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Abstract

1 Introduction

In the CERN’s Large Hadron Collider (LHC) [1,2], approximately one billion collisions between protons (pp)
happen every second. Those collisions generate outgoing particles that are measured by dedicated, custom-
made particle detectors. The main data stream collected by such a detector is close to 1.4 GB/s. After the
upcoming LHC upgrade to the High-Luminosity LHC (HL-LHC) [3] this number will increase by a factor of
3.5–5. In High Energy Physics (HEP), an important part of the data analysis is the simulation of pp colli-
sions that are used to test analysis techniques, estimate the particle detectors’ efficiencies and resolutions,
make comparisons with collected data, etc. Usually, the number of simulated events is an order of magnitude
higher than the number of stored data, such that the statistical uncertainty of the generated processes doesn’t
dominate overall uncertainty. For simulating collision data, the generation task uses Monte Carlo (MC) event
generators. However, the increased granularity of the detectors and the higher complexity of the collision
events after the HL-LHC upgrade pose significant challenges which cannot be solved by increments in the
computing resources alone [4].

In particular, one of the most common final-state objects in pp collisions is in the form of showers of
hadronic particles, the hadronic jets [5]. These can be described by the quantities of its constituent particles,
mainly their four-momentum. The Particle Flow (PF) [6] algorithm is used to combine the particles’ infor-
mation obtained by several sub-detectors to precisely describe its properties. One can use jet reconstruction
algorithms [7] to cluster the particle constituents into a jet and obtain its relevant properties1 for physics
analysis such as its invariant mass, transverse momentum (pT ), energy, ϕ, η and many other.

Being able to speed-up the process of jets simulation in a particle detector would be of great advantage
to mitigate the needed overhead in computing resources. One of the avenues that shows very promising
results is to use Machine Learning (ML) algorithms to perform the jets simulation. The goal is to maintain
MC methods’ efficiency while making the process orders of magnitude faster. Recently, several approaches
using Neural Networks (NN) have been studied and applied for this purpose. More specifically, Generative
Adversarial Networks (GAN) [8,9] for the generation of jet constituents and, consequently, jets, have already
been explored and provided very inspiring results. Another promising technique is the use of Variational
Autoencoders (VAE), while already has been explored [10], is yet to demonstrate high fidelity results.

In this work, a new method for the generation of hadronic jets from noise is presented. It is based on a
VAE coupled with a Normalizing Flow (NF) and trained in a two-step process. The paper is organized as
follows: section 2 contains a literature overview of ML applied to HEP, mainly focusing on generative methods
for jets simulation; in section 3 the dataset and the model are described; section 4 details the custom loss
function and the evaluation metrics; results are presented and discussed in section 5; finally in section 6 we
summarize the work and give an outlook for using the new method.

1In the LHC experiments, the coordinate system used is the following: origin is set at the center of the local pp collision
region; y axis is defined vertically upward and z axis along the proton beam direction. 3D coordinates are usually given in terms
of ρ = (x2 + y2)1/2, azimuth angle ϕ and pseudorapidity η = − ln tan(θ/2), where θ is the polar angle.
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2 Related Work

ML techniques have been applied to hadronic jets generation following several distinct approaches. Some of
the first attempts [11–15] were performed using convolutional neural networks (CNN) given the impressive
computer-vision results provided by those and the fact that an image-like representation of a jet comes nat-
urally from the particle detectors’ data. Jet image datasets are still popular amongst researchers, and have
also been used by works that implemented other types of generative network architectures, such as graph
neural networks (GNN) and normalizing flows (NF) [16–18]. Other jets representations such as vectors of
energy deposits or jets characteristics have also been applied [19,20].

