Muon & Pion Decays At LOW Mass

RYAN PLESTID WALTER BURKE INSTITUTE, CALTECH

MUON COLLIDER SYNERGIES WORKSHOP | IJC ORSAY | 2023

Probing High Scales With CLFV

- We typically think of muon facilities as probes of very high scales.
- The signatures are kinematically distinctive electrons/photons.
- Strategy: Cut out everything else.

LIGHT NEW PHYSICS

RARE BUT KINEMATICALLY DISTINCTIVE

Probing Low Scales With Muon Facilities

- High statistics: Attack weak coupling limit.
- Kinematically distinctive signatures.

Generally outside the "central mission" of the facility.

- Search for a monoenergetic positron.
- Look for a bump on the Michel spectrum.

Signals Below The Michel Edge

Signal Is Invisible

- Tracker is designed to let Michel positrons pass through middle.
- Whole idea seems doomed from the outset.

LIGHT NEW PHYSICS

RARE BUT KINEMATICALLY DISTINCTIVE

Motivation

- Dark matter strongly hints at the existence of dark sectors.
- A simple, model agnostic program exists.
- Focus on portals i.e. couplings that could talk to the SM.

Motivation

- Q: How many ways can light new physics couple to the SM?
- A: Not many once you restrict to low-dim operators!

• • •

$\phi^2 |H|^2$ or LHN or $B^{\mu u}B'_{\mu u}$ **Z-Prime** HNS

light New Physics

Data demands that new physics be heavy, or weakly coupled

• What could we see in a ~100 MeV experiment?

Z-Prime $\mathscr{L} \subset g' \mu \Gamma_{\mu} e Z'^{\mu}$

On-Shell Vs Off-Shell Processes

 $\Gamma \sim O(g^2)$ THIS WINS

 $\Gamma \sim O(g^4)$

Probing Low Scales With Muon Facilities

- High statistics: Attack weak coupling limit.
- Kinematically distinctive signatures.

Generally outside the "central mission" of the facility.

Probing Low Scales With Muon Facilities

Vain Cea

• Light new physics is well motivated. Portals are constrained by gauge group of SM.

On-shell decays have much better reach than off-shell mediated processes

This is the opposite of high-scale scenarios.

Invisible/Indirect Searches

- Tag on positron and do a bump hunt.
- Independent of decay length of X.

Visible Decay Searches

- Search for produced light particle downstream in a separate (dedicated) detector.
- Depends on decay length.

Different Searches

Strengths/Weaknesses

 Direct searches need a high quality spectrometer (good) energy resolution).

decay at rest experiments ~ 10^{23} pions.

• Decay searches are good, but difficult to compete with π

 $10^{13} \ \mu/s \times 3 \cdot 10^7 s/yr \sim 3 \times 10^{20} \ \mu/yr$

Direct Searches

• Need ~ $10^{12} \pi^+$ for world leading constraints.

• Need ~ $10^{14} \mu^+$ for world leading constraints.