

RF Surface Resistance Measurements on Planar Samples at STFC

9th IFAST WP9 Meeting 18th April 2023

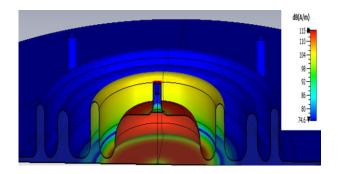
Daniel Seal

Lancaster University/Cockcroft Institute daniel.seal@cockcroft.ac.uk

Facility Reminder



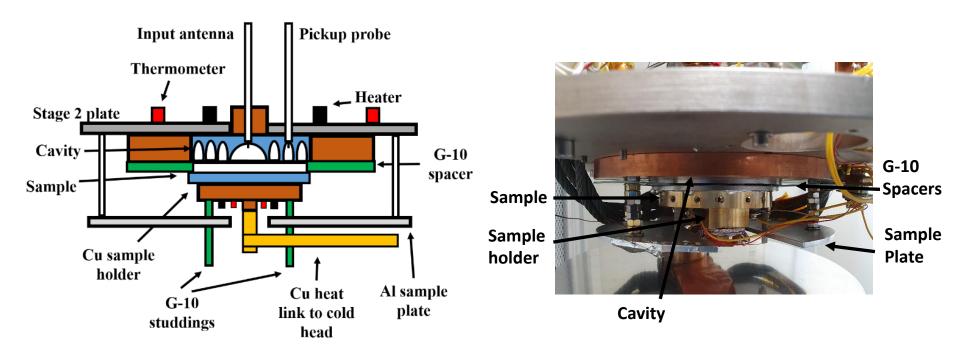
The Choke Cavity Facility


- Two part test cavity in LHe-free cryostat:
 - Bulk Nb choke cavity
 - Planar disk **90 130 mm** diameter, 1 – 10 mm thickness
- **RF-DC** compensation $\rightarrow R_s(T, B)$
- VNA measurements $\rightarrow \Delta f \rightarrow \Delta \lambda$
- **Parameters:**
 - $f_0 = 7.8 \text{ GHz}$
 - $T_{\text{Sample}} \ge 4 \text{ K}$
 - RF Power up to 1 W (for now!)
 - $B_{\text{sample, pk}} \leq 1 \text{ mT}$

Choke cavity

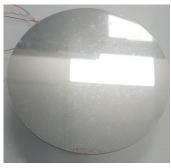
Planar disk

B-fields



The Choke Cavity Facility

1 sample test $(R_s(T))/2$ days



Cu Samples

Diamond Turned (DT) from RAL $(S_a \sim 2-3 \text{ nm}, S_q \sim 5-6 \text{ nm})$

Metallographic Polishing (MP) from IJCLab courtesy of D. Longuevergne & O. Hryhorenko $(S_a \sim 20 \text{ nm, Ave } S_7 \sim 2.5 \text{ } \mu\text{m})$

EP, SUBU, EP + SUBU from INFN courtesy of E. Chyhyrynets and C. Pira

Samples are indium brazed to sample holder under vacuum at ~ 160 °C

RF Measurements of a Bulk Nb Sample



Bulk Nb

Bulk Nb: RRR = 300, BCP with 60-100 μm removed courtesy of E. Chyhyrynets

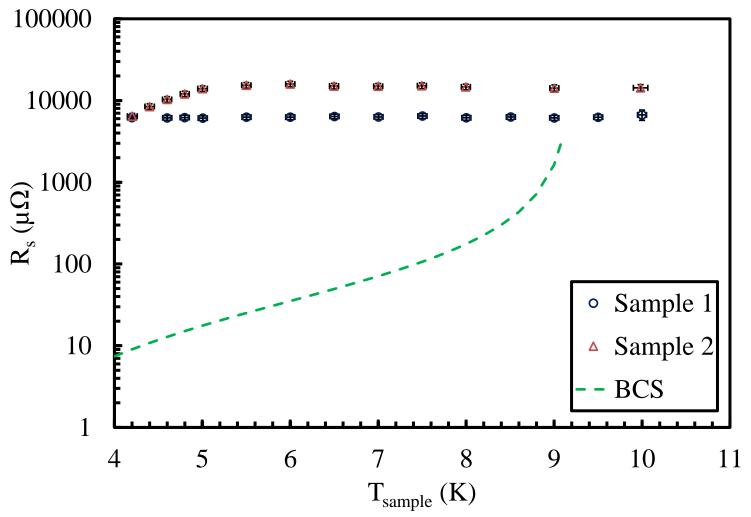
* 4 more bulk Nb (RRR = 300) available for treatment

