Future Circular Colliders (FCC) – Status Future Colliders Seminar Series, 14 March 2023 Frank Zimmermann, CERN on behalf of the FCC collaboration and FCCIS DS team, particular thanks to Michael Benedikt, Alain Blondel, Patrick Janot, Katsunobu Oide, Pantaleo Raimondi, Tor LHC Raubenheimer, Dmitry Shatilov -----FCC FUTURE (Eur) CirCol Swiss Accelerator CIRCUL IFAST EASITrain Research and http://cern.ch/fcc

Work supported by the **European Commission** under the **HORIZON 2020 projects EuroCirCol**, grant agreement 654305; **EASITrain**, grant agreement no. 764879; **iFAST**, grant agreement 101004730, **FCCIS**, grant agreement 951754; **E-JADE**, contract no. 645479; EAJADE, contact number 101086276; and by the Swiss **CHART** program

European Commission

photo: J. Wenninger

Horizon 2020 European Union funding for Research & Innovation

European Strategy for Particle Physics

Recommendations of the 2020 update of the European Strategy for Particle Physics (ESPP):

- Full exploitation of the high-luminosity LHC upgrade
- An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy.
- Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage.
- FCC Feasibility Study is one of the main recommendations of the 2020 update of the European Strategy for Particle Physics

Future Circular Colliders Frank Zimmermann CERN Future Colliders Seminar Series 14 March 2023

FUTURE

Innovation Stud

CIRCULAR

FUTURE FCC integrated program CIRCULAR COLLIDER inspired by successful LEP – LHC programs at CERN

comprehensive long-term program maximizing physics opportunities

- stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at highest luminosities
- stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options
- complementary physics
- common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- FCC integrated project allows seamless continuation of HEP after completion of the HL-LHC program

2020 - 2040

2045 - 2060

2065 - 2090

Future Circular Colliders Frank Zimmermann

Frank Zimmermann CERN Future Colliders Seminar Series 14 March 2023 a similar two-stage project CEPC/SPPC is under study in China

Indicative scenarios of future colliders [considered by ESG]

CIRCULAR 2018 cost estimate for stage 1: infrastructure and FCC-ee

Construction cost estimate for FCC-ee

- Machine configurations for Z, W, H working points included
- Baseline configuration with 2 detectors
- CERN contribution to 2 experiments incl.

Spending profile for FCC-ee

- CE construction 2032 2040
- Technical infrastructure 2037 2043
- Accelerator and experiment 2032 2045
- Commissioning and operation start 2045 2048

cost category	[MCHF]	%
civil engineering	5.400	50
technical infrastructure	2.000	18
accelerator	3.300	30
detector	200	2
total cost (2018 prices)	10.900	100

FUTURE CIRCULAR Stage 1: FCC-ee – highest luminosity lepton collider

double ring e⁺e⁻ collider, with full-energy booster

2 or 4 interaction points

efficient \mathcal{L} from Z to $t\overline{t}$

thanks to twin-aperture magnets, high-Q SRF, efficient RF power sources, top-up injection, etc.

```
>2.5 ab<sup>-1</sup> with \sim0.5x10<sup>6</sup> H / IP (3y)
```

```
>75 ab<sup>-1</sup> with \sim2x10<sup>12</sup> Z / IP (4y)
```

luminosity vs. electricity consumption

enormous performance increase: collects LEP data statistics in few minutes

Future Circular Colliders Frank Zimmermann CERN Future Colliders Seminar Series 14 March 2023

highest lumi/power of all *H* fact. proposals

a case for four IPs & experiments

Four different FCC-ee detectors to optimally address:
(1) Higgs factory program; (2) Ultraprecise electroweak & QCD physics;
(3) Heavy Flavour physics; (4) Search for feebly coupled particles

For FCC-hh, two highluminosity general-purpose experiments and two specialized experiments are foreseen, similar to present LHC detectors

COLLIDER

FCC-ee & hh would share the 4 experimental caverns

FCC-ee accelerator R&D examples

efficient RF power sources

FUTURE

CIRCULAR

E_{acc} (MV/m)

FPC & HOM coupler, cryomodule, thin-film coatings...

