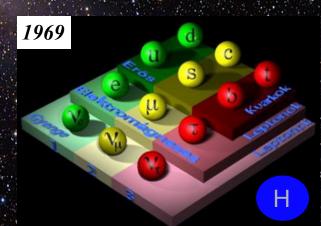
Introduction to Accelerator Physics Vera Cilento CERN-ABP


A Short Introduction ..

In the end and after all ...: We try to explain the structure of "hadronic matter" in the universe.

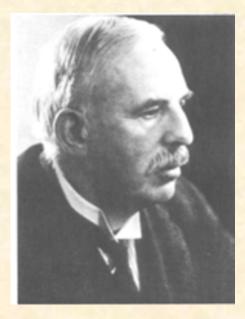
In short words: "What is going on, up there ???"

18	69 GRUPPE		PE	ERI	00)EN	١S	YS	TE	M E	DEI	R E	LE	M	EN.	ΤE			
PERIODEN	1 IA 1 1.0079 H WASSERSTOFF 3 6.941	2 IIA 4 9.0122	GRUI	PPE IUPAC		SSE (I) RUPPE CAS	En En	calimetalle dalkalimetalle		e Nichter	ogene ene		13 IIIA	14 IVA	15 VA		17 VILA 9 18.998	18 VIIIA 2 4.0026 He HELIUM 10 20.180	
2	Li	BERYLLIUM	ELEMENTS	SYMBOL	BOR			bergangseler] Lanthanider] Actiniden	n zu Ne	IB Edelga JSTAND (100 - gasförmig - flüssig	°C; 101 kPa		B	C	N STICKSTOFF	O	FLUOR	Ne	
3	11 22.990 Na NATRAIM	12 24.305 Mg MAGNESIUM	3 IIIB	NAME I	S VB	6 VIB	7 VIIB	8	, VIIIB	10		12 IIB	13 26.982 Al	14 28,066 Si Silizium	15 30.974 Р рнозрноя	16 32.065 SCHWEFEL	17 35,453 Cl CHLOR	18 39.948 Ar ARGON	\ \
4	19 39.098 K	20 40.078 Ca	21 44.956 SC	22 47.867 Ti	23 50.942 V	24 51.996 Cr	25 54.938 Mn	26 55.845 Fe	27 58.933 CO	28 58.693 Ni	29 63.546 Cu	30 65.39 Zn	31 69.723 Galuum	32 72.64 Ge	33 74.922 AS	34 78.96 SELEN	35 79.904 Br	36 83.80 Kr	_
5	37 85.468 Rb	38 87.62 Sr	39 88.905 Y	40 91.224 Zr	41 92.906 Nb	42 95.94 Mo	43 (98) TC	44 101.07 Ru	45 102.91 Rh	46 106.42 Pd	47 107.87 Ag	48 112.41 Cd	49 114.82 In	50 118.71 Sn	51 121.76 Sb	52 127.60 Te	53 126.90 I	54 131.29 Xe	
6	55 132.91	56 137.33 Ba	57-71 La-Lu	ZIRKONIUM 72 178.49 Hf	NIOB 73 180.95 Ta	моцувайн 74 183.84 W	75 186.21 Re			PALLADIUM 78 195.08 Pt	silber 79 196.97 Au	сармии 80 200.59 Нд	INDIUM 81 204.38 TI	ZINN 82 207.2 Pb	83 208.98 Bi	tellur 84 (209) Po	100 85 (210) At	xenon 86 (222) Rn	
7	CASIUM 87 (223) FRANCLIM	BARIUM 88 (226) Radium	Ac-Lr Actiniden	HAFNIUM 104 (261) IRIF	TANTAL 105 (262)	WOLFRAM 106 (266) SE SEABORGIUM	RHENIUM 107 (264) IBIh BOHRIUM	IHIS	109 (268)	Uum	GOLD 111 (272)	Uub	THALLIUM	в.е. 114 (289) Uuq	BISMUT	POLONIUM	ASTAT	RADON	
	Appl. Chem., 7	ra, No. 4, 667-6		LANTHAN	IDEN	59 140.91					64 157.25		66 162.50				98-2003 EniG. (70 173.04	eni@ktf-split.hr) 71 174.97	
ange ist d klam Drei eine	Die relative atommasse wird und fürf Stellen angezeigt. Für Einemente ohne stabel isotope ist die Atommasse des stabilisten isotops in klemmen gezeigtisotope. Deni disser elemente (Th. Pa und U) spielen eine bedestende note aufgrund here häufigkeit in der Erdivuste und fihre atomservichte und			LANTHAN ACTINIDE		Pr PRASEODYM	Nd NEODYM	Pm promethium	Sm	Eu	Gd GADOLINIUM	Tb TERBIUM	Dy DYSPROSIUM	Носмим	Er	Тт тницим	Yb	LU LUTETIUM	
werd	werden deshalb aufgelistet. Redakteur: Marc Hens (mheres@corode)			89 (227) AC	Th	91 231.04 Pa	U	93 (237) ND	IPu	Am	96 (247) Cm curium	IBlk	98 (251) CI GALIFORNUM	Es	IFm	101 (258) MIC	No	103 (262)	

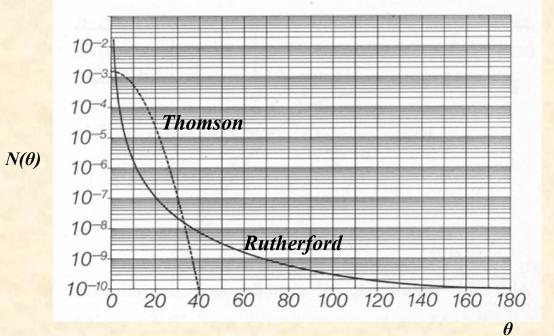
 $E = mc^{2}, \ \lambda = h / p$

One of the most important physics questions in early 20th :

What is a gold foil made of ?



well ... a bit more "scientific" what is matter made of ??