Recently, particle-based jet datasets have also been extensively used by the ML community in the con-
text of jets generation [8–10, 21]. They are composed of the jets constituent particles’ properties and give a
detailed description of particles distribution inside the jet, which is known as the jet substructure [22, 23].
GANs based on graph networks [8,9] have provided inspiring results when aiming to generate particle-based
jets, retaining great similarity between generated jets and MC simulated jets, while improving the speed of
simulation by 4 to 5 orders of magnitude depending on the number of particles inside the generated jet.
Some VAE based on convolutional networks have also been implemented using the same dataset for jets
fast simulation [21] and for the jets generation as well [10]. However, for the later, there is great room for
improvement when comparing the VAE generated jets with MC simulated jets.

The premise of this work is that the VAE by itself is not enough to capture the full characteristics of
a hadronic jet, mainly due to the a priori choice of the latent space distribution. On the other hand, a
combined VAE+NF approach, which has already been applied for image generation [24], time series data
prediction [25], among others, has not yet been tried for HEP applications. In this work, that approach is
used to improve on the generation capacity of the VAE.

3 Dataset and Model

We use the gluon HLS4ML LHC Jet dataset [26, 27] composed of ∼177k gluon jets, containing the jets’
constituent particles tri-momentum (px, py and pz). Those were obtained from simulated pp collisions with
a center of mass energy of

√
s = 13 TeV that produced jets with pT ≈ 1 TeV, using a parameterization of

a general purpose LHC experiment-like particle detector to simulate particles’ interaction with the detector
material. The particle showers were reconstructed using the anti-kT algorithm [28, 29] with ∆R = 0.8. All
of the 177k samples were divided into ∼ 70% for training, and ∼ 15% each for validation and testing. Even
though there is no intrinsic ordering to the particles inside a jet, due to this representation of a hadronic
jet being rather sparse, the particles were ordered in a list by decreasing pT and only the first 30 particles
were used as input to the ML algorithm. If a jet didn’t contain the 30 particles, the rest of the list was
filled with zeros (zero-padding). A feature-wise standardization was performed to bound the values of the
tri-momentum to be in the range [0.0, 1.0] as input to the network.

3.1 Convolutional VAE

To accommodate this representation of the input dataset, the chosen model is a VAE [30–32] composed of
convolution layers (ConVAE). The variational autoencoder is made of three structures: an encoder, which
learns to compress the representation of the input data into a lower dimensional representation; the latent
space, that stores this lower dimensional representation into values that closely follow a probability distri-
bution defined by the user; and the decoder, which decodes the latent space values to the output. The
probability distribution of the latent space values has to be differentiable, easy to implement and to sample
from, where the most common choice is the Standard Gaussian, N (0, 1). The goal of the VAE is to do
this process to produce output data that is as similar as possible to the input in such a way that, during
the generation step, it is possible to randomly sample from N (0, 1) and directly insert those values into the
decoder to generate new data that resembles the training dataset.
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The network was implemented in PyTorch library [33]. In this work, the encoder and decoder structures
are mirrored, and only the encoder will be described. It is composed of a given number of consecutive two-
dimensional convolution layers where the last convolution layer is flattened and introduced into two linear
layers, where the latter is fed into the latent space. An activation function is applied after each layer, except
for the last linear layer of the encoder and the first linear layer of the decoder. The input and output layers
of the network have a fixed size of 3×30, the activation function in between each layer, number of convolution
layers in encoder and decoder, kernel size, latent dimension size, number of filters and number of nodes in
the linear layers between encoder (decoder) and the latent space were set as hyperparameters of the NN to
be obtained through optimization. The activation function of the last deconvolution layer of the decoder was
chosen to be the Sigmoid [34], to bound the output values in between 0.0 and 1.0, given the feature-wise
standardization.

In the encoder architecture, the number of input nodes of the first linear layer is fixed by the size of the
last convolution layer, the number of output nodes of the second linear layer is fixed as two times the number
of dimensions of the latent space that will provide the means and standard deviations for the reparameteri-
zation trick [32], and in the decoder architecture, the number of input nodes in the first linear layer is fixed
by the latent space size and the number of output nodes in the second linear layer is fixed by the size of the
first deconvolution layer. The stride and padding of the convolution layers were kept as 1 and 0, respectively.
The first convolution layer has 1 input filter and Nfilters output filters, and the rest of the convolution layers
has an input number of filters equal to 2layer−1×Nfilters and an output number of filters equal to 2layer×Nfilters.

