

CO2 Footprint of the CLIC Main Linac A very first look

Benno List

CLIC Module Meeting 18.1.2023

Introduction

Ultimate Goal: Quantify the environmental impact of a whole accelerator project, i.e., CLIC

Accepted method: LCA = Life Cycle Assessment

Define Scope:

- System Boundaries
- Lifecycle Stages

As a starting point:

- consider a subsystem (Main Linac), focus on tunnel and accelerator components
- Consider Production (A) stage, focus on raw materials (A1)

Materials and their Carbon Footprint

Material	Density (g/cm3)	GWP (kg CO2- eq/kg)
Cement	1.4	1.0 [3]
Concrete	2.5	0.1 [3]
Mild Steel	7.85	1.7
Stainless Steel (18%Cr, 10%Ni)	7.85	3.7 [1]
Copper	8.96	2.5
Aluminium	2.70	8.2 [2]
Titanium	4.5	8.1 [2]
Silicon Carbide	3.2	

- 1. Eurofer LCI for 316 cold rolled coil steel
- 2. Nuss and M. J. Eckelman, PLoS ONE 9 (2014) e101298. DOI:10.1371/journal.pone.0101298. CC-BY
- T. Hottle et al., Environmental life-cycle assessment of concrete produced in the United States, J Cleaner Prod. 363 (2022) 131834, DOI:10.1016/j.jclepro.2022.131834

Notes

- 1. GWP: Global Warming Potential (over 100 years), expressed in kg CO2 eqivalent
- 2. All numbers for GWP vary by factors of 2 or more, depending on country of origin, production method, energy mix, transport ways etc

The Tunnel

06.03.2023

Tunnel Cross Sections

CLIC tunnel (drive beam option), 5.6m diameter

My estimate: 12.4m² concrete -> 31t/m concrete

My estimate: 44.8m² concrete -> 112t/m concrete

Tunnel GWP (CO2 Impact) from Materials

Quantity	DB	Klys.
Inner Diameter [m]	5.6	10
Tunnel Cross Section [m ²]	25	79
Lining / Grouting [cm]	30 / 10	45 / 15
Concrete Area [m ²]	12.4	44.8
Lining&Floor Area [m ²]	8.2	19.7
Concrete per m [t/m]	31	129
Steel per m [t/m]	0.95	2.3
Concrete GWP [t CO2-eq/m]	3.1	12.9
Steel GWP [t CO2-eq/m]	1.6	3.8
Material GWP [t CO2-eq/m]	5	17
Total GWP (25% overhead)	6	21

Lifecycle stages according to EN 15978

Only A1 considered here!

Comparison to Road Tunnels

Survey of Road Tunnels (Drill and Blast) in Spain

CO2/m: 5-15 t/m for Cross Sections 50 – 140m²

Materials make up 66 – 88% of emissions

Assuming 25% overhead:

- 5.6m CLIC tunnel: 6 t /m for 25m²
- 10m CLIC tunnel: 21 t/m for 79m² (with 1.5m shield wall!)

Tunnel	RMR	Excavation Method used (%)			Length (m)	Cross Section	Emissions rate
		D&B	RH	HBH		(m²)	$(kgCO_2/m)$
Somao	25-45	10	0	90	466	142.5	15,284
Fresno	25-45	0	0	100	940	125	14,417
Fabares	30-55	18	72	10	1922	92,1	10,276
Padrún	25-55	98	0	2	1762	88.5	10,261
Santiuste	25-65	60	0	40	500	113.7	8,710
Peñaflor	21-50	44	0	56	695	99.4	8,260
Folledo	35-70	100	0	0	2021	54	4,293

Table 4

Most relevant contributions to the CO₂ emissions.

Tunnel	Materials used (concrete and steel) KgCO ₂ /m (%)	Auxiliary facilities KgCO ₂ / m (%)	Advancing activities KgCŪ ₂ /m (%)		
Fabares	9,087 (88%)	473 (5%)	423 (4%)		
Folledo	3,533 (82%)	243 (6%)	252 (6%)		
Fresno	11,747 (81%)	1303 (9%)	904 (6%)		
Padrún*	6,809 (66%)	458 (4%)	264 (3%)		
Peñaflor	6,304 (76%)	1166 (14%)	492 (6%)		
Santiuste	7,531 (86%)	555 (6.5%)	560 (6.5%)		
Somao	12,801 (85%)	1257 (8%)	993 (7%)		
Average value	10,753 (83%)	832 (8%)	604 (6%)		

*Methane emissions in this tunnel (27% of the total) make the % values lower than the rest. Not considered for the average value.