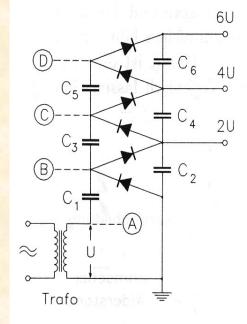

and even better...

Vera Cilento, CERN

how are pos. and negative charges distributed in matter ???

$$N(\theta) = \frac{N_i nt Z^2 e^4}{(8\pi\varepsilon_0)^2 r^2 K^2} * \frac{1}{\sin^4(\theta/2)}$$

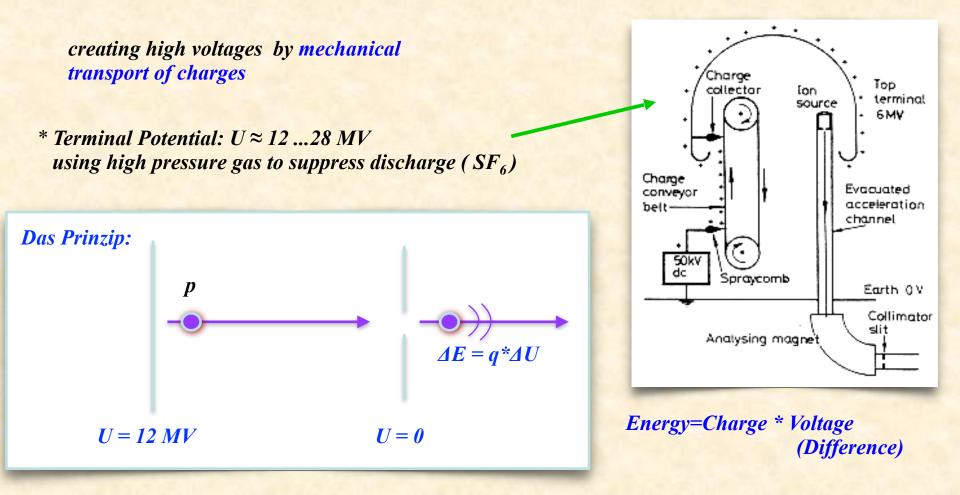
Rutherford Scattering, 1911 Using radioactive particle sources: *a*-particles of some MeV energy


Vera Cilento, CERN

1.) Electrostatic Machines: The Cockcroft-Walton Generator

1928: Encouraged by Rutherford Cockcroft and Walton start the design & construction of a high voltage generator to accelerate a proton beam

1932: First particle beam (protons) produced for nuclear reactions: splitting of Li-nuclei with a proton beam of 400 keV



Particle source: Hydrogen discharge tube
on 400 kV levelAccelerator:evacuated glas tubeTarget:Li-Foil on earth potential

Technically: rectifier circuit, built of capacitors and diodes (Greinacher)

Problem: DC Voltage can only be used once

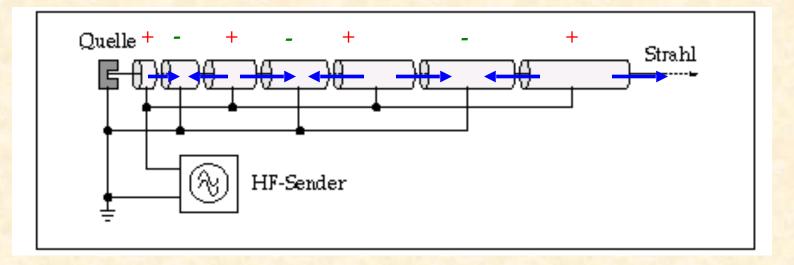
2.) Electrostatic Machines: van de Graaff Accelerator (1930 ...)

Problems: * Particle energy limited by high voltage discharges * high voltage can only be applied once per particle or twice ?

Vera Cilento, CERN

Apply the accelerating voltage twice by working with negative ions (e.g. H -) and stripping the electrons in the centre of the structure

Example for such a "steam engine": 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

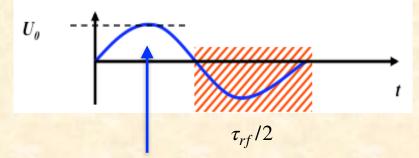

The "Tandem principle":

3.) The first RF-Accelerator: "Linac"

1928, Wideroe: how can the acceleration voltage be applied several times to the particle beam

schematic Layout:

Energy gained after n acceleration gaps


$$E_n = n \cdot q \cdot U_0 \quad \sin \psi_s$$

n number of gaps between the drift tubes **q** charge of the particle U_0 Peak voltage of the RF System Ψ_S synchronous phase of the particle