energy efficient twin aperture arc dipoles

0.5 T 1.0 T

under study: CCT HTS quad's & sext's for arcs

FCC-ee RF parameter table Total number of cavities: 1460

	updated	<mark>۹ ا</mark>		C-ee	R	Fp	ara	m	eter	tab		umber of 80 otal number	0 MHz cavit of cavities:	ties: 1 1460
Recenti	Bare ca	avity in vert	ical test s	stand Jacke	eted cav v	v HOM in	vert test	Cryom	odule (with	FPC) in hor.	test	Operation in th	e machine F	. Pea
	Eaco	c (MV/m)	Q0	Ead	c (MV/m)	Q0	Eacc	: (MV/m)	Q0	Ea	acc (MV/m)	Q0	
1-cell 400 N	/IHz	6.9	3.3E+0	09	6.6	3.1	.5E+09		6.3	3.0E+09		5.7	2.7E+09	
2-cell 400 M	ЛНz	13.2	3.3E+0	09	12.6	3.1	.5E+09		12	3.0E+09		10.8	2.7E+09	
5-cell 800 N	/IHz	24.5	3.8E+1	10	23.3	3.6	64E+10	:	22.2	3.5E+10		20.0	3.0E+10	
15-Feb-2	23	Z			W				Н			ttbar2		
	per	beam	booster	per be	am	booster	2 bea	ms	booster	2 b	eams	2 beams	booster	i –
RF Frequency [[MHz] 4	100	800	400		800	400)	800	Ĺ	100	800	800	
RF voltage [N	MV] 1	L20	140	105	D	1050	210	0	2100	2	100 2	9200	11300	
Eacc [MV/r	n] 5	5.72	5.34	10.9	5	20.01	10.7	8	20.01		ne "	20.12	20.10	
# cell / cav	v	1	5	2		5	2		5	- ft	2	5	5	
Vcavity [M	V] 2		5.00	8.20)	18.75	8.08	3	18.75	ς Ο' β	.08	18.85	18.83	
#cells	1	56	140	256	;	280	520)	+21	5	520	2440	3000	
# cavities	5	56	28	128	}	56	260		5 112	2	260	488	600	
# CM		14	7	32		14	65	ってい	28		<u>65</u>	<u>122</u>	<u>150</u>	
T operation	[K] 4	4.5	2	4.5		2	105	5	2	4	4.5	2	2	
dyn losses/cav	v [W]	22	0.2	163		3	C 158	3	3	1	158	23	3	
stat losses/cav	v [W]	8	8	8		: an	8		8		8	8	8	
Qext	6.6	6E+04	2.7E+05	1.1E+	06	772406	1.1E+	06	1.5E+07	9.4	E+06	3.8E+06	8.3E+07	
Detuning [kl	Hz] 8.	.939	5.126	0.1	i Ca	0.141	0.09	6	0.014	0.	031	0.032	0.003	
rhob [m]	9	937	9937			9937	993	7	9937	9	937	9937	9937	
Energy [Ge	V] 4	5.6	45.6	80.0		80.0	120.	0	120.0		182.	5	182.5	
energy loss [I	MV] 38	8.49	60 -	364.6	53	364.63	1845.	94	1845.94		9875.	14	9875.14	
cos phi	0	.32	3.27	0.35	5	0.35	0.88	3	0.88	0	.56	0.96	0.87	
Beam current	t [A] 1.	yer.	0.128	0.13	5	0.0135	0.053	34	0.003	0.	010	0.010	0.0005	
source type	400 MHz - 🛽	800 MH	z - 400	400 MHz - 1	. 800 M	Hz - 400	400 MHz - 1	MW	800 MHz - 50	kW 400 M	Hz - 50 kW	800 MHz - 400	800 MHz - 50	<mark>kW</mark>
source type	MW klystro	n kW kly	stron l	MW klystroi	n kW k	lystron	klystror	า	SSA		SSA	kW klystron	SSA	
uency [MHz]	400	80	0	400	8	00	400		800		400	800	800	
Pcav [kW]	880	17	6	385	5	88	379		44		45	181	8	
nditioning [kW]	220	44	4	96		22	95		11		11	45	2	
ies / RF sources	1	2		2		4	2		1		1	2	4	
RF sources	112	14	4	128	-	14	130		112		260	244	150	