Comparison to a Recent Publication

Snowmass Paper "Climate impact of particle physics": estimate for FCC tunnel (5.5m inner diameter)

- 2.37 t CO2-eq /m from concrete
- 5 10 t CO2-eq /m top-down estimate

This estimate for 5.6m tunnel: 6 t CO2-eq /m

Clima	ate impacts of particle physics
Kenneth Eichhor	n Bloom ^{1,*} , Veronique Boisvert ^{2,**} , Daniel Britzger ³ , Micah Buuck ⁴ , Astr n ⁵ , Michael Headley ⁶ , Kristin Lohwasser ⁷ , and Petra Merkel ⁸
¹ Univers ² Royal H ³ Max-Pla ⁴ SLAC N ⁵ CP3-Or ⁶ Sanford ⁷ Univers ⁸ Fermi N	ity of Nebraska-Lincoln, Lincoln, NE, USA lolloway University London, United Kingdom anck-Institute for Physics, Munich, Germany lational Accelerator Laboratory, Menlo Park, CA, USA igins, University of Southern Denmark, Denmark Underground Research Facility (SURF), Lead, SD, USA ity of Sheffield, United Kingdom lational Accelerator Laboratory (Fermilab), Batavia, IL, USA
	Abstract. The pursuit of particle physics requires a stable and prosperous so- ciety. Today, our society is increasingly threatened by global climate change. Human-influenced climate change has already impacted weather patterns, and global warming will only increase unless deep reductions in emissions of CO ₂ and other greenhouse gases are achieved. Current and future activities in par- ticle physics need to be considered in this context, either on the moral ground that we have a responsibility to leave a habitable planet to future generations, or on the more practical ground that, because of their scale, particle physics projects and activities will be under scrutiny for their impact on the climate. In this white paper for the U.S. Particle Physics Community Planning Exercise ("Snowmass"), we examine several contexts in which the practice of particle physics has impacts on the climate. These include the construction of facilities, the design and operation of particle detectors, the use of large-scale computing, and the research activities of scientists. We offer recommendations on estab- lishing climate-aware practices in particle physics, with the goal of reducing our impact on the climate. We invite members of the community to show their support for a sustainable particle physics field []].
	Submitted to the Proceedings of the US Community Study

*Contact author, e-mail: kenbloom@unl.edu **Contact author, e-mail: Veronique.Boisvert@rhul.ac.ul

The Accelerator

06.03.2023

Benno List | Sustainability Studies

Evaluating the GWP of the Accelerator: The T0 Two Beam Module

For Accelerator: Start with Two Beam Module

Attempt a bottom-up calculation of total material budget

- Decompose system to level of individually manufactured pieces
- Collect info on
 - Material
 - Mass (net and gross = net + scrap)
 - Manufacturing method (machining/turning, welding, extruding, casting) -> input to scrap estimate
- From material, estimate LCA quantities

Creating the MBOM

MBOM: Manufacturing BOM -> hierarchical product structure, focus on manufacturing / mounting, and project organisation / responsibilities, i.e. work packages (magnet, RF, vacuum...)

Starting Point: CAD Model structure, i.e. EBOM (Engineering BOM)