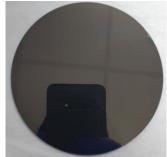
RF Measurements of Nb on Cu Samples

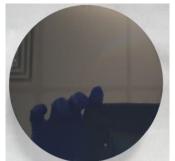
Nb on Cu Samples Tested

Sample	Substrate Preparation	Deposition Temperature (°C)	~ Thickness (μm)	
Effect of film thickness with DC magnetron				
1	DT	300 - 350	0.6	
2	DT	300 - 350	1.2	
Effect of deposition temperature with HiPIMS				
3	DT	400 - 450	3	
4	DT	RT	3	
5	DT	300 - 350	3	

^{*} Surface analysis to be shown at 10th meeting



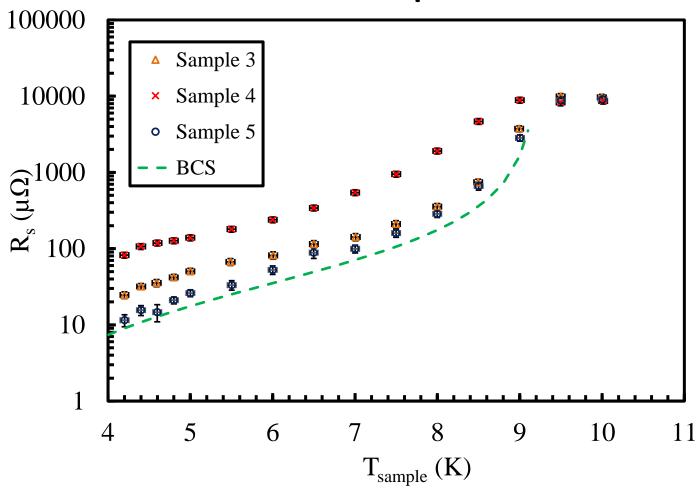


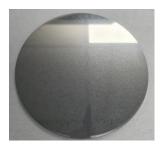


Samples 1 & 2

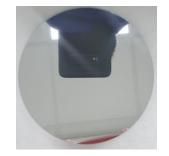
Sample 1: DC magnetron, 300 -350 °C, ~ 0.6 μm

