

#### **Current Status and Future Proposals for CLFV Muon Searches**

Kevin Lynch, Fermilab AD/TSD and Mu2e Muon Collider Synergies Workshop, Orsay, France 23 June 2023

#### **Charged Lepton Flavor Violation**

Although it has never been observed, we know that cLFV **must** occur, *even in the Standard Model*, through neutrino loop effects.



However, the predicted SM rates are unobservably small:

$$\operatorname{Br}(\mu \to \mathrm{e}\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{k=2,3} U_{\mu k}^* U_{\mathrm{e}k} \frac{\Delta m_{1k}^2}{M_{\mathrm{W}}^2} \right|^2 < 10^{-54}$$

Any CLFV (or LNV) observation must be new physics!

#### Muons could have a lot to tell us about CLFV

This insight is certainly not new...



Lynch | MCSW 2023

#### Muons could have a lot to tell us about CLFV



Lynch | MCSW 2023

4

# In many channels, we know how to do better in the future (in some cases much better) than we can today

Surface muon beams

 $\mu^+ \to e^+ \gamma$ 

"High" energy beams

$$\mu^{-}A(Z,N) \to e^{-}A(Z,N)$$
$$\mu^{-}A(Z,N) \to e^{+}A(Z-2,N)$$
$$_{\text{CLFV and LNV!}}$$

 $\mu^+ e^- \leftrightarrow \mu^- e^+$ Double CLFV!

 $\mu^+ \rightarrow e^+ e^+ e^-$ 

There are a large number of experiments proposed to further address these channels; I apologize for only mentioning those I'm involved with.



### **Overview of the current generation of experiments**

- There is a globally distributed program to pursue muon sector CLFV
  - MEG, Mu3e at PSI
  - Mu2e at Fermilab
  - COMET at J-PARC
- The details of the new physics may be revealed in the pattern of CLFV rates across processes and (for conversion) target nucleii.

| Mode                          | Current Upper Limit (at 90% CL) |           | Projected Limit (at 90% CL)                         | Upcoming Experiment/s                |
|-------------------------------|---------------------------------|-----------|-----------------------------------------------------|--------------------------------------|
| $\mu^+ \to e^+ \gamma$        | 4.2 x 10 <sup>-13</sup>         | MEG       | 4 x 10 <sup>-14</sup>                               | MEG II                               |
| $\mu^+ \to e^+ e^+ e^-$       | ~10 <sup>-12</sup>              | SINDRUM   | <b>10</b> <sup>-15</sup> ~ <b>10</b> <sup>-16</sup> | Mu3e                                 |
| $\mu^{-}N \rightarrow e^{-}N$ | 7 x 10 <sup>-13</sup>           | SINDRUM I | 10 <sup>-15</sup><br>10 <sup>-17</sup>              | COMET Phase-I<br>Mu2e/COMET Phase-II |



Table borrowed from S. Middleton

# **MEG/MEG-II**



- Data collection should be complete in 2026.
- Improving resolution in this channel beyond MEG-II will require some new experimental concept; see talk by F. Renga at CLFV 2023.



See L. Galli's talk at CLFV 2023

# $\begin{array}{l} \text{Mu3e} \\ \mu^+ \rightarrow e^+ e^+ e^- \end{array}$

- Phase I: 2025-2026
- Phase II: HiMB



#### 🗱 Fermilab

See F. Wauters talk from CLFV 2023



See A. