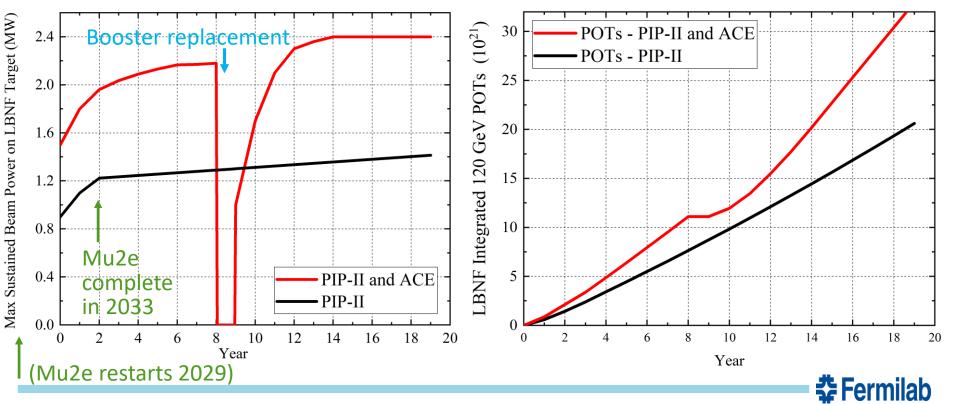


US Strategy for Muon Collider Targetry R&D Based on Fermilab Accelerator Complex Evolution Plan

Katsuya Yonehara Muon Collider Synergies Workshop June 23 2023

Targetry R&D for Fermilab future accelerator upgrade plan


- Fermilab propose Accelerator Complex Evolution (ACE) plan in the last P5 townhall meeting at Fermilab in 2023
- High Power Target technology has been developed for neutrino program
 - Established 1.2 MW graphite target for LBNF
 - ACE plan pushes the target R&D schedule to produce 2+ MW target
- ACE plan opens more high power target applications
 - Target R&D roadmap to support Mu2e+, AMF and MuC

Fermilab Accelerator Complex Evolution (ACE) plan

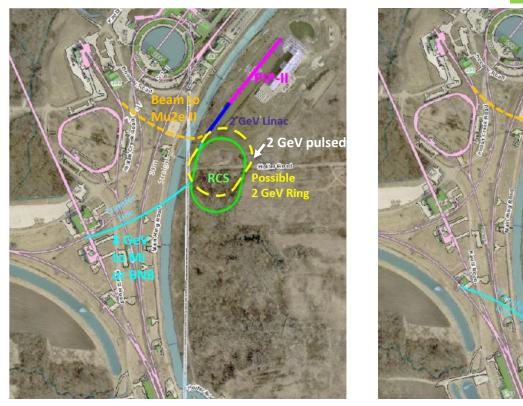
M. Convery, ACE Workshop'23

- Increase protons on target to DUNE Phase I detector by
 - Shortening the Main Injector cycle time to increase beam power
 - Upgrading target systems for up to 2.4 MW
 - Improving reliability of the Complex