Hyperparameter optimization was performed using the Optuna package [35], which allows for fast conver-
gence due to an aggressive pruning based on intermediate results and easy parallelization. The details of the
hyperparameter ranges for the hyperparameter optimization are described in appendix A. Each ConVAE was
set to go through 300 trials of the optimization, where each trial was executed for 300 epochs of the training.
At training time, the batch size was kept fixed at 100 samples and the Adam optimizer [36] with a learning
rate (lr) that was set by the hyperparameter optimization was used to update the network parameters at
each epoch. During the optimization, the evaluation metric (described in details in section 4) was minimized
using the value evaluated on the validation dataset after every 5 epochs. The ConVAE was retrained with the
best set of hyperparameters for 1500 epochs, and the best model was chosen as the one that that exhibited
the smallest value of the metric.

3.2 Normalizing Flows

When the ConVAE is tuned for reconstruction, no constrain is applied over the values of the latent space to
follow a given probability distribution. In this case, the probability distribution of those values, pθ(z), should
be one of the best possible for the input dataset reconstruction. Those reconstruction-imposed distributions
are not known and one couldn’t do any modifications to the VAE itself to try to use them. However, when
combining that approach with the usage of Normalizing Flows (NF) [37,38], which is a technique that allows
training a NN to find the transformation that takes one probability distribution into another, and given that
the values of the latent space are accessible, one can find the transformation from those to a simple and

easy to sample from probability distribution, such as pθ(z)
ofo−−→ uφ(x) where uφ(x) = N (0, 1). Since these

transformations are invertible by construction, it is then possible to start from values that follow the simple
distribution, pass it through the inverse of the transformation and get values that follow the complex and

unknown distribution as uφ(x)
f−1

−−→ pθ(z). The training of the network is done by maximizing MAYBE
CHANGE THE NOTATION OF EQUATIONS 1, 2 AND 3, AS THEY ARE THE SAME IN THE REALNVP
PAPER!!!

log(pθ(z)) = log(uφ(f(z))) + log

(∣∣∣∣det(∂f(z)

∂z

)∣∣∣∣) , (1)

where ∂f(z)
∂z is the Jacobian of the transformation.

The NF network used in this work was based on the RealNVP network2 [39, 40] that makes use of very

2The implementation of the RealNVP network in this work was performed following the GitHub repository https://github.

com/ispamm/realnvp-demo-pytorch.

3

https://github.com/ispamm/realnvp-demo-pytorch
https://github.com/ispamm/realnvp-demo-pytorch


simple analytic expressions for each intermediate transformation

y1:d = x1:d, (2)

yd+1:D = xd+1:D · exp(s(x1:d)) + t(x1:d), (3)

using the coupling layers [41], where only a subset of the input data undergoes the transformations while the
rest remains untouched, and the subsets are permuted every epoch to ensure that all input data goes through
the flows. Each individual transformation is still complex enough since they use two parameters s and t that
are obtained as the output of Multilayer Perceptrons (MLPs), which can be as complex as wanted.

To combine the ConVAE with the NF network, a two-step training was performed (ConVAE+NF). The
procedure was as follows: the hyperparameters of the ConVAE were optimized as described before, and a
model constructed with the best set of them was trained for 1500 epochs. The model that showed smallest
metric when comparing the input with reconstructed jets, calculated every 5 epochs, was saved. Values of
the latent space of the saved network, when receiving as input the training and validation jet datasets, were
extracted and used to generate new latent space training and validation datasets for the use in the NF. A
diagram containing the full training procedure is displayed in figure 1.

Figure 1: Illustration of ConVAE+NF network training scheme.

