

Protons in Europe : Possible synergies with the Muon Collider

N. Charitonidis [CERN, BE-EA] **Acknowledgements :** G. Arduini ,J. Bernhard, M. Brugger, M. Calviani, R. Losito, D. Reggiani, C. Rogers ,D. Schulte and others

23.06.2023

Outline

- Introduction Scope of the presentation
- Existing proton (or proton-driven) facilities in Europe
 - $\circ~$ Focusing on already proposed or ideas for synergies with the Muon Collider Community
- Outlook on future proposals
 - $\circ~$ Keeping the door open for collaborations and possible knowledge sharing

- \circ Not covered :
 - Medical facilities, LHC experiments, FCC, ions beams and Light Sources (SLS, SwissFEL ...)
 - Any facility with proton momenta < 0.5 GeV/c (GSI UNILAC, Legnaro, GANIL ..)
 - $_{\odot}~$ Any facility that by mistake have been overlooked ~?

Introduction

- Today many proton facilities available in Europe, both for physics and for test-beams
- In the foreseeable future: the ESPP outlined an indicative timeline for future collider and larger accelerator facilities, many of them protondriven

Sharing concepts, techniques, materials and knowledge → "Synergies"
 → Focus on exactly this aspect for the Muon Collider Collaboration

European Strategy for Particle Physics -Accelerator R&D Roadmap

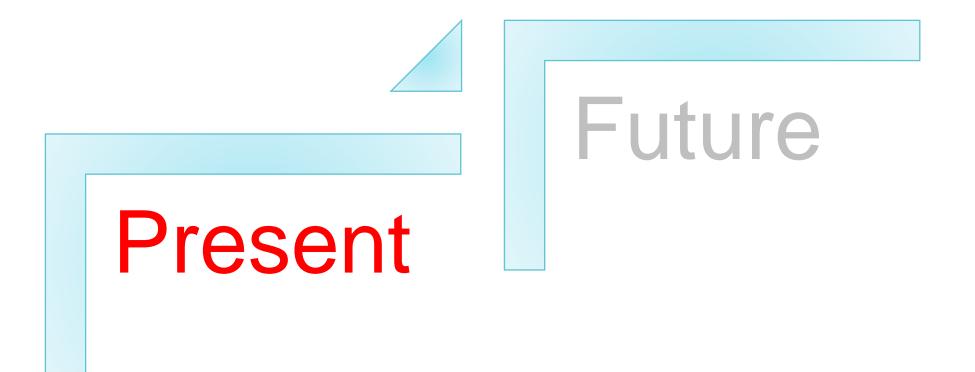
23-Jun-23 N. Charitonidis | Protons in Europe & Possible Synergies with the Muon Collider

4

Two types of beam structures

• "Slowly" extracted beams

- Debunched beams with spill lengths > ~ ms
- Useful to characterize and benchmark detectors with primary or secondary beams


- "Fastly" extracted beams
 - Bunched beams with bunch lengths < ~ms
 - Useful for experiments that need high instantaneous intensities and for understanding material thresholds

Existing Proton-driven Facilities

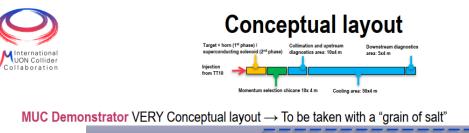
Proton facilities in Europe – CERN PS (1)

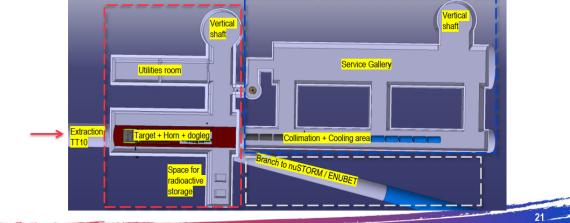
- T08 East Area Irradiation Facilities
 - Proton beam 24 GeV/c- debunched spill length ~400 ms, intensity ~5x10¹¹ pps
 - Primary beam (IRRAD) and Secondary Field (CHARM) available
 - Flexible to accommodate new experimental collaborations for tests
- T09/10 East Area Secondary lines
 - Mixed hadron or electron beams 0.1 12 GeV/c, debunched spill length ~400 ms intensities ~10⁶ pps
- n-TOF Neutron Time-of-Flight facility
 - Proton beam 20 GeV/c 4σ bunch length : 28 or 40 ns, intensity ~8x10¹² ppb
 - An experiment can be installed in TT2A line before the target and use the proton beam.
 - Possibilities for a demonstrator in TT7 and TT10 under consideration (R. Franqueira, R. Losito, M. Calviani et al)