* acceleration of the proton in the first gap
 * voltage has to be "flipped" to get the right sign in the second gap → RF voltage
 → shield the particle in drift tubes during the negative half wave of the RF voltage
 Vera Cilento, CERN
 Romanian Teacher Program

Wideroe-Structure: the drift tubes

shielding of the particles during the negative half wave of the RF

Ideal time 90 grad —> sin(90%)=1

Time span of the negative half wave: Length of the Drift Tube:

Kinetic Energy of the Particles

 $E_n = \frac{1}{2}mv^2$

 $l_n = v_n \cdot \frac{\tau_{rf}}{2}$

 $\tau_{rf}/2$

$$\rightarrow v_n = \sqrt{2E_n/m}$$

 $l_n = v_n \cdot \frac{\tau_{rf}}{2} = \frac{1}{f_{rf}} \cdot \sqrt{\frac{n \cdot q \cdot U_0 \cdot \sin\psi_s}{2m}}$

mit der kin. Energie $E_n = n \cdot q \cdot$

$$E_n = n \cdot q \cdot U_0 \cdot \sin \psi_s$$

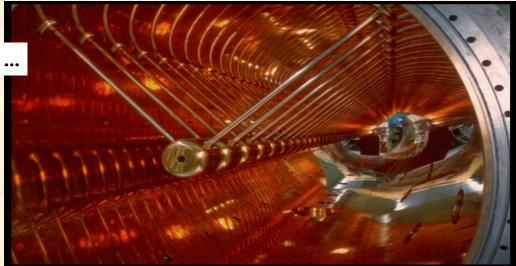
ergibt das

$$v_n = \sqrt{\frac{2 \cdot n \cdot q \cdot U_0 \cdot \sin(\psi_s)}{m}}$$

Blueprint for a Wideroe accelerator:

Romanian Teacher Program

Vera Cilento, CERN


8

And that's how it looks inside:

Attention !!! valid for non relativistic particles ...

Energy: ≈ 20 *MeV per Nucleon*

 $\beta = V/C \approx 0.04 \dots 0.6$, Particles: Protons/Ions

Example:

total energy

kinetic energy

Rest-Energie

 $E_{total} = E_{kin} + m_0 c^2$ $E_{kin} = E_{total} - m_0 c^2$ $E_0 = m_0 c^2$

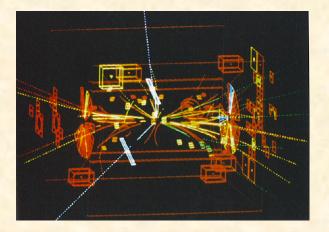
 $\gamma = \frac{E_{ges}}{E_0} = 988/938 = 1.05$

Linac III:

 $E_{total} = 988 \ MeV$ $m_0 c^2 = 938 \ MeV$

$$E_{kin} = 50 \ MeV$$

--> in the classical regime


Vera Cilento, CERN

Accelerators for High Energy Physics:

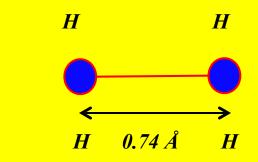
Fixed target experiments:

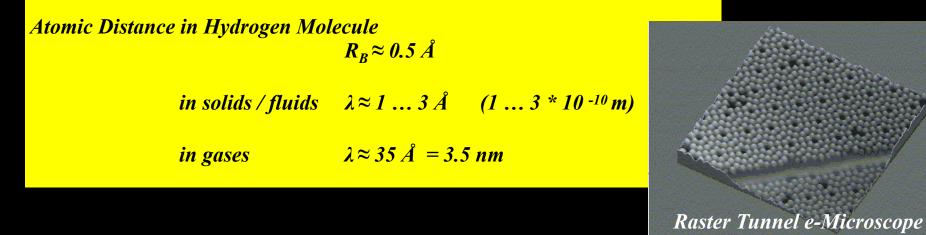
Collider experiments: E=mc²

To go to highest energy we have to collide two beams

 $E_{cm} = E_1 + E_2$

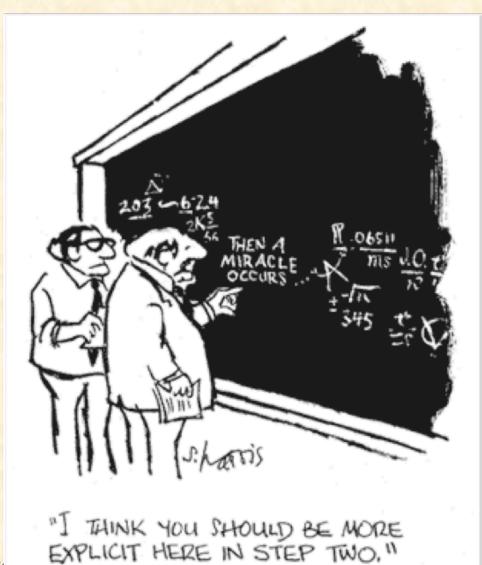
—> low event rate


high event rate


limited energy reach

Romanian Teacher Program

Vera Cilento, CERN


Particle Density in matter

Particle Distance in Accelerators: $\lambda \approx 600 \text{ nm} (Arc) \dots 300 \text{nm} (IP LEP)$ = 3000 Å