The NF network was also implemented using the PyTorch library. The optimizer chosen to update the
network parameters after each epoch, aiming to minimize the negative of the mean of expression in equation
1 as loss function, was Adam with a learning rate that was optimized via the Optuna package, and an ex-
ponential decay rate valued as lr/10.0. The number of flows and the number of layers and nodes of the two
MLPs that determined s and t were set as hyperparameters to be optimized, the ReLU activation function
was used in between each layer of the MLPs, and for s the hyperbolic tangent was used after its last layer
to constrain its values to be in between (-1.0, 1.0). The number of input and output nodes of the s and t
networks were set to match the number of latent dimensions of the ConVAE.

The metric was used to evaluate the combination of both networks as the hyperparameter optimization
objective as follows: after every four epochs, a number of latdim values were sampled from N (0, 1) and fed
into the inverse of the NF network, whose output was given as input to the decoder of the ConVAE tuned
for reconstruction, and its output was compared with jets from the validation dataset. The optimization
occurred for 300 trials with 20 epochs of the NF training per trial, and the best set of hyperparameters was
used to train another NF network for 100 epochs where the model that exhibited the smallest metric value,
obtained after every epoch, was saved.
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4 ConVAE Loss Function and Evaluation Metric

The VAE loss function is given by the following expression [30]:

L(θ, ϕ) = −Ez∼qϕ(z|x) [log pθ(x|z)] +DKL(qϕ(z|x)||pθ(z)), (4)

where the first term on the right hand side, also known as the reconstruction term (Lrec), measures the
distance between the output produced by the network and the input data, and the second term measures
the difference between the probability distributions of the output of the encoder values with the latent space
values, in which the distribution of the latent space is defined a priori by the user, and the distribution of
the output of the encoder is inferred as a distribution that is easy to work with, but still complex enough to
describe its output, where the usual choice is a multivariate Gaussian.

The minimization of this loss function ensures that the output will be as close as possible to the input,
while the values of the latent space follow the distribution chosen by the user. In addition, one can add a
hyperparameter β [42] to control the importance of each term in the loss. The loss function can be then
written as:

LVAE = (1− β)Lrec + βDKL. (5)

The reconstruction loss term was customized to ensure good generation capability to the network. The
loss function that compares output particles with input dataset particles was chosen to be the chamfer
distance [43], also referred to as nearest neighbour distance (NND). This loss function is preferred over the
commonly-used Mean Squared Error (MSE) function, as it preserves permutation invariance, which is needed
since the reconstructed particles in the jets have no intrinsic ordering. The NND loss is expressed as :

LNND =
∑

k

[∑
i∈Jk

min
j∈Ĵk

D(p⃗i, ⃗̂pj) +
∑

j∈Ĵk
min
i∈Jk

D(p⃗i, ⃗̂pj)

]
, (6)

where i and j are indices that go through the particles in the input and output samples, respectively; k is the
index on a given jet, where Jk represents a given dataset; hat distinguishes between input (without) and out-

put (with) objects; and D(p⃗i, ⃗̂pj) is the Euclidean distance between input and output particles, treating each
as a vector in the px, py and pz space. The first term finds the closest output particle to a given input parti-
cle, the second term finds the closest input particle to a given output particle, and their distances are summed.

The LNND alone was not enough to provide good quality of the generated jets. Therefore, physics inspired
knowledge had to be included in the form of additional distances between the input and output jets properties.
The best results were achieved using a combination of the jets mass and pT terms using MSE as a distance
function. The additional loss term was added as follows :

LJ =
∑

k [γpT
MSE(pTk

, p̂Tk
) + γmMSE(mk, m̂k)] . (7)

where k is the index on a given jet; hat distinguishes between input (without) and output (with) objects;
and parameters γpT

and γm were used to weight each contribution. Finally, the combined reconstruction loss
is given by

Lrec = αLNND + γLJ, (8)

in which α and γ were used to weight the importance of each contribution to the loss function. The full set
of loss parameters (α, β, γ, γpT

and γm) was also optimized with Optuna.