• ISOLDE - Radioactive Ion beam facility

- Proton beam 1.4 GeV/c from PS Booster, bunch length 230 ns, intensity 8x10¹² ppb
- Dedicated facility for nuclear, fixed target, condensed matter & biophysics

A possible MUC demonstrator facility at CERN ?


TT10 line option (recap)


- First ideas proposed by Marco C. in the 1st Community meeting. TT10 line option seen as most attractive (Roberto L. presentation).
 - O(80kW) should be easily feasible by going sufficiently underground.
 - 4 MW does not appear to be a showstopper in this layout, but detailed studies will have to be performed.
 - Future upgrades towards a collider and HP-SPL should be compatible with this layout.
 - Experience with other facilities available

See talk of D. Schulte → This workshop

Proton facilities in Europe – CERN SPS (2)

H2/H4/H6/H8 : North Area Secondary beams _____

- Proton beam 400 GeV/c- debunched spill length ~4.8 s, intensity 1x10²~1x10⁷ pps and momentum spread up to 2%
- Flexible to accommodate new experimental collaborations for tests
- Hadron production or other service measurements possible with the NA61 collaboration TPC

M2: Muon beam

- Unique high energy muon beam in the world, debunched spill length ~4.8 s intensities ~10⁸ mps between 100 – 200 GeV/c
- For the moment dedicated to AMBER experiment
- However: Strong possibility for synergies on magnetic collimation, muon shields, simulation codes, ...

Proton facilities in Europe – CERN (3)

- HiRadMat test facility •
- - Proton beam 440 GeV/c 4σ bunch length : ~1 ns, intensity ~5x10⁹ 2.3×10^{11} ppb, up to 288 bunches in total (6×10^{13} ppp)
 - An experimental area available for tests with the LHC-type high-brightness beams \rightarrow Useful for MMW targetry studies or accelerator components (like vacuum windows)
 - Transnational access support for experimental teams to perform their • experiment via EURO-LABS
 - Possibilities of scaling the HiRadMat beam to similar parameters as the • muon collider proton or even muon beam, in order to study single pulse effects ?
 - Possibilities for extracting lower momentum beams to HiRadMat with the same time structure being currently studied.

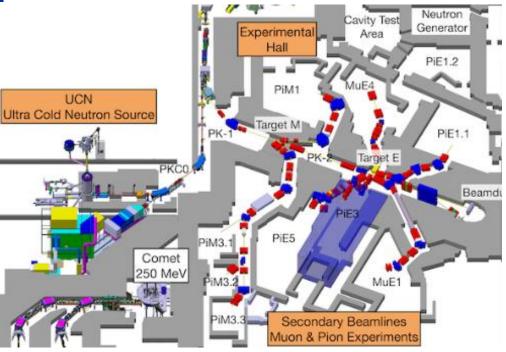
HiRadMat Experiments 2022

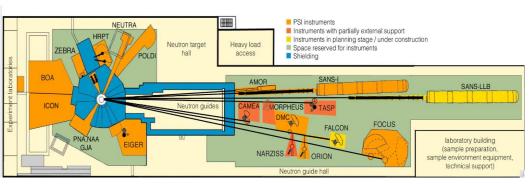
IRMT58 ATLAS-ITK HRMT55 BLM3 HRMT59 SMAUG HRMT60 RaDIATE HRMT61 SCcc CERN, JSI CERN, GSI, ESS CERN CERN, FNAL, KEK CERN, KIT	Prototype ATLAS beam condition monitor	Validation of production BLMs for HL-LHC	Validation of beam windows for LIU intensities at HRMT	Thermal shock in pre-irradiated materials	Damage limits in SC miniature HL LHC dipoles (3 k
					HRMT61 SCcoil: CERN, KIT