Booster replacement options

M. Convery, ACE Workshop'23

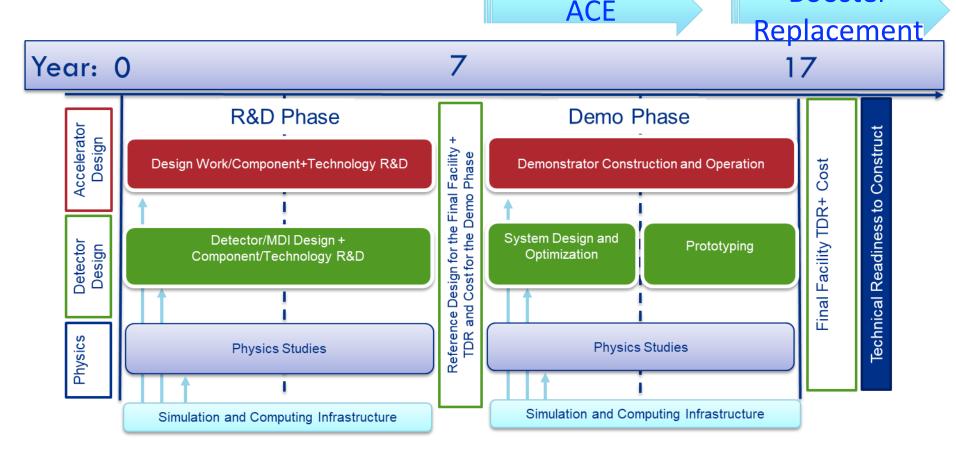
- Extend SRF Linac to higher energy or construct new Rapid-Cycling Synchrotron
- Looked at 3 representative options of each type
- All six configurations require an extension of the SRF Linac to 2 GeV
 - The RCS option will benefit from the reduced space charge at the increased energy
 - The high-energy linac option will need the beam with an approximate energy of 2 GeV to take advantage of higher frequency, β = 1, high-gradient cavities that can be grouped and fed from a single, high-power klystron.
- Parameters can be optimized based on outcome of this workshop


RCS

C1a) 10 Hz: Metallic vacuum chamber C1b) 20 Hz: Ceramic vacuum chamber, larger aperture magnets, accumulator ring C1c) 20 Hz: (C1b) with high-current linac, no accumulator ring SRF Linac and Accumulator Ring

C2a) Basic: small increase in PIP-II current, using demonstrated XFEL RFC2b) High current (5mA) and some RF R&DC2c) High current and significant RF R&D

Example Booster replacement options and possible add-ons


M. Convery, ACE Workshop'23

pulsed

Possible 2 GeV I

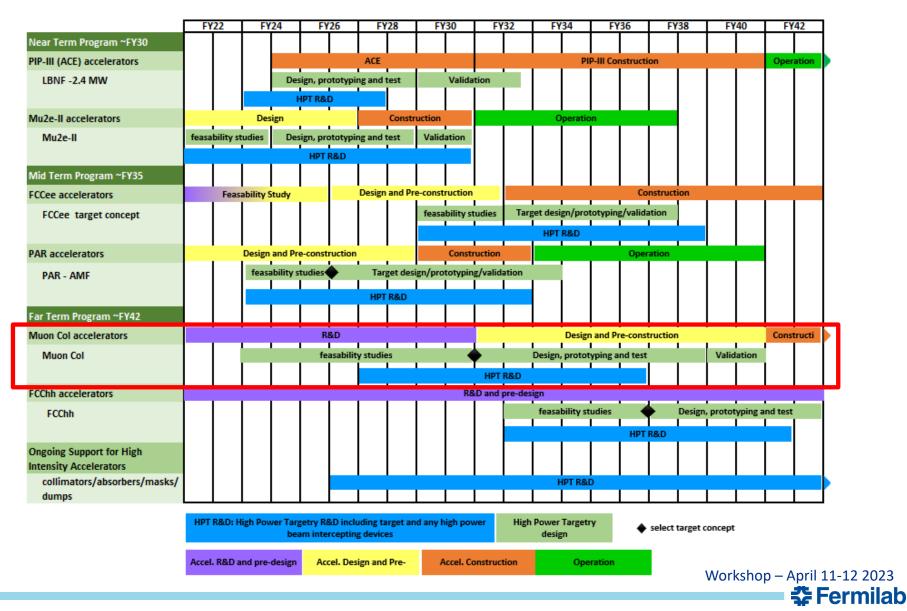
 Proton beam parameters in the present ACE Booster Replacement plan are preliminary and should be optimized specifically as Muon collider proton driver.
Fermilab

Timeline of US Muon Collider and ACE


Booster

🚰 Fermilab

 ACE + Booster Replacement will be expected around the year 17 where the Muon Collider facility design will be done