It is important to note here that the hyperparameter optimization procedure was carried out in two steps:
the first where only the loss parameters and the optimizer learning rate were being optimized while the set
of network’s parameters was fixed at some reasonable choices established after manual tests, and the second
where all the network’s parameters were optimized given the just found best set of loss parameters. This
was performed to ensure convergence of the optimization procedure in a feasible amount of time given the
amount of resources available.

The evaluation metric chosen to quantitatively measure the generation capabilities of the distinct models
was the Earth Mover’s Distance (EMD; analogous to the 1-Wasserstein’s distance) [44], calculated for each
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histogram of the input and output jets mass, energy, pT , η and ϕ, and summed to get the EMDsum. From
figure 2 there is a clear tendency of EMDsum to be minimized and reach a plateau as a function of the epochs,
which is also stressed out by the behavior of each separate component.
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Figure 2: Evolution of EMDsum and each of its components during training calculated every 5 epochs,
EMDsum (blue), EMDmass (orange), EMDpT

(green), EMDϕ (red), EMDenergy (purple) and EMDη (brown).

As stated before, this metric was used as the hyperparameter optimization objective, the choice of the
best model, and is also what was ultimately used in between distinct approaches to determine the model
with best generation capacity. A qualitative comparison was also performed on variables that capture the
distribution of the particles inside the jets, where the energy-flow polynomials (EFPs) [45] histograms pro-
duced using input and output jets constituents’ characteristics were compared, which helped to determine
the full extent of the possibilities using the ConVAE. The computation of the EFPs was performed using the
JETNET package [46], where the 5 EFPs used correspond to the set of loopless multigraphs with 4 vertices
and 4 edges [8]. MAYBE CHANGE THIS. IT IS STILL TOO SIMILAR TO THE MPGAN PAPER!!!

5 Results and Discussion

The first approach was to optimize the hyperparameters, train and test the performance of a ConVAE
without further modifications (from here on named ConVAE tuned for generation). During hyperparameter
optimization, due to the difference in the magnitudes of Lrec and DKL, the β parameter range needed to be
kept close to 1.0, which maximized the generation capacity of the network, that is, exhibited the smallest
EMDsum. The final set of optimized hyperparameters is disposed in table 1.

lr α β γ γpT
γm latdim Filters Kernel Nlinear Layers Act. Func.

6.1×10−4 0.449 0.998 0.118 0.817 11.7 190 75 3 1100 4 ReLU

Table 1: Set of optimal hyperparameters for the ConVAE tuned for generation.

After hyperparameter optimization and saving the best model during training, the value of EMDsum for
this network was 0.0033. Figure 3 shows the comparisons of the distributions of input and output jets mass,
pT , energy, η and ϕ after hyperparameter optimization. Qualitatively, it is possible to notice that the com-
parisons for jets energy, η and ϕ are very similar, with differences only at the extremes of the histograms,
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while for pT there is a slight difference at the peak of the distribution and small discrepancies at both tails.
The greatest difference is when comparing jets mass, where, from the ratio of the histograms, only generated
jets with masses in the range 80 GeV ⪅ jmass ⪅ 175 GeV are reasonable. The histograms of the EFPs is
displayed in figure 4. From the histograms ratios it is possible to notice differences in the regions of small
EFPn, specially when comparing the bin closest to 0.
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Figure 3: Comparison of input jets variable distributions (red) with randomly generated jets from the Con-
VAE model (blue). From left to right, top to bottom: mass, energy, pT , η and ϕ distributions are displayed.
On the subplots the ratio gen/input is shown.

The second approach was the study of the ConVAE+NF model. To tune the ConVAE for reconstruc-
tion, β had to be constrained in the range [0.0, 0.1]. The complete sets of optimized hyperparameters are
displayed in tables 2 and 3. After both networks were trained, at the testing stage, randomly generated jets
were compared with jets from the test dataset, providing an EMDsum of 0.0026. The histograms of the jet
variables are displayed in figure 5.