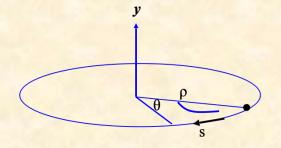
II.) A Bit of Theory The big storage rings: "Synchrotrons"

Vera Cilento, CERN

Rom

12

1.) Introduction and Basic Ideas


The ideal circular orbit

circular coordinate system

Lorentz force

$$\vec{F} = q^* (\vec{E} + \vec{v} \times \vec{B})$$

 $v \approx c \approx 3*10^8 \, \frac{m}{s}$

condition for circular orbit:

Lorentz, force

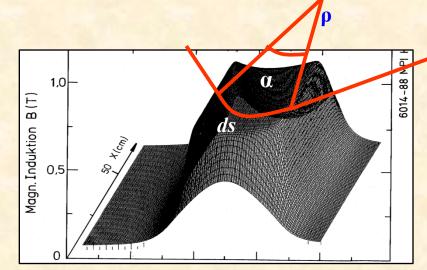
centrifugal force

Vera Cilento, CERN

$$F_L = e v B$$

$$F_{centr} = \frac{\gamma \ \boldsymbol{m}_0 \ \boldsymbol{v}^2}{\rho}$$

$$\frac{\gamma \ m_0 \ v^2}{\rho} = e \ v B$$


Romanian Teacher Program

 $\frac{p}{e} = B \rho$

B ρ = "beam rigidity"
... and even relativistically correkt.

The Magnetic Guide Field

field map of a storage ring dipole magnet

Dipoles: Two parallel Pole shoe plates create a constant (!) Magnet field

 $B \approx 1 \dots 8 T$

Attention: highest precision needed

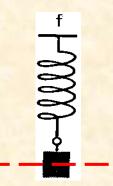
$$\frac{\Delta B}{B} \approx 10^{-4}$$

bending angle of a single dipole

$$\alpha = \frac{ds}{\rho} = \frac{B \cdot ds}{B \cdot \rho}$$

all dipoles around the ring

$$\alpha = \frac{\int B \, dl}{B \, \rho} \approx \frac{n \cdot B \cdot l_{dipol}}{B \, \rho} = 2\pi$$


$$n \cdot B \cdot l_{dipol} = 2\pi \cdot \frac{p}{q}$$

Vera Cilento, CERN

2.) Focusing Forces: Hook's law

Pendulum in your Physics Book

there is a restoring force, proportional to the elongation x:

$$F = m * a = -const * x$$

$$F = m * \frac{d^2x}{dt^2} = -\operatorname{const} * x$$

Hook's Law:

F = -k * x

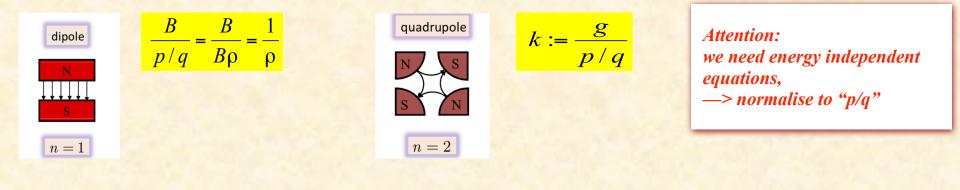
Integration results in a cosine like- solution or a sine like

or a combination of both

 $x(t) = A \cdot cos(\omega t)$ $x(t) = B \cdot sin(\omega t)$

 $x_{allg}(t) = A \cdot cos(\omega t) + B \cdot sin(\omega t)$

Advantage:

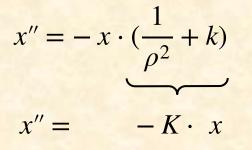

harmonic oscillations are very stable,, have a well defined frequency are wellknown in nature (and physics)


Vera Cilento, CERN

Focusing forces and particle trajectories:

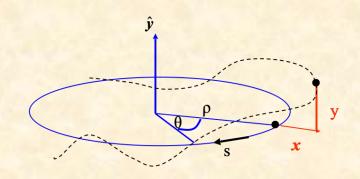
Dipole Magnet

Quadrupole Magnet



The Equation of Motion:

* Equation for the horizontal motion:

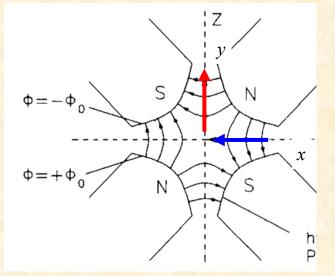

$$x'' + x \cdot \left(\frac{1}{\rho^2} + k\right) = 0$$

x = particle amplitude x' = angle of particle trajectory (wrt ideal path line)

Hook's law for Storage rings

... unfortunately there is a little problem:

Vera Cilento, CERN


The magnetic field lines are reverted in the vertical plane

no dipoles ... in general ...

