
Benchmarking discussion

IRIS-HEP AGC workshop 2023
05.05.2023

Fengping Hu, Lincoln Bryant, Ilija Vukotic
Enrico Fermi Institute
University of Chicago

1

Target

● Process 200TB in 20 minutes
○ Assume read 10% → 20TB/20*60s = 133Gbps
○ Assume each event is 2KB and 10% is streamed →

133*10^6/8*0.2 = 83.5Mevents/s
○ Assume 25 kevents/core/second => needs 3340 cores
○ 133Gbps/35 nodes → 3.8Gbps per node
○ Each core 133 Gpbs/3340 = 40Mbps

2

Sanity Check

3

Target UChicago AF

Disk 200 TB >1 PB

Network 133 Gbps 200 Gbps WAN
>200 Gbps LAN

CPU 3340 CPU Cores 4560 CPU Cores (K8S)

● The target is well-scoped for the UChicago AF

Throughput test setup

● Coffea-casa Dask workers read data from ~800 files across 15 fast
compute nodes with 25Gbps links

● Each Dask worker requests a few selected columns via:

uproot.open(filename)["Events"].arrays(arrays_to_read)

● Compared three file access methods:
○ Locally, via CephFS shared filesystem:

■ 19 hyperconverged nodes with spinning disks and 10Gbps links
○ Remotely, via XRootD at UNL:

■ https://xrootd-local.unl.edu:1094//store/user/AGC/nanoAOD/
○ Remotely, via XRootD with a local XCache at UChicago

4

https://xrootd-local.unl.edu:1094//store/user/AGC/nanoAOD/

Local filesystem throughput scaling with number of workers

● From left to right the
number or workers:
50(~1GB/s), 100(~2GB/s),
200(~3GB/s), 400(5GB/s),
800(5GB/s)

● Scales almost linearly in the
beginning

● 10-20MBps per worker

5

Remote files throughput scaling with number of workers

● Scales linearly from 50,
100 and 200 workers,
bottlenecked somewhere
from 200 workers to 400
workers

● Total is 40MBps/node * 15
nodes = 600MBps

● Per workers is 600MBps /
200 workers =
3MBps/worker

6

Remote files throughput with xcache

● xcache.af.uchicago.edu:10
94

● Xcache at UChicago AF:
2*25Gbps links

7

Misc data points

● Cat file to /dev/null – 113MBps
● Cat file to /dev/null after os cache - 3300MBps
● uproot.iterate(f"{fname}:Events", expressions = arrays_to_read)

○ Read a few columns –50MBps(filesize/time)
○ Read a few columns with os cache - 823MBps
○ Read all the columns - 35MBps
○ Read all the columns with os cache - 113MBps

8

Running the benchmark as htcondor job directly vs in dask

● Dask worker are also Docker
universe HTCondor jobs, we can
control the number of workers
via the scaling parameters

● With direct HTCondor jobs, we
run one task as one job, so there
will be 787 jobs running
concurrently ,this will be similar
to the 800 Dask worker case

● The data throughput graph
shows the similar results indeed

9

Meeting the Challenge

● What needs to be improved to hit our target of
200TB in 20min?
○ Identify and resolve bottlenecks in the Dask pipeline

10

ServiceX data Access

Tested current production version (1.1.4).

Two instanced deployed on UC AF (xAOD and Uproot).

Allocated 1k cores for the tests.

Each dataset run concurrently (using ServicexDataBinder).

Datasets:

● Uproot - 6 datasets - 3TB in 21k files
● xAOD - 9 datasets - 136TB in 117k files

11

ServiceX - Uproot

Reading a single variable.

When reading remotely, it takes hours.

All requests stay at 10 transformers - default
minimal scale.

12

Reading fully cached data: 16 minutes.

CPU utilization never goes above 15%, so
horizontal autoscalers never trigger
(default is 30%).

Had to manually lower HOA to 10%, then
it scales up but not very fast.

ServiceX Uproot

Never scales up to use all cores.

XCache and S3 endpoints basically idle.

Not all requests start right away - some more
optimization possible in file path finding.

Factor 4-5 speedup probably possible.

13

S3 endpoint

ServiceX xAOD - single dataset

14

Reading a single dataset (30885 files ~30TB).

Single Jet collection, simple cut selection.

Selection fully cached in xcache.

Transformer CPU utilization at 70-80%.

Transformers scaled up to the limit of 750 cores.

We can do much better with startup - write a
custom HPA.

Once that’s done, the next limiting factor will be
number of CPUs available (our xCache can support
up to ~3500 transformers like this).

Plato at 750 transformers
reached.

ServiceX xAOD

15

Reading a single Jet collection, simple cut selection.

When reading remotely, it takes whole morning, several retries.

When cached CPU utilization at 70-80%.

At this scale path lookups take considerable time (some of the
lookups expired from the cache - TTL: 1 day).

Processing fully cached data: 1.5 hours.

Took ~40 min to get all the datasets looked up and
started.

Scaled up to ~900 cores.

Sometimes transformers would suddenly scale down.
It appears not all the input data was in the XCache.

ServiceX xAOD

Only a little bit of space to
optimize transformers.
Requests take time to ramp up.
x 3 improvement possible.

16

S3 endpoint