From the EMDsum, it is possible to notice a great improvement on the generative capabilities of the
network. Looking at the mass histogram, which was troubling for the ConVAE tuned for generation, it is
possible to see that the randomly generated jets have great similarity with the input jets, not agreeing only
for masses smaller than 25 GeV. However, specially when looking to η, ϕ and pT histograms ratios, it is no-
ticeable that a structure arose and is causing some discrepancies between randomly generated and input jets.
Figure 6 contains the comparisons of the EFPs of input and generated jets and shows smaller discrepancies
for small values of EFPn, when compared to the ConVAE tuned for generation.

For comparison, a RealNVP network was also optimized, in the same way as the NF network for the
ConVAE+NF approach, and trained to receive as input a flattened jet3, transform it into N (0, 1), and invert

3Instead of the input jet be on the format 3×30 representing each particle’s px, py and pz , it was flattened to a 1×90 vector
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Figure 4: Comparison of input jets EFPs (red) with randomly generated jets from the ConVAE model (blue).
On the subplots the ratio gen/input is shown.

lr α β γ γpT γm latdim Filters Kernel Nlinear Layers Act. Func.

5.3×10−4 0.425 0.046 0.121 1.15 11.8 180 50 2 3000 4 ReLU

Table 2: Set of optimal hyperparameters for ConVAE tuned for reconstruction.

the transformation back to flattened jets. Table 4 contains the set of best parameters after hyperparameter
optimization for this network. The value of EMDsum for this case was 0.0049 and the comparison histograms
are in figure 7 for the jets variables and 8 for the EFPs. This comparison clearly shows that there is a big
advantage in combining the inference capability of the ConVAE, with the invertibility of the NF network.

Following the work done in [8], another set of metrics was calculated and compared to the MPGAN
results. WM

1 , WP
1 and WEFP

1 compute the average 1-Wasserstein distance between input and generated jets
mass, constituents ηrel, ϕrel and prelT , and the EFPs (described above), respectively, considering batches of
samples; FPND is the ParticleNet [47] version of the Fréchet Inception Distance (FID) [48], mainly used for
comparing images in computer-vision works; and coverage (COV) and minimum matching distance (MMD)
which measure the fraction of samples in X that were matched to Y and the average distance between
matched samples, respectively. TOO SIMILAR TO MPGAN PAPER, NEED TO CHANGE THE WAY IT
IS WRITTEN!!! From table 5, it is possible to observe that, in between the models implemented in this work,
the ConVAE+NF approach is quantitatively better than the other two in almost every metric. However, the
comparison with the MPGAN shows a very distinct picture in which the GAN outperforms the VAE in every
single metric. The advantage of the ConVAE+NF approach, however, is that it is approximately two times
faster ((18.30 ± 0.04) µs vs 35.7 µs as the average time to generate a jet; timing measured using a NVIDIA

containing all particles px, then all py and, finally, all pz .
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lr Nflows Layers Nlinear

2.9×10−4 55 4 [400, 350, 400, 400]

Table 3: Set of optimal hyperparameters for the NF to be used on the ConVAE+NF approach.
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Figure 5: Comparison of input jets variable distributions (red) with randomly generated jets from the Con-
VAE+NF model (blue). From left to right, top to bottom: mass, energy, pT , η and ϕ distributions are
displayed. On the subplots the ratio gen/input is shown.

Tesla T4 GPU) and, given that its generated jets can be of use for some physics analysis applications, it
might be useful in the future.