 $k \leftrightarrow -k$ quadrupole field changes sign

 $y'' - k \cdot y = 0$

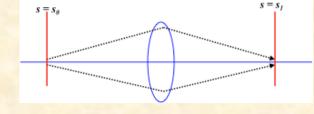
 $\frac{1}{\rho^2} = 0$

Vera Cilento, CERN

...and so particles that are focused on the horizontal plane are expelled out in the vertical plane

... et vice versa

4.) Solution of Trajectory Equations


Define ... hor. plane: $K = 1/\rho^2 + k$... vert. Plane: K = -k

$$x'' + K x = 0$$

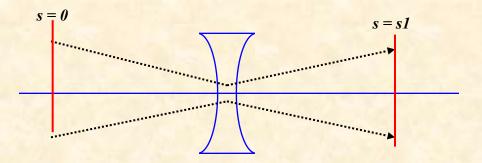
Differential Equation of harmonic oscillator ... with spring constant K

Ansatz: Hor. Focusing Quadrupole K > 0:

$$x(s) = x_0 \cdot \cos(\sqrt{|K|}s) + x'_0 \cdot \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|}s)$$
$$x'(s) = -x_0 \cdot \sqrt{|K|} \cdot \sin(\sqrt{|K|}s) + x'_0 \cdot \cos(\sqrt{|K|}s)$$

 $M_{foc} = \begin{pmatrix} \cos(\sqrt{|K|}l) & \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|}l) \\ -\sqrt{|K|} \sin(\sqrt{|K|}l) & \cos(\sqrt{|K|}l) \end{pmatrix}$

... and here we are once more with our cuckoo clock


For convenience expressed in matrix formalism:

$$\binom{x}{x'}_{s1} = M_{foc} * \binom{x}{x'}_{s1}$$

Vera Cilento, CERN

hor. defocusing quadrupole:

$$x'' - K x = 0$$

Ansatz: Remember from school

 $x(s) = a_1 \cdot \cosh(\omega s) + a_2 \cdot \sinh(\omega s)$

$$M_{defoc} = \begin{pmatrix} \cosh \sqrt{|K|}l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|}l \\ \sqrt{|K|} \sinh \sqrt{|K|}l & \cosh \sqrt{|K|}l \end{pmatrix}$$

drift space:

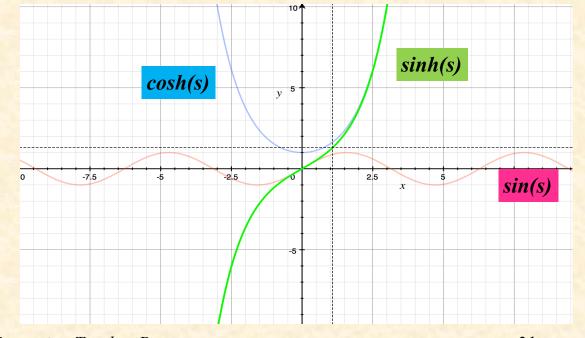
K = 0

$$x(s) = x'_0 \cdot s$$

$$M_{drift} = \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix}$$

! with the assumptions made, the motion in the horizontal and vertical planes are independent " ... the particle motion in x & y is uncoupled"

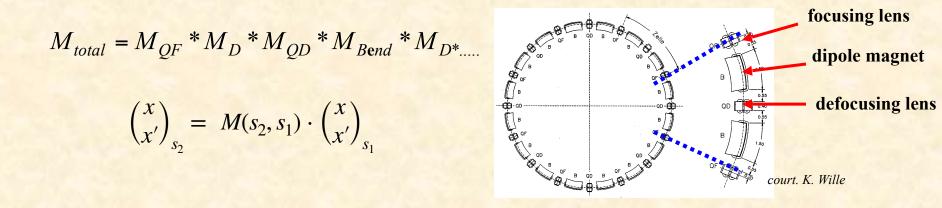
Vera Cilento, CERN

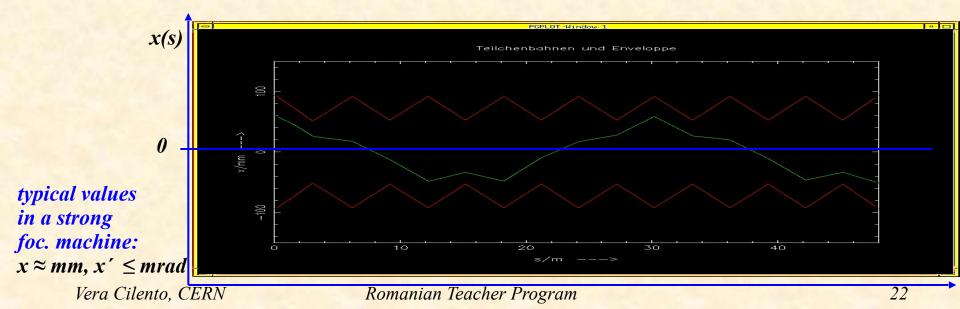

... gentle reminder: hyperbolic functions easily lead to panic attacks !

$$M_{defoc} = \begin{pmatrix} \cosh \sqrt{|K|}l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|}l \\ \sqrt{|K|} \sinh \sqrt{|K|}l & \cosh \sqrt{|K|}l \end{pmatrix}$$

$$f(s) = sin(s)$$
 $f(s) = cos(s)$
 $f(s) = sinh(s)$ $f(s) = cosh(s)$

Ansatz for rthe equation of motion in vertical plane:

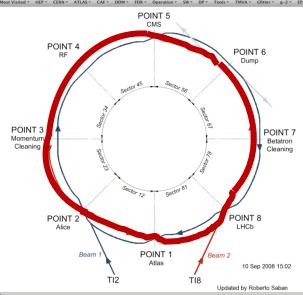

 $x(s) = a_1 \cdot \cosh(\omega s) + a_2 \cdot \sinh(\omega s)$

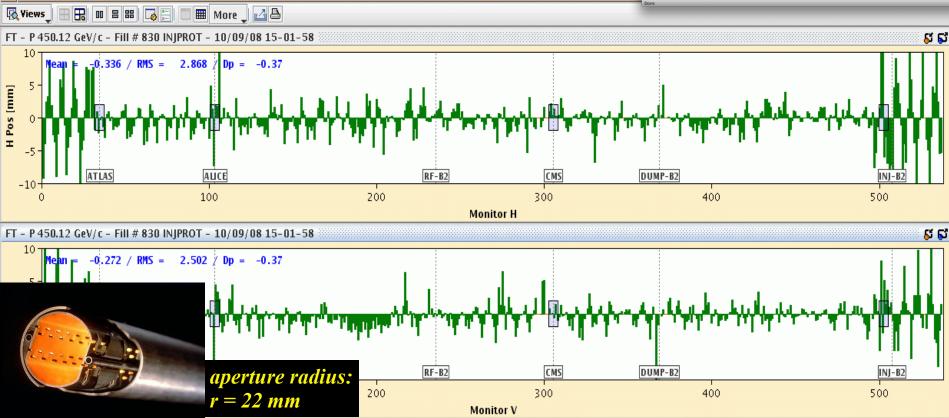

Vera Cilento, CERN

Transformation through a system of lattice elements

combine the single element solutions by multiplication of the matrices

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator "

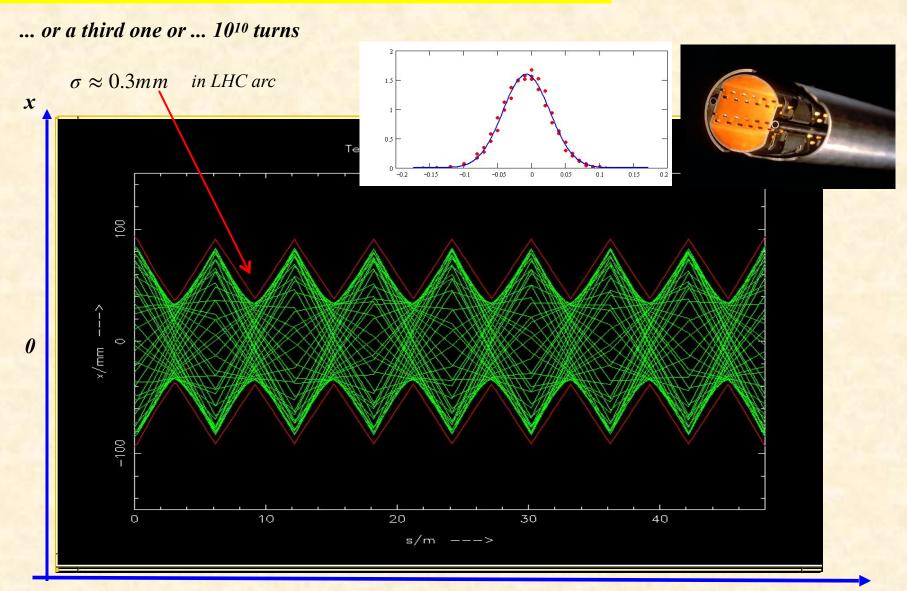



LHC Operation: Beam Commissioning

YASP DV LHCRING

The transverse focusing fields create a harmonic oscillation of the particles with a well defined "Eigenfrequency" which is called tune

First turn steering "by sector:"



INJ-TEST-NB

beam 2

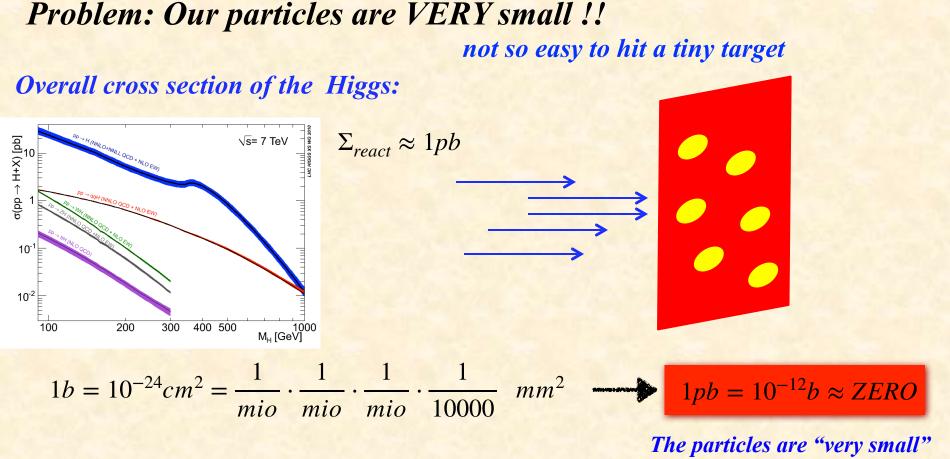
Question: what will happen, if the particle performs a second turn ?