FCC-ee mock-ups for arcs and IR

Girder

Arc half-cell mock-up

FUTURE

CIRCULAR COLLIDER

- Arc half-cell: most recurrent assembly of mechanical hardware in the accelerator (~1500 similar FODO)
- Mock-up → Functional prototype(s) → Pre-series → Series
- Building a mock-up allows optimizing and testing fabrication, integration, installation, assembly, transport, maintenance
- Working with structures of equivalent volumes, weights, stiffness

IR mock-up

Step 1: Central IP vacuum chamber (test the cooling system and the vacuum system), AlBeMet162
& steel transition (study the shape of the transition, EBW process), Bellows (vacuum and thermal tests),
Welding (EBW for elliptical geometry)

Step 2: Trapezoidal vacuum chamber with remote vacuum connection, first quadrupole QC1, cryostat, beam pipe and quadrupole and cryostat support, vibration & alignment sensors

CIRCULAR FCC-ee collider optics development: 2 options

s (m)

K. Oide, 2023 EPS Rolf Wideroe award winner

P. Raimondi, 2017 EPS Gersh Budker award winner

s (m)

β (m)

FCC-ee MDI developments - examples

Novel outer support tube for central beam pipe and vertex detector

- Inside the same volume of the support tube that holds also the LumiCal
 - Vertex detector supported by the beam pipe

FUTURE

CIRCULAR COLLIDER

• Outer Tracker (1 barrel and 6 disks) fixed to the support tube

IR heat load distribution

FCC-ee Injector Design – PSI, INFN, IJCLab, CEA, CERN

CHART collaboration PSI & CERN with partners CNRS-IJCLab (Orsay), INFN-LNF (Frascati), KEK/SuperKEKB as observer, INFN-Ferrara – radiation from crystal, CEA (FCCIS – booster design)

P³: PSI e⁺ production experiment with HTS solenoid at SwissFEL planned for 2024/25

~300 m

Common Linac

FCC-ee pre-injector layout

BCs

1.54 GeV

~100 m

e-Linac

1.54 GeV

Electron

source

FUTURE CIRCULAR

COLLIDER

Positron source

Stage 2: FCC-hh: highest collision energies

from LHC technology 8.3 T NbTi dipole

FUTURE

CIRCULAR COLLIDER

via HL-LHC technology 12 T Nb₃Sn quadrupole

order of magnitude performance increase in both energy & luminosity wrt LHC
100 TeV cm collision energy (vs 14 TeV for LHC)
20 ab⁻¹ per experiment over 25 years of operation (vs 3 ab⁻¹ for LHC)

similar performance increase as from Tevatron to LHC

key technology: high-field magnets

CIRCULAR HFM: preparing for FCC stage 2 (FCC-hh)

In parallel to FCC studies,

High Field Magnet development program as long-term separate R&D project

CERN budget for high-field magnets doubled in 2020 Medium-Term Plan (~ 200 MCHF over ten years)

Main R&D activities:

- materials: goal is ~16 T for Nb₃Sn, at least ~20 T for HTS inserts
- magnet technology: engineering, mechanical robustness, insulating materials, field quality
- production of models and prototypes: to demonstrate material, design and engineering choices,
 - industrialisation and costs
- infrastructure and test stations: for tests up to ~ 20 T and 20-50 kA

Detailed deliverables and timescale being defined through Accelerator R&D roadmap under development

L. Bottura, F. Gianotti, A. Siemko

"stage 2b or stage 3" (FCC-eh, ERL-based)

LHeC and FCC-eh: twin machines

FUTURE

CIRCULAR COLLIDER

FUTURE CIRCULAR FCC Feasibility Study (2021-2025): high-level objectives

- demonstration of the geological, technical, environmental and administrative feasibility of the tunnel and surface areas and optimisation of placement and layout of the ring and related infrastructure;
- pursuit, together with the Host States, of the preparatory administrative processes required for a potential project approval to identify and remove any showstopper;
- optimising design of colliders and their injector chains, supported by R&D to develop the needed key technologies;
- elaboration of a sustainable operational model for the colliders and experiments in terms of human and financial resource needs, as well as environmental aspects and energy efficiency;
- development of a consolidated cost estimate, as well as the funding and organisational models needed to enable the project's technical design completion, implementation and operation;
- identification of substantial resources from outside CERN's budget for the implementation of the first stage of a possible future project (tunnel and FCC-ee);
- consolidation of the physics case and detector concepts for both colliders.