From the comparisons of the networks above, it is clear that the mixed VAE+NF approach exhibited an
improvement over the VAE only when looking into low and high-level hadronic jets variables. We attribute
this to the fact that not only the Standard Gaussian distribution is not the optimal probability distribution for
the elements in the latent space dimension, which was altered by the NF network, but, also, the decompression
of those values could be improved by using the same parameters of the ConVAE tuned for reconstruction.
There is still, however, some discrepancies in between the ConVAE+NF generated jets with input jets, mainly
related to the substructure variables, and with the results of the MPGAN. The core difference between the
two approaches is in the architecture chosen for the MPGAN that is a GNN. For the purpose of working
with jets, their constituents’ representation in terms of an unordered set of particles is much more natural,
intrinsically preserves permutation invariance, and most probably is the cause of the large differences between
ConVAE and MPGAN results.
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Figure 6: Comparison of input jets EFPs (red) with randomly generated jets from the ConVAE+NF model
(blue). On the subplots the ratio gen/input is shown.

lr Nflows Layers Nlinear

3.4×10−4 65 4 [150, 200, 350, 150]

Table 4: Set of optimal hyperparameters for the NF.

6 Summary and Outlook

We presented a novel technique in the context of hadronic jets generation in simulated pp collisions, based
on a machine learning approach that combined a Convolutional Variational Autoencoder with Normalizing
Flows. From the values of EMDsum obtained, there was a clear improvement with respect to the previous
work [10], not only by the application of hyperparameter optimization to the ConVAE, but also with the
usage of the ConVAE+NF technique. The generation of gluon jets was performed using the ConVAE+NF
and compared with a standard ConVAE, NF alone, and the MPGAN, in which the ConVAE+NF stand out
against the first two, but needs changes to be comparable to the later.

There is, however, an improvement in comparison with the MPGAN since the ConVAE+NF showed
a decrease of almost two times in the time to generate each jet. This observation by itself can already
offer advantages in physics applications where large amounts of simulated samples are needed but perfect
accuracy is not a strict requirement. It is worth noting, though, that the MPGAN architecture is based on
a graph neural network, which has a much more natural representation for a particle-based jet dataset. For
a future work, a GraphVAE+NF can be implemented, trained and tested to check for improvements in the
jet generation capabilities using the VAE architecture.
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Model WM
1 (×10−3) WP

1 (×10−3) WEFP
1 (×10−5) FPND COV↑ MMD

ConVAE 9.1 ± 0.6 8.5 ± 0.8 576 ± 1035 43.6 0.32 0.036
ConVAE+NF 4.5 ± 0.5 5.3 ± 0.4 197 ± 247 34.3 0.38 0.034

NF 12.7 ± 0.7 8.5 ± 0.8 8.6k ± 13.2k 93.6 0.38 0.033

MPGAN 0.7 ± 0.2 0.9 ± 0.3 0.7 ± 0.2 0.12 0.56 0.037

Table 5: Set of metrics used in [8] to compare the performance of distinct ConVAE and NF approaches.
In bold are the best values of the metrics when comparing the methods implemented in this work; last line
exhibits the performace of the MPGAN for the same gluon jet dataset.
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[3] O. Aberle, I Béjar Alonso, O Brüning, P Fessia, L Rossi, L Tavian, M Zerlauth, C. Adorisio, A. Adrak-
tas, M. Ady, J. Albertone, L. Alberty, M. Alcaide Leon, A. Alekou, D. Alesini, B. Almeida Ferreira,
P. Alvarez Lopez, G. Ambrosio, P. Andreu Munoz, M. Anerella, D. Angal-Kalinin, F. Antoniou, G. Apol-
linari, A. Apollonio, R. Appleby, G. Arduini, B. Arias Alonso, K. Artoos, S. Atieh, B. Auchmann,
V. Badin, T. Baer, D. Baffari, V. Baglin, M. Bajko, A. Ball, A. Ballarino, S. Bally, T. Bampton,
D. Banfi, R. Barlow, M. Barnes, J. Barranco, L. Barthelemy, W. Bartmann, H. Bartosik, E. Barzi,
M. Battistin, P. Baudrenghien, I. Bejar Alonso, S. Belomestnykh, A. Benoit, I. Ben-Zvi, A. Bertarelli,
S. Bertolasi, C. Bertone, B. Bertran, P. Bestmann, N. Biancacci, A. Bignami, N. Bliss, C. Boccard,
Y. Body, J. Borburgh, B. Bordini, F. Borralho, R. Bossert, L. Bottura, A. Boucherie, R. Bozzi,
C. Bracco, E. Bravin, G. Bregliozzi, D. Brett, A. Broche, K. Brodzinski, F. Broggi, R. Bruce, M. Brug-
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Figure 7: Comparison of input jets variable distributions (red) with randomly generated jets from the NF
only model (blue). From left to right, top to bottom: mass, energy, pT , η and ϕ distributions are displayed.
On the subplots the ratio gen/input is shown.
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Figure 8: Comparison of input jets EFPs (red) with randomly generated jets from the NF only model (blue).
On the subplots the ratio gen/input is shown.
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A Hyperparameter Optimization