Example: 33 bunches of p+ @ 1x10¹¹ppb @440 GeV/c @0.25 mm \rightarrow 0.90 kJ/cm³ @ 1 um Si_3N_4

 $4x10^{12}$ mu+ @32 MeV/c @ 0.6mm \rightarrow 0.89 kJ/cm3 @ 1um Si₃N₄ Calculations: J. Ferreira Somosa

Proton facilities in Europe – PSI

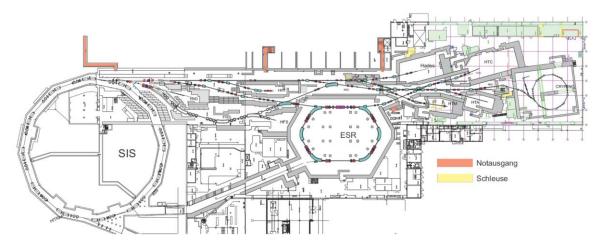

PSI Secondary beam lines



- **Secondary muons**, pions protons electrons & ultra-cold neutrons
- Momenta up to 0.5 GeV/c with maximum fluxes up to 2x10⁹ p/s/mA and momentum spread up to 8%.
- Various properties quite dependent on the specific beamline
- Could be useful for components testing
 - More information for the muon beams available here ٠
 - Future project HIMB will provide muon beams up to 10¹⁰ muons/s ۰

SINQ : Neutron Scattering in the SSNS

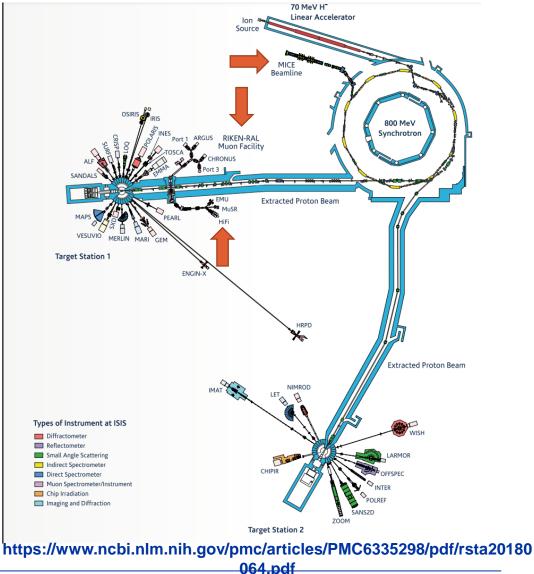
- A unique continuous neutron source providing a flux of 10¹⁴ n/cm²/s (starting from 590 MeV protons) with a max. power of ~1 MW
- Cold and utra-cold neutrons can be useful for material research
- Very broad spectrum of research with dedicated instruments ٠ available - Possible synergies need to be looked at in detail