Results will be summarised in a Feasibility Study Report to be released at end 2025

FUTURE CIRCULAR FCC implementation - footprint baseline

present baseline implementation

- 91 km circumference
- 95% in molasse geology for minimising tunnel construction risks
- 8 surface sites with ~5 ha area each.

site investigations planned for 2024 and 2025 in areas with uncertain geological conditions:

- Limestone-molasse border, karstification, water pressure, moraine properties, water bearing layers, etc.
- ~40-50 drillings, 100 km of seismic lines

Future Circular Colliders Frank Zimmermann CERN Future <u>Colliders Seminar Series</u>

14 March 2023

IRCULAR Implementation baseline PA31-3.0 91 km

- 1. PA Ferney Voltaire (FR) experimental site
- 2. PB Présinge/Choulex (CH) technical site
- 3. PD Nangy (FR) technical/experimental site
- 4. **PF Etaux** (FR) technical site
- 5. PG Charvonnex/Groisy (FR) experimental site
- 6. PH Cercier (FR) technical site
- 7. PJ Vulbens/Dingy en Vuache (FR)
- technical/experimental site
- 8. PL Challex (FR) technical site
- First meetings with communes concerned in France (31) and Switzerland (10)

Rencontrée

Rendez-vous proposé / programmé

US Electron Ion Collider (EIC)

US EIC Electron Storage Ring similar to, but more challenging than, FCC-ee

beam parameters almost identical, but twice the maximum electron beam current, or half the bunch spacing, and lower beam energy

>10 areas of common interest identified by the FCC and EIC design teams, addressed through joint EIC-FCC working groups, still evolving

EIC will start beam operation about a decade prior to FCC-ee The EIC will provide another invaluable opportunity to train next generation of accelerator physicists on an operating collider, to test hardware prototypes, beam control schemes, etc.

	EIC	FCC-ee-Z
Beam energy [GeV]	10 (18)	45.6 (80)
Bunch population [10 ¹¹]	1.7	1.7
Bunch spacing [ns]	10	15, 17.5 or 20
Beam current [A]	2.5 (0.27)	1.39
SR power / beam /meter [W/m]	7000	600
Critical photon energy [keV]	9 (54)	19 (100)

SuperKEKB

world record luminosity of $4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$, $\beta_y^* = 1.0 \text{ mm}$ routinely, also $\beta_y^* = 0.8 \text{ mm}$ shown – with "virtual" crab-waist collision scheme originally developed for FCC-ee (K. Oide)

total integrated luminosity so far \sim 430 fb⁻¹ over \sim 3 years

Global FCC Collaboration

further increasing international collaboration is essential for o

FCC Feasibility Study - organisational structure

Future Circular Colliders Frank Zimmermann **CERN Future Colliders Seminar Series** 14 March 2023

FCC key points

- FCC-ee fills the need for a highest precision EW/Higgs factory
- Provides highest luminosity at Z, W and H@240 GeV of all proposed factories
- "Low-risk" solution based on 60 years of e⁺e⁻ circular colliders and particle detectors
 - R&D on components focused on improved performance, increased efficiency, industrialization and cost aspects, but no need for large scale "demonstration" facilities
- Utility requirements similar to CERN existing use
- Most economic path to a next generation energy frontier hadron collider FCC-hh
- FCC integrated programme provides a long-term vision for global HEP at precision and energy frontiers, interlinked with large-scale advanced technology R&D programmes
 - FCC-ee, FCC-hh hadron collider (100 TeV pp, AA), FCC-eh,...
- Strong support from around the world is crucial for success of the Feasibility Study and for the FCC project to go ahead

FCC research infrastructure for the 21st century

FCC

Annec

A new 91 km tunnel to host multiple colliders 100 – 300 m under ground, 8 surface sites <u>FCC-ee: electron-positron</u> @ 91, 160, 240, 365 GeV <u>FCC-hh: proton-proton</u> @ 100 TeV, and heavy-ions (Pb) @39 TeV <u>FCC-eh: electron-proton</u> @ 3.5 TeV

Genève

FUTURE CIRCULAR COLLIDER

SUI

FRANCE

LHC

FCC Week 2023

Future Circular Collider (FCC) Week 2023, at the **Millennium Conference Centre in London**, United Kingdom from **Monday 5 June to Friday 9 June 2023**.