As described in the text above, the Hyperparameter optimization was performed using the Optuna framework
and it was executed in several steps to ease the convergence of the method due to limited time and compu-
tational resources. Below are displayed the ranges of each hyperparameter set used during the optimization
for both types of NN.

A.1 ConVAE

In the ConVAE case, the set of parameters to be optimized was: the learning rate of the training optimizer
(Adam); the loss parameters α, β, γ, γpT

and γm; and the architecture parameters number of latent di-
mensions, number of filters, size of kernel related to number of particles to act over, number of nodes in
linear layers, number of convolution layers and activation function. The 2D kernel size was kept as (3,kernel
size) for the first convolution (deconvolution) layer of the encoder (decoder), where the number 3 refers to
the number of particle features of the input dataset, and it was set as (1,kernel size) for the other convolu-
tion/deconvolution layers.

Parameters γpT
and γm ranges were extracted from the dataset, since, as it can be observed from the

jet variables histograms, jets pT and mass have distinct scales, which would imply in different magnitude
in the loss function. γpT was set to be optimized in a range 20% smaller and 20% higher than unity, while
γm assumed values 20% smaller and 20% higher than the ratio of the mean of the jets pT and jets mass.
As stated before, for the loss hyperparameters optimization, the network architecture hyperparameters was
fixed at reasonable choices, which are displayed in table 6. For both networks, the one tuned for generation
and the one tuned for reconstruction, almost all the ranges of the hyperparameters for the optimization were
the same:

• lr: [10−5, 10−1] in log scale;

• α: [0.1, 1.0];

• γ: [0.1, 1.0];

• γpT : [0.8, 1.2];

• γm: [9.986, 14.98];

• latdim: [10, 300] in multiples of 10;

• Number of filters: [5, 100] in multiples of 5;
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• Kernel size: [1, 8] in multiples of 1;

• Number of linear nodes: [100, 3000] in multiples of 100;

• Number of convolution layers: [1, 4] in multiples of 1;

• Activation function: one of ReLU, GeLU, LeakyReLU, SELU or ELU.

The only exception was for the loss hyperparameter β that needed to be much closer to 1.0 for the ConVAE
tuned for generation, where the optimization range was [0.9, 1.0] in log scale, and much closer to 0.0 for the
ConVAE tuned for reconstruction, where the optimization range was [0.0, 0.1] also in log scale.

latdim Filters Kernel Nlinear Layers Act. Func.

30 50 5 1500 3 ReLU

Table 6: Set of common architecture hyperparameters for ConVAE loss parameters optimization.

A.2 RealNVP

Since the number of hyperparameters of the RealNVP network is much smaller than for the ConVAE, its
hyperparameter optimization was performed only in one step. The set of hyperparameters that were optimized
was: the learning rate of the training optimizer (Adam); and the network architecture hyperparameters
number of flows, number of linear layers for the s and t MLPs and the number of nodes in each layer of those
MLPs. For both networks, the one used together with the ConVAE and the one used by itself, the ranges of
the hyperparameter optimization were:

• lr: [10−5, 10−1] in log scale;

• Number of flows: [5, 100] in multiples of 5;

• Number of linear layers of s and t MLPs: [1, 4] in multiples of 1;

• Number of nodes in each linear layer: [50, 400] in multiples of 50 (optimized for each layer);
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