The T0 Module Data

1				0					4. ×			_
6 7 A	B C D	E F	G	Н	1	L	к	L	M N	0	P Q	
2	Con)nen ree		evel 5 Level 6		▼ Number	PBS Code	PBS Text	💌 Quantity / 💌 Q / To	t 💌 Material	💌 Densit 💌 I	Mass Vanufacturing	
4												_
5	T0 Module Assembly				ST1528727	3.1.1.	Two-Beam Module Type 0 e+	1	1 Mixed		1710	
6	T0 Main Beam A	Assembly			ST1550706			1	1 Mixed		950	
7	Integra	ated SAS Assembly						4	4 Mixed		63	
8		Super Accelerating	Structure		ST1378439	3.1.1.1.1.	Super-accelerating Structures	1	4 Mixed		47	
9		Rectangula	ır Disk Assy		ST0790069			56	224		0.7	
10		R	ectangular Disk		ST0787907			1	224 Copper	8.85	0.51 Machined	
11		A	bsorber left		ST0798602			2	448 Silicon Carbide	3.21		
12		A	bsorber right		ST0798631			2	448 Silicon Carbide	3.21		
13		Coupler Dis	.k		ST1378544			2	8 Copper	8.85	1 Machined	
14		Structure C	onnecting Disk		???				0 Copper	8.85	1 Machined	
15		SAS Interco	onnect Bellow		ST0347489			4	16 Stainless Steel	7.85	0.1 Fabricated	
16		Input Wave	≥guide					2	8		0.5 Extruded	
17		lr	iput Waveguide	Arm	ST1437145			1	8 Copper	8.85	Extruded	
18		V	/aveguide Flang	<u>j</u> e	ST0666851			1	8 Stainless Steel	7.85		
19		Output Wa	veguide					2	8		0.5	
20		0	utput Waveguid	de Arm	ST1393409			1	8 Copper	8.85	Extruded	
21		N N	/aveguide Flang	je	ST0666851			1	8 Stainless Steel	7.85		
22		SAS Vacuu	m Flange		ST0396788			8	32 Stainless Steel	7.85	1 Turned	
23		SAS Water	Connector		ST1358471 + ST0295539			4	16 Stainless Steel	7.85	0.1	
					ST1556884 + ST1556973	+						
24		SAS Bracket Set		61 01	al daan M	ROM (N	lanufactu	ring ROM		and the second	9 Machined	
25		SAS Bracke	:t 1				landiacia			.85	3 Machined	
26		SAS Bracke	:t 2	Deee						.85	3 Machined	
27		SAS Bracke	£t 3	Base		model (not identio	call		.85	3 Machined	
28		SAS Vacuum Netwo	rk			\					12	
29		Vacuum M	anifold	11/ li	000						1.5 Fabricated	
30		V	acuum Manifolo	<u>a</u> 1 1 - 1 111	163					.85	Fabricated	
31		P	umping port	<mark>4</mark> 1 1 1	1	· · · ·		1 I I I		.85	Fabricated	
32		Mini Pump	5	Incluc	ies multipl	icity, ma	ass. matei	rial as far a	as availabl	e 🗆	2	
33		SAS RF Network				,,					1	
34		SAS Input V	Naveguides	Linka	an to over		DRC who	oro L could	idontify it		1 Extruded	
35		S	AS Input Waveg							.85		

Result for a T0 Module

			Stainless	Mild St	Titan <i>i</i>	Alum
	Sum	Copper	Steel			
Main Beam Module & WG	906	5 155	114	583	45	9
T0 Drive Beam Assembly	872	L 159	22	686	0	5
Total mass (kg)	1777	7 314	135	1269	45	14
GWP/kg		2.5	3.7	1.7	8.1	8.2
Main Beam Module & WG: GWP (kg CO2-eq)	2237	7 388	421	991	363	74
T0 Drive Beam Assembly: GWP (kg CO2-eq)	1683	L 398	80	1167	0	37
Total GWP (kg CO2-eq	3918	3 786	501	2158	363	111
scarp mass estimate (kg)		242	128	532	45	5
scrap GWP (kg CO2-eq) (at 50%)	119:	L 303	236	452	181	18
total GWP with scrap (kg CO2-eq)	5109	9 1089	737	2610	544	129

Breakdown according to Material

"Mild Steel": Mostly Support System

Conclusion here:

Supports have a large impact on CO2 just from the sheer mass -> a good place to start

For large scale production:

Cast iron may be interesting

- Reduced material carbon footprint
- Less scrap, less machining

Summary

Tunnel (per 2.01m module):

- 12 t CO2-eq for two-beam
- 42t CO2-eq for klystron
 Accelerator (T0 module)
- 5 t CO2-eq for two-beam

A lot of things missing:

- Transport, fabrication, installation stages
- Tunnel infrastructure (heating/ventilation, cooling pipes, cable trays)
- Magnet cables, power supplies
- Magnets for T1-T4 modules

Conclusion so far:

- Civil engineering (tunnel) is dominant so, urce of CO2
- Accelerator non-negligible, even in absence of large magnets
- Accelerator supports are more important that RF structures

home.cern