Vera Cilento, CERN

Romanian Teacher Program

24

S

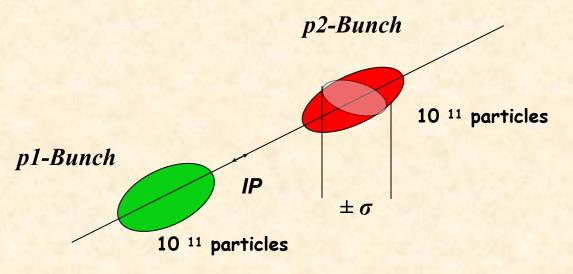


CMS Experiment at the LHC, CERN Data recorded: 2016-Aug-05 04:52:09.150784 GMT Run / Event / LS: 278240 / 338025446 / 168

CMS event display: Higgs => four muons $E = m_0 c^2 = m_{\mu 1} + m_{\mu 2} + m_{\mu 3} + m_{\mu 4} = 125.4 \text{ GeV}$

Vera Cilento, CERN

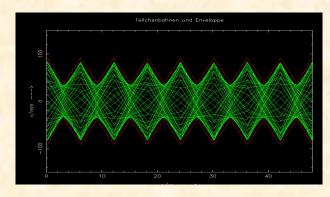
The only chance we have: compress the transverse beam size ... at the IP


Vera Cilento, CERN

LHC typical \rightarrow 16 μ m

5.) Luminosity

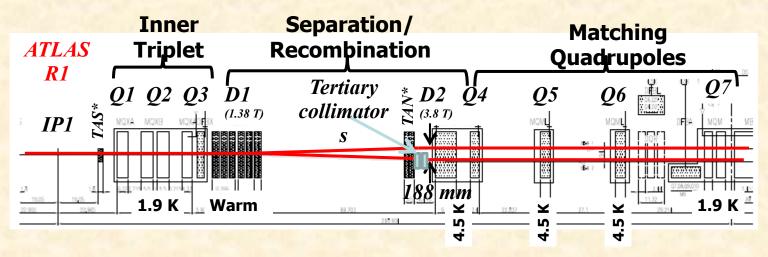
Event Rate: "Physics" per Second


 $R = L \cdot \Sigma_{react}$

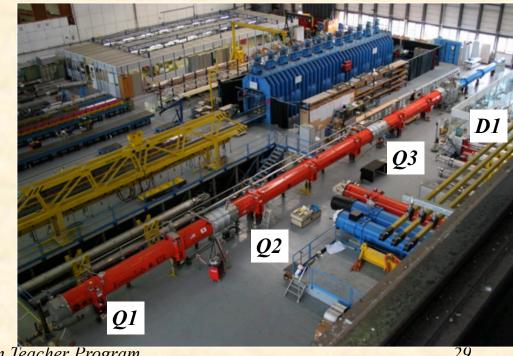
Example: Luminosity run at LHC

$\sigma_x = \sigma_y = 16 \mu m$	Beam size at IP
$f_0 = 11.245 \ kHz$	Revolution frequency
$n_b = 2808$	Number of Bunches
$N_p = 1.2 \cdot 10^{11}$	Particles per Bunch
$I_p = 584 \ mA$	Beam current

$$\boldsymbol{L} = \frac{1}{4\pi e^2 \boldsymbol{f}_0 \boldsymbol{n}_b} * \frac{\boldsymbol{I}_{p1} \boldsymbol{I}_{p2}}{\sigma_x \sigma_y}$$

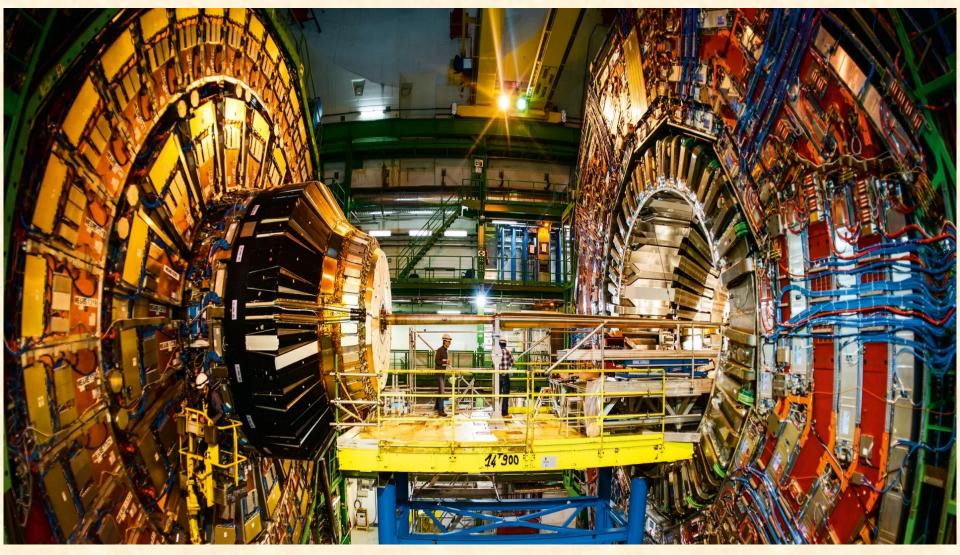


$$L = 1.0 * 10^{34} \ 1/cm^2 s$$



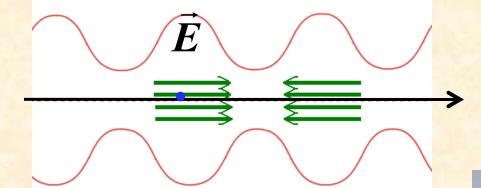
beam sizes in the order of my cat's hair !! Vera Cilento, CERN Romanian Teacher Program

