

IMCC2023, 18-23 June 2023

Proton Facilities and Muon Plans in China

The Prospect with Superconducting Linac for High-intensity Muon Beams

Yuan He

Institute of Modern Physics, Chinese Academy of Sciences

Heavy Ion and Proton Facilities in China

CiADS & HIAF

IMP

High-intensity Proton Facilities in China

- CSNS and Project for Muon
- HIAF and Plan for Muon
- CiADS and Plan for Muon
- Superconducting Linac demonstration for ADS

Status of CSNS

- Location: Dongguan City, Guangdong Prov.
- CSNS I: Sep. 2011~Mar. 2018
- 80 MeV Linac + 1.6 GeV RCS
- 100 kW @ 62.5 μA, 25 Hz

Status of CSNS

- Beam commissioning started since May 2017.
- A series of beam loss optimization work to reduce the uncontrolled beam loss.
- Reached the design beam power of 100-kW at the end of February 2020.

Beam power ramp-up history of CSNS/RCS, where the blue bars correspond to the beam power, while the red line shows the accumulated beam power. Xu S Y, Liu H, Chen J, et al. Achievement of 100-kW beam operation in CSNS/RCS[C]//12th Int. Particle Acc. Conf. 2021: 1869-1871. 24-hrs. -operation history online:operates at 140-kW stably (June 17, 2023 ~ June 18, 2023)

https://user.csns.ihep.ac.cn/operating

Status of CSNS II

\sim / 1
٩ ٪ /
TICD
(IMP)
TV

Parameters	CSNS I	CSNS II
beam power (kW)	100	500
pulse frequency (Hz)	25	25
target number	1	1
averaged current (μA)	62.5	312
beam energy(GeV)	1.6	1.6
RCS injection energy(MeV)	80	300
number of spectrometer	3	20

- Linac: 80 MeV to 300 MeV SC
- RCS Beam Power: 100 kW to 500 kW
- Spectrometers: 3 to 20
- Review of the Linac Design has been performed on March 22, 2021.
- Project has been approved on Jan. 11, 2023.

MELODY Project @ CSNS II (Muon station for science technology and industry)

- Protons: 1.6 GeV, 1 Hz (up to 5Hz), 130ns double pulses
- Muon beamlines: one surface muon and one decay muon beam
- Spectrometers: 1 µSR spectrometer and more...

Courtesy Bao, Yu

Muon Source Project at CSNS

- Feasibility Study has been approved by National Development and Reform Commission
- First Geosurvey has been carried out at the muon hall

Courtesy Bao, Yu

Muon Source Proposals at CSNS

Prospect with MELODY II

Courtesy Bao, Yu

- > Pion/Decay muon beam: up to 300MeV, up to 10^7 /s
- Higher repetition rate
- Pulse slicer: Short pulse
- > More terminals: various spectrometers, low energy muons, μ^- applications, μ imaging, muonic X-ray, technique development

	MELODYI	MELODY II
Proton Power (kW)	20	Up to 100
Pulse width (ns)	130	down to 10ns
Surface muon intensity (/s)	105	5*105
Polarization (%)	>90	>90
Positron (%)	<1%	<1%
Repetition (Hz)	1	Up to 5
Terminals	1	2-6
Decay muon energy (MeV/c)	NA	Up to 120
Full Beam Spot (mm)	30	30

IMP

High-intensity Proton Facilities in China

- CSNS and Project for Muon
- HIAF and Plan for Muon
- CiADS and Plan for Muon
- Superconducting Linac demonstration for ADS

HIAF & CIADS

HIAF Project

Accelerator components Radioactive beams physics station and experiment terminals • To explore the limit of nuclear existence HFRS: Radioactive beam line S High precision spectrometer ring • To study exotic nuclear structure High energy experiment station E-ion recombination spectroscopy SRing: • Understand the origin of the elements Spectrometer ring Circumference: 273m • To study the properties of High Energy Rigidity: 13-15 Tm BRing SECR: and Density Matter Fast cycle ring Superconducting Circumference: 590 m ECR source Rigidity: 34 Tm iLinac: Superconducting linac Low energy nuclear structure and irradiation terminal

Courtesy Yang, Jiancheng

	iLinac	BRing		SRing	
Length / circumference (m)	114	569		277	
Final energy of U (MeV/u)	17 (U ³⁵⁺)/150	835 (U ³⁵⁺) 9300 (p)		800 (U ⁹²⁺)	3500 (p)
Max. magnetic rigidity (Tm)		34		15	
Max. beam intensity of U (ppp)	28 рµА	2×10^{11} (1-3)×10 ¹³		$(0.5-1) \times 10^{12}$	$(1-3) \times 10^{13}$
Operation mode	CW or pulse	Fast ramping (12T/s, 3Hz)		DC, deceleration	
Emittance or Acceptance (H/V, π·mm·mrad, dp/p)	5 / 5	200/100, 0.5%		40/40, 1.5% (normal mode)	

Schedule of HIAF

2019	2020	2021	2022	202	23	2024	2025		2026
	Civil co	nstructi	o n			•			
		Electric power, cooling water, compressed air, network, cryogenic, supporting system, etc.							
ECR design & fabrication			SECR installation and commissioning			*			
Linac design & fabrication			iL	inac ins comn	ac installation and commissioning exp				
Prototypes of PS, RF cavity, chamber, magnets, etc.		fabrication		BRing installat commission	tion & ing	Day one exp	*		
						HFRS & SRing installation & commissioning			Day one exp
			Terminals installation						

Muon Source plan at HIAF

□ Muon generation

- HIAF can provide high-intensity proton/ion to drive the surface/decay muon source
- The fast/slow extraction mode of BRing can provide pulse/continuous beam for various experimental requirement.