- Organised with the support of the UK Research and Innovation Science and Technologies Facilities Council (STFC) and the EU-funded Horizon 2020 FCCIS project
- Local partners : STFC, the University of Orderidge, Imperial College London, King's Wilege London, the University of Manchester, the University of Oxford, Queen Mary University of London, Royal Holloway University of London and University College London
 Registration is open !

https://cern.ch/fccweek2023

We look forward to welcoming you to London for what promises to be an exciting and informative event!

05 - 09 June

2023

https://cern.ch/fccweek2023

spare slides

Stage 1: updated parameters

FUTURE CIRCULAR COLLIDER

K. Oide, D. Shatilov,

Parameter [4 IPs, 90.7 km,T _{rev} =0.3 ms]	Z	WW	H (ZH)	ttbar
beam energy [GeV]	45.6	80	120	182.5
beam current [mA]	1280	135	26.7	5.0
number bunches/beam	10000	880	248	36
bunch intensity [10 ¹¹]	2.43	2.91	2.04	2.64
SR energy loss / turn [GeV]	0.0391	0.37	1.869	10.0
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.08/0	4.0/7.25
long. damping time [turns]	1170	216	64.5	18.5
horizontal beta* [m]	0.1	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.64	1.49
vertical geom. emittance [pm]	1.42	4.34	1.29	2.98
horizontal rms IP spot size [µm]	8	21	14	39
vertical rms IP spot size [nm]	34	66	36	69
beam-beam parameter ξ_x / ξ_y	0.004/ .159	0.011/0.111	0.0187/0.129	0.096/0.138
rms bunch length with SR / BS [mm]	4.38 / <mark>14.5</mark>	3.55 / <mark>8.01</mark>	3.34 / <mark>6.0</mark>	2.02 / <mark>2.95</mark>
Iuminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	182	19.4	7.3	1.33
total integrated luminosity / year [ab-1/yr]	87	9.3	3.5	0.65
beam lifetime (rad Bhabha + BS+lattice)	8	18	6	10

Stage 2: FCC-hh (pp) collider parameters

parameter	FCC	C-hh	HL-LHC	LHC
collision energy cms [TeV]	1	00	14	14
dipole field [T]	~17 (~16 co	mb.function)	8.33	8.33
circumference [km]	90).7	26.7	26.7
beam current [A]	0	.5	1.1	0.58
bunch intensity [10 ¹¹]	1	1	2.2	1.15
bunch spacing [ns]	25	25	25	25
synchr. rad. power / ring [kW]	27	00	7.3	3.6
SR power / length [W/m/ap.]	32	2.1	0.33	0.17
long. emit. damping time [h]	0.	45	12.9	12.9
beta* [m]	1.1	0.3	0.15 (min.)	0.55
normalized emittance [µm]	2	.2	2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	5 (lev.)	1
events/bunch crossing	170	1000	132	27
stored energy/beam [GJ]	7	.8	0.7	0.36

FUTURE CIRCULAR COLLIDER

KEKB, SuperKEKB '22, SuperKEKB design

parameter	KEKB w Belle		SuperKEKB	2022 w Belle II	SuperKEKB Design	
			$\beta_y^* = 1.0$) mm CW		
	LER	HER	LER	HER	LER	HER
E [GeV]	3.5	8	4	7	4	7
β_{x}^{*} (mm)	1200	1200	80	60	32	25
β_{y}^{*} (mm)	5.9	5.9	1.0	1.0	0.27	0.30
ε _x (nm)	18	24	4.0	4.6	3.2	4.6
ε _y (pm)	150	150	~45	~45	8.6	12.9
I (mA)	1640	1190	1321	1099	3600	2600
n _b	1584		2249		2500	
I _b (mA)	1.04	0.75	0.587	0.489	1.44	1.04
ξ _y *	0.098	0.059	0.041	0.028	0.069	0.060
L _{sp} (10 ³⁰ cm ⁻² s ⁻¹ mA ⁻²)	1	7.1	72.1		2	214
L (10 ³⁴ cm ⁻² s ⁻¹)	2.11		4.65		80	

