 | -           | Running<br>82% | 7649 of 9312    | 156     |
| period_O | Ilija Vukotic | 2023-05-02 16:53:51 | -           | Running<br>34% | 4850 of 14079   | 107     |
| period_L | Ilija Vukotic | 2023-05-02 16:53:51 | -           | Running<br>94% | 29242 of 30885  | 443     |
| period_l | Ilija Vukotic | 2023-05-02 16:53:51 | -           | Submitted      | 0 of 0          | -       |


## ServiceX xAOD

Only a little bit of space to optimize transformers. Requests take time to ramp up. x 3 improvement possible.