Proton Facilities in Europe – GSI

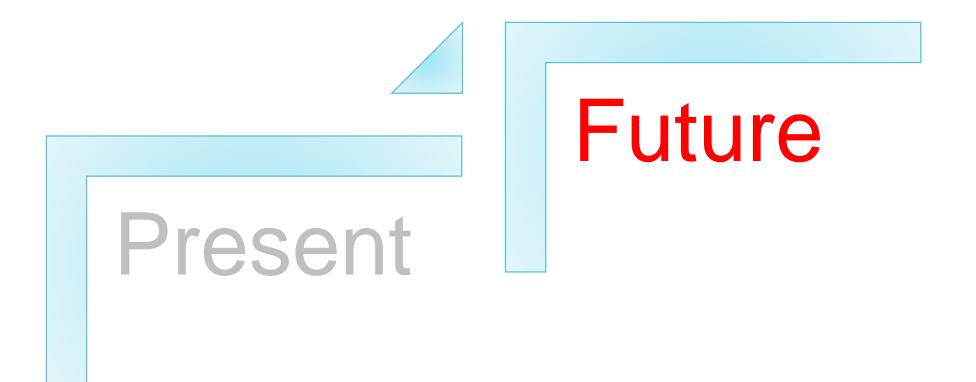
SIS18 Synchrotron & HEST beam lines

- Primary protons @ 4.5 GeV/c, up to 10¹¹ p/spill, with possibilities for both slow (200 ns – 8ms) and fast (1us) extraction.
- In the HEST beam lines, secondary pion beams also available up to 2 GeV/c and intensities up to 10¹¹ p/spill
- Possibilities for tests of components ?

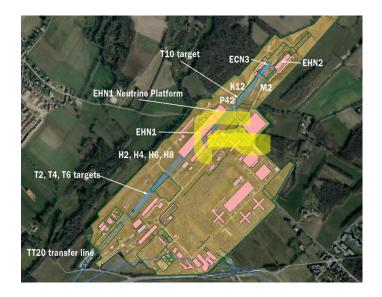


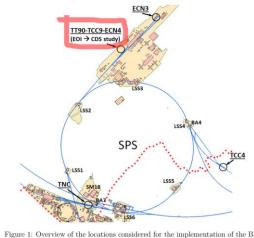
Proton Facilities in Europe - STFC

• ISIS : Muon and Neutron source



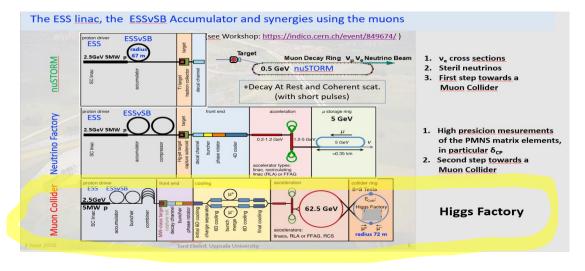
- Protons (stripped H-) accelerated up to 0.8 GeV/c, 2.5x10¹³
 ppb, with 70ns bunch length towards the muon and neutron targets.
- Focusing on Muons :
 - See talk of R. Steward → this workshop !
 - EC muon facility : 28 MeV/c momentum, +-2% momentum spread, up to 1x10⁶ muons / s.
 - RIKEN/RAL muon facility : Adjustable muon momentum between 17 MeV/c and 120 MeV/c, with intensities up to O(10⁶) muons/s.
 - MICE beamline: Dedicated for MICE experiment @ <u>140</u>, <u>200 and 240 MeV/c</u> → Now dismantled
 - A wide variety of experiments and instruments available. Synergies for components tests ?


Future Proton-driven Facilities



Future Proton Facilities – CERN HI ECN3

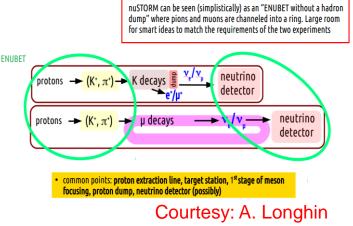
- The CERN ECN3 cavern is a unique place for high-energy, high-intensity beam experiments.
 - Today hosting the NA62 experiment
- Within the <u>Physics Beyond Colliders initiative and the ECN3-HI</u> <u>TF</u>, three proposals are being considered for post-LS3 (2029) operation :
 - **HIKE** : A proposed expansion of the current NA62 experiment for studying rare decays of charged kaons and (later) neutral kaons ;
 - **SHADOWS** : A new experiment that would look for visible feebly-interacting particle (FIP) decays off-axis and could run in parallel to HIKE ;
 - **BDF/SHiP** : A proposal that would allow a full investigation of hidden sectors in the GeV mass range.
- All experiments would require unprecedented intensity extracted towards the CERN North Area (4x10¹³ protons / slowly extracted spill O(10¹⁹) protons per year)
 - Possible synergies with the MUC would need to be looked at more in detail (e.g targetry tests ?)