Sample 2: DC magnetron, 300 -350 °C, ~ 1.2 μm





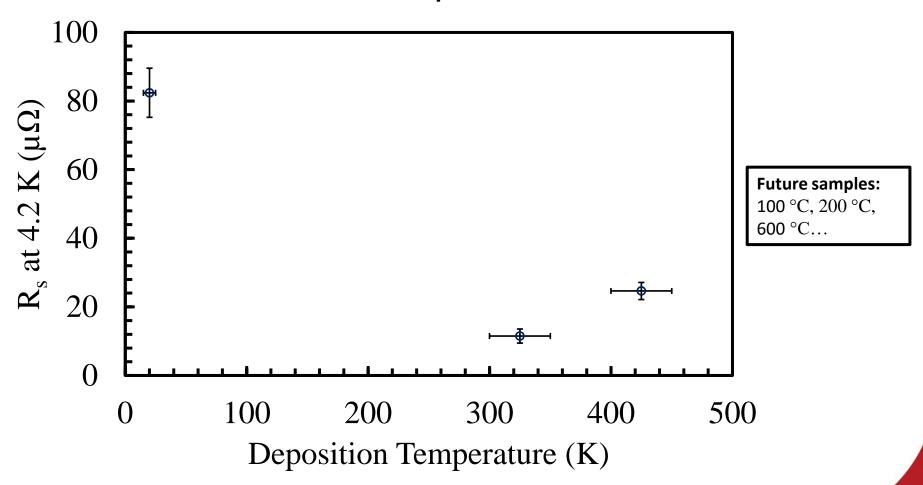
Samples 3 - 5



Sample 3: $400 - 450 \,^{\circ}\text{C}$, ~ $3 \, \mu m$

Sample 4: RT, ~ 3 μm

Sample 5: 300 – 350 °C, ~ 3 μm

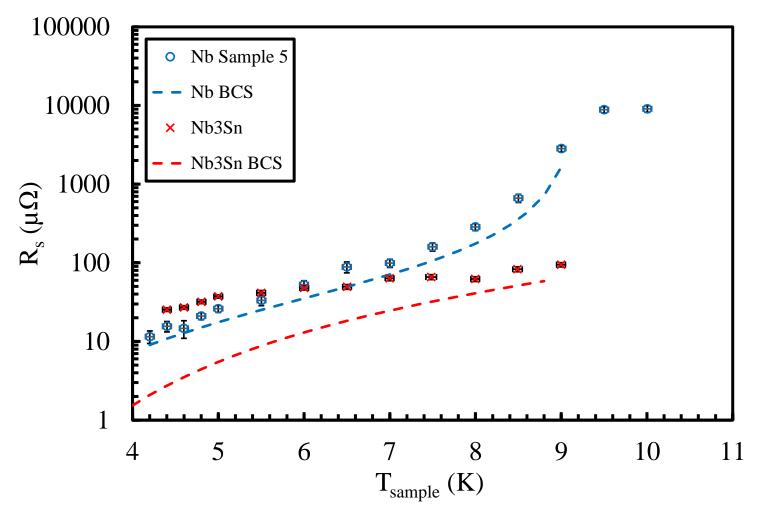


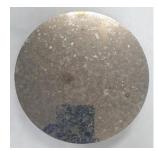
Samples 3 – 5: towards optimising deposition temperature

Future Nb Samples

Sample	Substrate Preparation	Deposition Temperature (°C)	Thickness (μm)	
Effect of deposition temperature with HiPIMS				
3	DT	400 - 450	~ 3	
4	DT	RT	~ 3	
5	DT	300 - 350	~ 3	
6	DT	600-650	~ 3	
7	DT	100	~ 3	
8	DT	200	~ 3	
Effect of HiPIMS + positive kick				
	DT	?	~ 3	
Effect of substrate preparation				
	MP, EP, SUBU, EP + SUBU	?	~ 3	

RF Measurements of a Nb₃Sn Sample

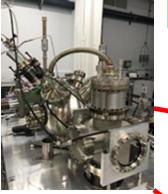




Nb₃Sn Sample

Nb₃Sn Sample: DC magnetron, ~ 600°C, ~ 600 nm

Next Steps



From planar samples to real cavities

3 sets of samples:

RF test

Current Status & Future Plans

- 1. Optimise parameters of Nb thin films → Baseline for multilayers
- 2. Continue Nb₃Sn, NbTiN, (& V₃Si) single layer studies
- 3. Multilayers (on TF Nb and/or bulk Nb)
- Cut samples → MFP (Liam) & surface analysis (Reza/Chris) etc
- Test IJCLab treated bulk Nb 2 choke cavity
- Move to an RF bunker → higher peak fields (overlapping with QPR)
- Happy to accept samples on disks 90-130 mm diameter (up to 10 mm thickness)
 - Can provide unpolished or polished (mainly DT) Cu
 - Contact: <u>daniel.seal@cockcroft.ac.uk</u>
- Potential for laser treatment at RTU and/or flash at HZDR?

Acknowledgements

STFC/CI: O. B. Malyshev, T. Sian, R. Valizadeh, P. Goudket, S. Hitchen, L. Smith, J. Conlon, C. Benjamin, S. Wilde, K. Dumbell, N. Pattalwar, S. Pattalwar, A. Blackett-May, F. Lockwood-Estrin, A. Hannah, A. Vick, L. Cowie, S. Bibby-Trevor, R. McAllister, A. Palmer, A. Wooten, K. Morrow, M. Roper, M. Beardsley

Lancaster University/CI: G. Burt, N. Leicester, D. Turner, H. Marks

INFN: C. Pira, E. Chyhyrynets

IJCLAB: D. Longuevergne, O. Hryhorenko

CEA: C. Antoine

Thank you for listening

Daniel Seal

Lancaster University/Cockcroft Institute daniel.seal@cockcroft.ac.uk