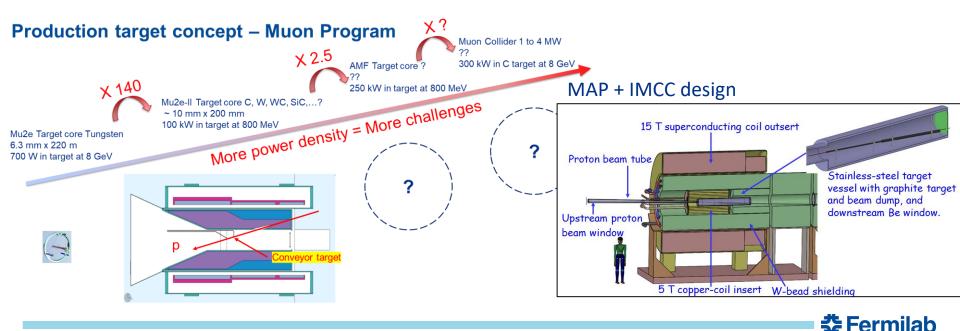

Collaborate Targetry R&D for MuC target study

 MuC targetry is included in the proposed GARD High Power Targetry Roadmap with a plan to have a prototype in the late 2030s

7 6/23/2023 US strategy targetry R&D, Yonehara

Proposed Roadmap of Targetry R&D

8 6/23/2023 US strategy targetry R&D, Yonehara

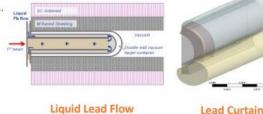

Strategic plan of Targetry for Fermilab accelerator program

- LBNF 1.2 MW and Mu2e 700 W are the first upcoming experiments at Fermilab
 - Targets have already been designed
- Design and prototyping LBNF 2+ MW and Mu2e-II 100 kW targets will be done around 2030
 - Graphite will be the baseline material for LBNF 2+ MW target
 - However, no conventional material is utilized for Mu2e-II target
 - Extremely dense proton beam which has never been operated

R&D of Targetry for Fermilab accelerator program

- Mu2e-II target has similar feature as a muon collider target
 - Target immersed in a high field magnet
 - Short bunch length and 0.8-8 GeV energy proton beams are needed (5-20 GeV for muon collider)
- Developing Mu2e-II target technology will be beneficial for muon collider

Advance Muon Facility

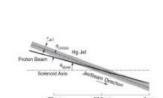

S. Middleton, ACE Workshop'23

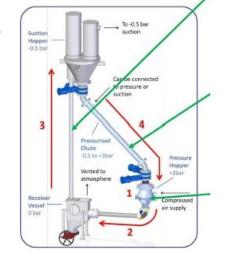
Targetry: 1MW Targeting

- Mu2e uses a cooled tungsten rod target with a 8GeV, 8kW beam.
- AMF has a much more intense environment: ~1GeV, 1MW beam.
 - We will need to re-think our production target design!
- Previous designs for similar complex envisioned a liquid target:
 - MERIT experiment (possible proof of principle?):
 - Liquid mercury (not an option due to environmental issues);
 - Rep. rates only about 70 Hz, limited by disruption of the jet.

Recent Results from the MERIT Experiment https://aip.scitation.org/doi/pdf/10.1063/1.3399332