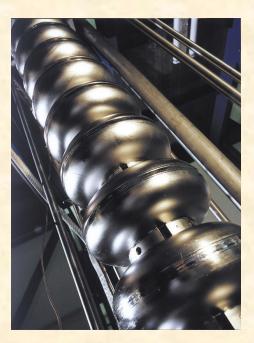
The LHC Mini-Beta-Insertions

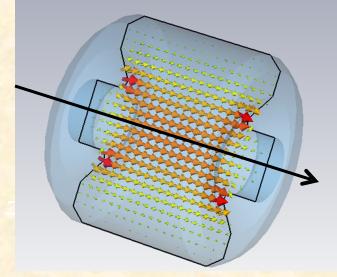

Extremely strong focusing (in both planes) for both beams to compress the trajectories of 10¹¹ Teilchen to micro Meter level.

Vera Cilento, CERN

... clearly there is another problem !!!

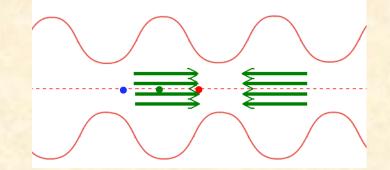

... unfortunately ... in general high energy detectors are a little bit bigger than a few centimeters ...

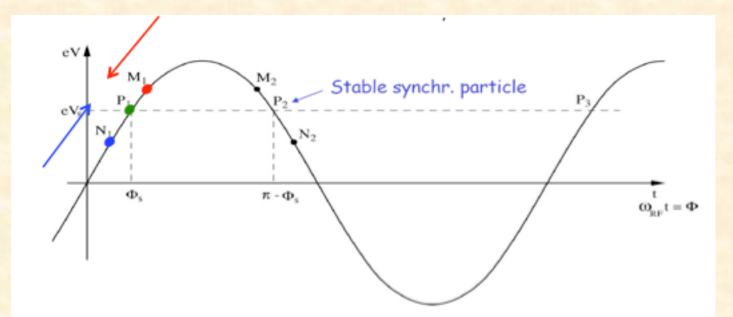



Vera Cilento, CERN

Where is the acceleration?

Install an RF accelerating structure in the ring:




B. Salvant N. Biancacci

Vera Cilento, CERN

The Acceleration & "Phase Focusing" △p/p≠0 below transition

ideal particle•particle with $\Delta p/p > 0$ •particle with $\Delta p/p < 0$ •slower

Focussing effect in the longitudinal direction keeping the particles close together ... forming a "bunch"

Vera Cilento, CERN

1.) Where are we?

* Standard Model of HEP * Higgs discovery

Vera Cilento, CERN

What's next ???

Dark Matter & Dark Energy Physics beyond the Standard Model

HST • PRC96-01a · ST Scl OPO · January 15, 1996 · R. Williams (ST Scl), NASA

STRATTON OF

VFPC2

Vμ

ντ

Η

Reconstruction of Dark Matter distribution based on observations

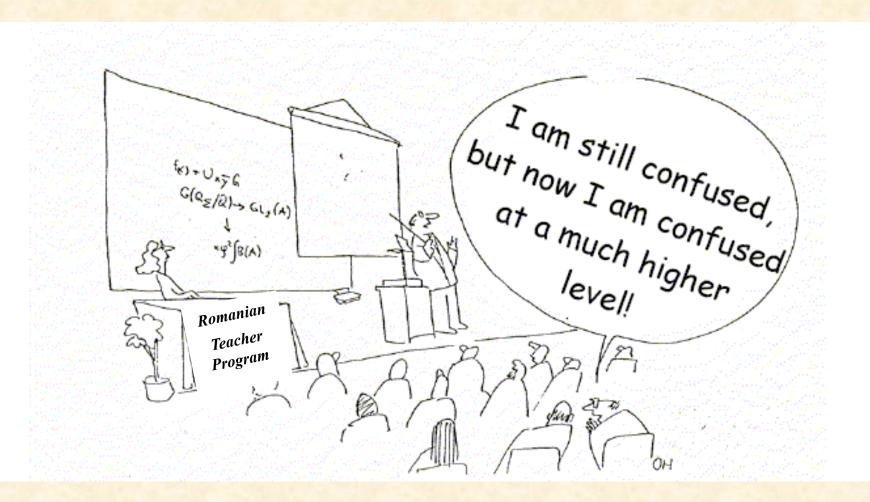
Budget: Dat Dat

Dark Matter: 26 % Dark Energy: 70 % Anything else (including us) 4 % **Open questions in particle physics**

Dark matter & Energy

... on which energy scale to look for it ?

Physics beyond the standard model ... Lepton or Proton colliders ?


Beam dynamics aspects ... Circular or linear ?

Technical aspects

... Traditional, sc / nc or PWA ?

Vera Cilento, CERN

Special competitions for schools: https://beamlineforschools.cern

Vera Cilento, CERN