V₃Si thin film deposition at Daresbury Laboratory.

WP9 meeting

Christopher Benjamin

Overview

- As expected from an A15 superconducting material, V_3 Si has a relatively high critical temperature, T_c , of ~17.2 K. Similar expectation to Nb₃Sn.
- Previous work has various methods of thin film production of V₃Si:
 - Diffusion of Si into Bulk V ¹
 - Co-sputtering and single target sputtering using magnetron sources²
 - HiPIMS³
- We have started with Pulsed DC magnetron sputtering of single alloy target.

¹S. M. Deambrosis. Proc. SRF '07. WE203.

² K. Howard, arXiv: 2031.00756, 2023

³F. L. Estrin, 9th Int. Workshop on Thin Films and New Ideas for Pushing the Limits of RF Superconductivity, Poster 2021

Deposition system

- System is equipped with a single planar magnetron source (V₃Si alloy target).
- Sample holder capable of heating to 800 C.
- Kr as the process gas.
- Base pressure 5x10⁻⁹ mbar

Deposition 1 –

Pulsed DC magnetron sputtering.

Three samples:

10 x 10mm Cu piece

50 mm diameter Cu disk

Sapphire wafer

T_c (Four point probe) [Liam Smith]

Surface analysis: SEM/EDX SIMS **XPS**

> DC magnetic field penetration measurements [Liam Smith]

Deposition parameters:

Substrate Temp: 790 C

Deposition length: 1:20:00

Pulse length: 1.1 μs Frequency: 350 kHz

Power: 300 W

Surface Characterisation: SEM/EDX

V₃Si cross section on Cu

V₃Si on Cu morphology

V₃Si on sapphire

Surface Characterisation: SEM/EDX

D1

Energy dispersive x-ray spectroscopy:

Composition:

- V 72 %
- Si 28 %
- Slightly silicon rich.

V₃Si on Cu morphology

V₃Si on sapphire

Surface Characterisation: SIMS

D1

Last dataset taken on this sample set was Secondary Ion Mass Spectroscopy

- We now have the capability to conduct SIMS measurements and will be introducing it as a final characterisation step. Depth profiling and checking for contamination through the bulk.
- A surface oxide layer present.
- A consistent V Si layer throughout the Bulk

T_c Measurements

D1

- A measured T_c of 14.2 K on the sapphire sample using four point probe.

Deposition Summary

In total 10 depositions have been done with T_c's measured for most sapphire substrates. A few samples were sent

to Eugen Seiler For SQUID.

 Initial work was to investigate substrate temperature during deposition.

 T_c varied with no consistency in relation to substrate temperature.

Last two depositions (9 and 10) repeated first deposition but were not superconducting.

Composition variation

- Energy dispersive x-ray analysis shows a change in composition over time.
- All samples Si rich but at% increasing over time.
- Resulting in later depositions definitely not the desired A15 phase.
- Target removed and replaced with a fresh one.

Composition variation

- Energy dispersive x-ray analysis shows a change in composition over time.
- All samples Si rich but at% increasing over time.
- Resulting in later depositions definitely not the desired A15 phase.
- Target removed and replaced with a fresh one.

Next steps

- Full characterisation of surface and bulk can now be achieved with SIMS, SEM, XPS and EDX. In conjunction with superconducting testing facilities.
- A fresh V₃Si target has been loaded into the system. First set of depositions will investigate composition and reproducibility of the film.
- Investigation into substrate temperature, post-annealing and HiPIMS.
- Adapt the system to allow for the 100 mm diameter samples for the RF choke cavity system to measure surface resistance managed by Dan Seal.

Thanks for listening

Acknowledgements

STFC: Reza Valizadeh, Oleg Malyshev, Liam Smith, James Colon and Daniel Seal

Institute of Electrical Engineering SAS: Eugen Seiler for the SQUID measurements