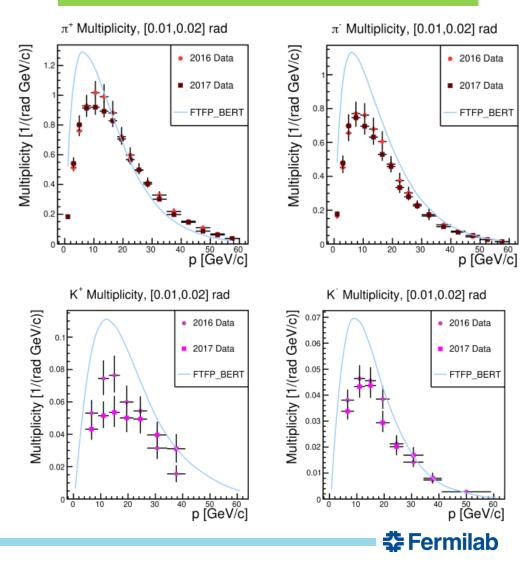
- Mu2e-II: rotating carbon spheres on conveyor (100kW, 800MeV).
- Muon collider at MW: fluidized tungsten, other possibilities...
- R&D required to design target for the AMF target!
 - Exciting synergies with muon collider R&D here.



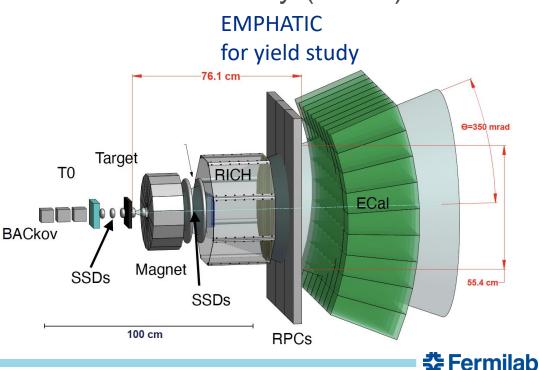

FIG. 3. The mercury jet target geometry. The proton beam and mercury jet cross at z = -37.5 cm.

Liquid jet

Fluidized


Tungsten

Study pion production physics


- Physics model in simulations has a large systematic uncertainty on the estimation of pion/kaon productions
 - Prediction becomes harder for longer target
 - Hard to model hadronic cascades

NA61/SHINE arXiv:2306.02961

Measure MuC Target physics parameter

- Pion yield measurement by using the modern spectrometer particle detector (EMPHATIC)
 - Compact but large solid angle 350 mrad
 - High-rate DAQ system, precision tracking and timing
- Measurement at Fermilab Test Beam Facility (FTBF)
 - Angular distribution
 - Target Z dependence
 - Energy dependence
 - Hadronic shower

Summary and Final remark

- Fermilab propose the ACE plan
 - It can speed up the neutrino program
 - Booster Replacement plan will be extended as muon collider proton driver (more design study needed)
- Targetry R&D is crucial for future HEP programs
 - All future HEP programs require high power target
 - We submitted the roadmap of US targetry R&D to the P5 committee
 - Covers LBNF 2+ MW, Mu2e-II, AMF, and MuC target R&Ds
 - Once the R&D will be officially funded, the US MuC target group will immediately join IMCC to boost the activity!

Extra slide

Possible demonstrator facility at Fermilab based on ACE plan

Caution:

 Candidate of demo facility is very preliminary and conceptual

🚰 Fermilab

• No design work done

S0D: 8 GeV Booster Experiments

Example: Current BNB Program.

J. Eldred, ACE Workshop'23

🚰 Fermilab

Booster provides 1.8µs pulses every 20 Hz of 6.5e12 protns at 8 GeV.

Impacted by MI cycle rate, but at least as high as present.

		PIP-II Booster		
Operation scenario	Present	PIP-II	Α	В
MI 120 GeV ramp rate	1.333	1.2	0.9	0.7
Booster intensity	4.5			6.5
Booster ramp rate	15			20
Number of batches	12		12	
MI power	0.865	1.2	1.7	2.14
cycles for 8 GeV	6	12	6	2
Available 8 GeV power	29	83	56	24

16 6/23/2023 US strategy targetry R&D, Yonehara

Evaluate ACE beam parameter for MuC R&D scenario

- Scenario A
 - Capable to deliver 8 GeV ACE beam to Recycler Ring
 - AP0 could be potential to utilize for Target R&D and Muon Cooling demo
- Scenario B
 - Share 8 GeV ACE beam with SBN