https://cds.cern.ch/record/2802785/files/2204.03549.pdf

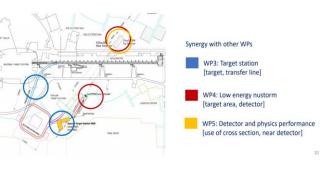
Future Proton Facilities – ESS (& ESSnuSB)

- European Spallation Source will be a multidisciplinary research facility based on a powerful neutron source
 - Proton-driven by a linac accelerating protons up to 2 GeV, 14Hz repetition frequency, 62.5 mA pulse current and 2.86ms pulse length

 ESSnuSB project proposes to add to the ESS a 'super beam' neutrino facility where ~10²⁰ muons / year will be produced as "by-product" – modifying the proposed ESS accumulator ring.


 Various ideas for <u>target synergies</u> and even the idea of an <u>Initial</u> <u>Cooling Experiment</u> in ESS have been also proposed.

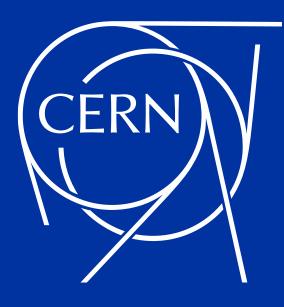
ENUBET & NuSTORM


- ENUBET: A mature collaboration, supported by an ERC grant with the purpose to develop a monitored neutrino beam
 - Monitoring of the large angle positrons & muons towards measurements of v_{μ} and v_{e} cross-sections
 - Beamline design advanced, a conceptual feasibility analysis will start at CERN in the framework of Physics Beyond Colliders investigating also synergies with the ProtoDUNE collaboration
 - Strong synergies with the MUC, especially in the case of the CERN-based demonstrator, <u>both on targets</u> & <u>civil engineering</u>
- NuSTORM: A proposed facility to deliver a definitive neutrino-nucleus scattering program using vµ & ve
 - See <u>talk of K. Long</u> → This workshop !
 - Proposing a unique storage ring of mu+ between 1 GeV/c and 6 GeV/c and neutrinos between 300 MeV/c up to 5.5 GeV/c. <u>Can be a muon source ?</u>
 - Strong synergy with ESSnuSB using possibly the NuSTORM detector for the lower momenta ?
 - Muon Collider demonstrator at CERN → Both <u>NuSTORM and ENUBET could</u> branch off ???

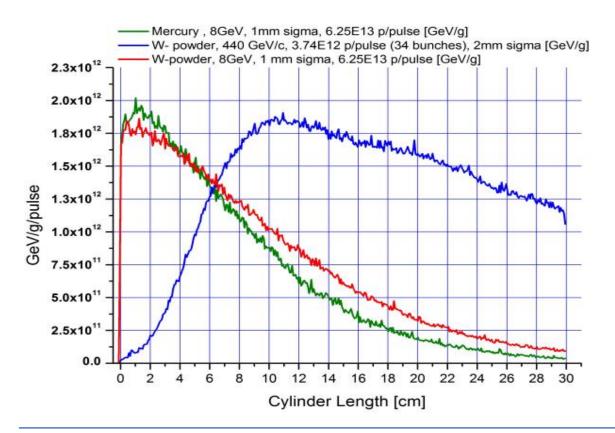
The Work Package 6 of ESSnuSB+

Participants: Unimib (Milano, Italy), INFN (Padova, Italy), RBI (Zagreb, Croatia), NCSRD (Athens, Greece), AU (Thessaloniki, Greece) External support: from the ENUBET Collaboration on the re-optimization of the horn-less beamline