Muon Source plan at HIAF

Proton 9300MeV, 5×10^{13} ppp, 3 Hz

Courtesy Chen, Liangwen & Zhao, He

High-intensity Proton Facilities in China

- CSNS and Project for Muon
- HIAF and Plan for Muon
- CiADS and Plan for Muon
- Superconducting Linac demonstration for ADS

- Spent fuel: reusable fuel + fission products (waste), extremely difficult to partition
- ~11,300 tons of spent fuel unloaded annually
- By 2035, spent fuel emissions will be close to 618,000

Until now, all spent fuels are stored on-site or offsite in engineered storage facilities, pending final decisions on its disposition

Spent fuel, Natural Uranium, Transuranic

Environment-friendly innovative closed fuel cycle

- Natural resources preservation
- Burn the spent fuel storage from current reactors
- Fully utilize nuclear energy resources > 95%
- Waste minimization < 400 years

CiADS Project

The world's first MW-level ADS prototype

Acc: 500 MeV (upgrade to 2.0 GeV),
5 mA (upgrade to 10 mA)
Target: LBE, 2.5 MW
Reactor: Subcritical LBE, 10 MW

1st stage; accelerator bldg; 2022~2023

2nd stage; reactor and exp bldg; 2023-2024

- T1: ADS Terminal, 10MW reactor, K_{eff} 0.75~0.96;
- T2: High Power Target Experimental Facility;
- T3: Muon Experimental Facility;
- T4: Multifunctional Irradiation Research Station;
- T5: Nuclear Data Experimental Terminal
- T6: ISOL for upgrade

Superconducting Linac

- Modular design
- Fault-compensation scheme
- Beam loss control
- Economy
 - High utility efficiency of Key components (cavity and SSA)
 - Well developed technology at IMP
 - More focus on the system integration and optimization (LLRF,ICS)
- Upgradeability
 - Energy ~2 GeV
 - Current ~ 10 mA

particle	proton	
Energy	500	MeV
current	5/10	mA
Beam power	2.5	MW
RF freq	162.5/325/650	MHz
Epeak	26/28/29/29/29	MV/m
Num of CM	32	-
Num of cavity	151	-

CiADS Research Plan (2025 ~ 2030)

Upgrade of Superconducting Linac

Muon Source plan at CiADS

Upgrade

space

25m

Muon Source plan at CiADS

 An area of 32 m×30 m for the low power dump, muon source and the high power beam dump.
 The muon production target and two collimators be set upstream of the dump.

Muon Source plan at CiADS

30 m

Phase I:

- Proton beam of 500 MeV & 300 kW on the target, ~10 kW energy deposit. Or 2.5 MW in the future.
- Solenoid-based capture and transport, total efficiency of ~10%, surface muon rate of 5 × 10⁹/s.
- 1 production target, 2 capture solenoids, supporting at least 3 muon beam lines (2 μ⁺& 1 μ⁻) to work simultaneously.
- Providing surface and slow muon beam for µSR covering important sample environments.
- Phase II: upgrade to 2 GeV/ 10 mA

High-intensity Proton Facilities in China

- CSNS and Project for Muon
- HIAF and Plan for Muon
- CiADS and Plan for Muon

Superconducting Linac demonstration for ADS

Development of Demo Linac for ADS — CAFe

		Ion source	RFQ	CM1	CM2	CM3	CM4
	FREQ	DC	162.5 MHz	162.5 MHz	162.5 MHz	162.5 MHz	162.5 MHz
1	Energy	35 keV	2.1 MeV	5 MeV	10 MeV	18.5 MeV	20 MeV
	Туре	ECR	4-vane	HWR010	HWR010	HWR010	HWR015
	Num.C AV	1	1	6	6	5	6

- 2011~2021, CAFe was constructed and commissioned to verify the CW current of 10 mA,
 the value for industrial ADS version.
- CAFe Goal: to demonstrate 10 mA CW beam of superconducting front-end Linac for ADS.

Development of Demo Linac for ADS — CAFe

High Current Demonstration

- China has breakthroughs in high-intensity proton facilities. The 100-kW-beampower milestones have been achieved at CSNS and CAFe.
- Three proton facilities base on SC linac —— CSNS II, HIAF and CiADS are now constructing.
- A muon source will be built in the CSNS II and the muon consideration on CiADS and HIAF are planning.

Thanks for

your attention!

Welcome Advice and Collaborations !