Future Circular Colliders Frank Zimmermann CERN Future Colliders Seminar Series 14 March 2023

FCC Feasibility Study (FS)

2013 ESPPU requested FCC Conceptual Design fourvolume report \rightarrow 4 volumes delivered in 2018/19, describing the physics cases, the design of the lepton and hadron colliders, and the underpinning technologies and infrastructures. Fol-

2020 ESPPU→ 2021 Launch of FCC Feasibility Study (FCC FS) by CERN Council

- Feasibility Study Report (FSR) expected by the end of 2025, not only the technical design, but also numerous other key feasibility aspects, including tunnel construction, financing, and environment
- FSR will be an important input to the next ESPPU expected in 2026/27.

FCC FS is organized as an international collaboration. The FCC FS and a possible future project will profit from CERN's decadelong experience with successful large international accelerator projects, e.g., the LHC and HL-LHC, and the associated global experiments, such as ATLAS and CMS.

Future Circular Colliders Frank Zimmermann **CERN Future Colliders Seminar Series** 14 March 2023

FUTURE

CIRCULAR COLLIDER

> **Organisational Structure of the FCC Feasibility Study**

http://cds.cern.ch/record/2774006/files/En glish.pdf

Main Deliverables and Timeline of the FCC **Feasibility Study**

http://cds.cern.ch/record/2774007/files/En glish.pdf

		CERN/SPC/1155/Rev. CERN/3566/Rev.2 Original: English 21 June 2021			CERN/SPC/116 CERN/3588 Original: Englis 21 June 2021
ORGANISATION E	UROPÉENNE POUR LA RECH PEAN ORGANIZATION FOR N	IERCHE NUCLÉAIRE	ORGANISATION E CERN EURO	EUROPÉENNE POUR LA RECHEI PEAN ORGANIZATION FOR NU	RCHE NUCLÉAIRI CLEAR RESEARC
Action to be taken		Foting Procedure	Action to be taken		Voting Procedure
For devision	RESTRICTED COUNCIL 203 st Session	Simple majority of Member	For information	RESTRICTED COUNCIL 203 rd Session 17 June 2021	

nt sets out the proposed organisational structure for the Feasibility Study of Strategy for Particle Physics updated by the CERN Council in June 2020. It reflects discussi of this study will be summarised in a Feasibility Study Report to be completed by at, and feedback received from, the Council in March 2021 and is now submitted for the latte 2025.

This document describes the main deliverables and milestones of the study being carried out to Future Circular Collider, to be carried out in line with the recommendations of the Europe assess the technical and financial feasibility of a Future Circular Collider at CERN. The result

FCC Feasibility Study - organisational structure

 New structure very similar to the first phase of the FCC Study (2014-2020), leading to the Conceptual Design Report as input to the ESPPU.

FUTURE CIRCULAR

COLLIDER

 Classical structure common to CERN projects.

Future Circular Colliders Frank Zimmermann CERN Future Colliders Seminar Series 14 March 2023

FCC Steering Committee (SC)

SC provides organisational & technical supervision for execution of the Feasibility Study

Members:

- CERN DG (SC Chair),
- The members of the CERN Directorate,
- the Chair of the CB,
- and up to 5 members nominated by the CB,
- the FCC Study Leader w/o voting rights
- the Council president as observer

Fabiola Gianotti (CERN, Chair), Raphaël Bello (CERN), Mike Lamont (CERN), Joachim Mnich (CERN), Charlotte Warakaulle (CERN)

Philippe Chomaz (CEA), Marina Cobal (INFN), Beate Heinemann (DESY), Tadashi Koseki (KEK), Lia Merminga (FNAL), Mike Seidel (PSI)

Michael Benedikt (CERN)

FUTURE

CIRCULAR COLLIDER

Eliezer Rabinovici (Hebrew U.)

Collaboration Board (CB)

CB reviews the work needs and resource requirements and their sharing among the participating institutes; appoints up to five members of the Steering Committee from among the participating institutes.