Courtesy: F. Terranova

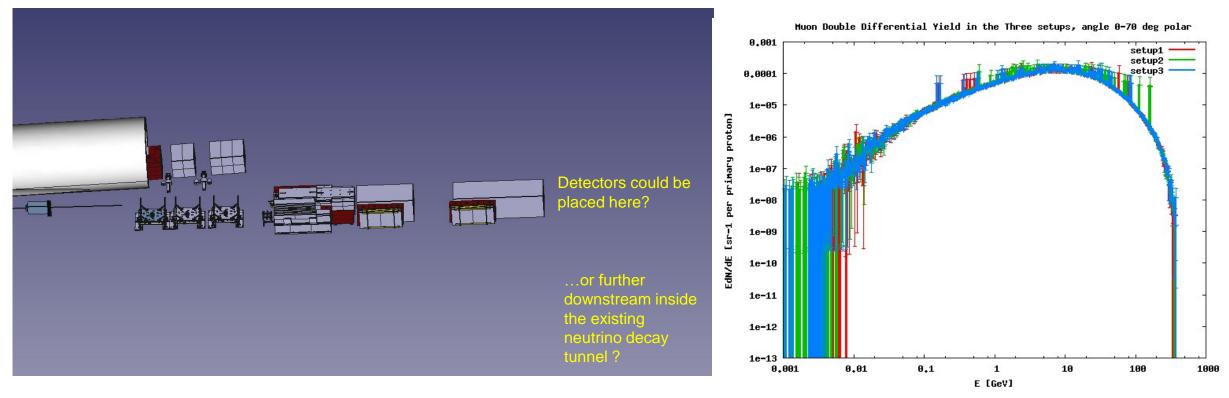


- There are many existing proton facilities in Europe than synergies can be investigated with the muon collider collaboration.
 - Accelerator-driven facilities that could serve for a proof-of-principle demonstration or to test detectors / components or contribute to the MUC R&D effort


 The possible synergies "landscape" has yet to be fully explored – also many new ideas will be coming from Physics Beyond Colliders or other inititatives in the upcoming years

An example emulating a multi-MW beam @ HiRadMat

- Assumption :
 - 4MW beam e.g : 50 Hz, 6.25E13 p/pulse, 8 GeV/c, 1 mm sigma @ 30 cm Mercury
 - Compared with : 34 HiRadMat bunches, 3.74E12 p/pulse, 2 mm sigma @ 30 cm Tungsten Powder



The HiRadMat beam parameters can be 'tuned' in order to emulate the same maximum energy density as expected in proposed multi-MW beams, as the one required in a future Muon Collider.

Tests at HiRadMat ?

Test detectors or components with very high energy muons ?

A high muon yield behind the dump could be used ?

Space and muons available for a demonstrator setup – e.g for placing/trying high-field fast-ramping dipoles ?

PSI secondary beams

r

Overview of Secondary Beam Lines Features

	PiM1	PiE5	PiE1	PiE3	PiM3	MuE4	MuE1
Target	м	E	E	E	м	E	E
Particle Type	e/μ/π/p	μ/π	π/μ/p	μ (surface)	μ (surface)	μ (surface)	μ (cloud)
Momentum Range	10-500 MeV/c	10-120 MeV/c	10-500 MeV/c	10-40 MeV/c	10-40 MeV/c	10-40 MeV/c	60-120 MeV/c
Typical Momentum	15-350 MeV/c	28-85 MeV/c	РР: 10-50 MeV/c µSR: 28 MeV/c Irrad: 300 MeV/c	28 MeV/c	28 MeV/c	28 MeV/c	60-120 MeV/c
Max Rate [s ⁻¹ mA ⁻¹]	π+: 2x10 ^s	π^+ : ~10 ⁹ μ^+ : 2x10 ⁸	π+: ~10 ⁹	3x10 ⁷	3x10 ⁶	4x10 ⁸	6x10 ⁷
Typical Use	Particle Physics Test Experiments Detector/Material Irradiation	Particle Physics Experiments	μSR Dolly Facility Particle Physics Experiment, Detector Irrad.	μSR HAL 9500 (High Field) Facility	μSR GPS and LTF Facilities	սSR LEM Facility	μSR GPD Facility

Courtesy: D. Reggiani