Members:

one representative per institute contributing to the Feasibility Study, having signed the FCC MoU and whose participation has been approved by the Collaboration Board;

Elected Chair: Philippe Chomaz (CEA) CB executive committee: Manuela Boscolo (INFN), Andy Lankford (UCI)

Future Circular Colliders Frank Zimmermann CERN Future Colliders Seminar Series 14 March 2023

FUTURE

CIRCULAR COLLIDER **Scientific Advisory Committee (SAC)**

Physics, experiments, detectors

- Andrew Parker (U. Cambridge) CHAIR
- Katri Huitu (U. Helsinki)

FUTURE

CIRCULAR COLLIDER

- Belen Gavela Legazpi (UAM Madrid)
- Peter Krizan (U. Ljubljana)
- Roberto Tenchini (INFN, Pisa)

Accelerator

- Michiko Minty (BNL)
- Riccardo Bartolini (DESY)
- Peter McIntosh (STFC)
- Kyo Shibata (KEK)
- Srinivas Krishnagopal (BARC)

SAC follows and reviews the implementation of the Feasibility Study, giving scientific and technical advice to FCC SC and to Coordination Group, providing guidance to facilitate major technical decisions.

<u>Members:</u> up to 16 international experts not directly involved in the Feasibility Study with renowned expertise in one or more scientific and technical domains relevant to the Study (accelerators, technical infrastructure, key technologies, physics, detectors, etc.). Members and Chair

appointed by S Civil engineering, environment

- Alain Chabert (France)
- Brigitte Fargevieille (EDF, France)
- NN CE expert, CH tbc

Technical infrastructure & large projects

- Philippe Lebrun (former CERN, former JUAS)
- NN, Tunnel techn. infrastructure, tunnel safety

FUTURE CIRCULAR Mid-Term Review & Cost Review, autumn '23

Mid-term review report, supported by additional documentation on each deliverable, will be submitted to review committees and to Council and its subordinate bodies, as input for the review.

Results of both general mid-term review and the cost review should indicate the main directions and areas of attention for the second part of the Feasibility Study

Infrastructure & placement

- Preferred placement and progress with host states (territorial matters, initial states, dialogue, etc.)
- Updated civil engineering design (layout, cost, excavation)
- Preparations for site investigations

Technical Infrastructure

- Requirements on large technical infrastructure systems
- System designs, layouts, resource needs, cost estimates

Accelerator design FCC-ee and FCC-hh

- FCC-ee overall layout with injector
- Impact of operation sequence: Z, W, ZH, $\ensuremath{t\bar{t}}$ vs start at ZH
- Comparison of the SPS as pre-booster with a 10-20 GeV linac
- Key technologies and status of technology R&D program
- FCC-hh overall layout & injection lines from LHC and SC-SPS

Physics, experiments, detectors:

- Documentation of FCC-ee and FCC-hh physics cases
- Plans for improved theoretical calculations to reduce theoretical uncertainties towards matching FCC-ee statistical precision for the most important measurements.
- First documentation of main detector requirements to fully exploit the FCC-ee physics opportunities

Organisation and financing:

- Overall cost estimate & spending profile for stage 1 project

Environmental impact, socio-economic impact:

- Initial state analysis, carbon footprint, management of excavated materials, etc.
- Socio-economic impact and sustainability studies

Future Circular Colliders

FCCIS – H2020 Mining the future competition results

• Four consortia were qualified for the second stage.

FUTURE

CIRCULAR COLLIDER

• All four proposals could contribute to an integrated molasse reuse concept, adapted to regional opportunities.

AMBERG consortium: In-situ characterisation (Crossbelt elemental analyzer) and preparation for use as construction material on site (spray-concrete with binder from bio-mineral materials), Production of construction elements withouth cement/concrete.

BG consortium: online-analysis and preparation of Molasse for construction elements from sandstone, sabd, filing material for concrete, low-carbon concrete, terra cotta bricks, etc.

ARCADIS consortium: usage of clay and sand materials enriched with limestone as stabiliser for production of bricks by pressurizing, mobile plants for on-site production of bricks, replacement of construction materials with high CO2 bilan during production;

EDAPHOS consortium: Combining mineral (Molasse) material and organic material to produce fertile soil with on-site production plants by using mikrobiology to accelerate humus creation. Fertile soil as top layer for agricultural use, recultivation.

timeline of FCC integrated programme

Future Circular Colliders Frank Zimmermann CERN Future Colliders Seminar Series 14 March 2023

FUTURE

CIRCULAR COLLIDER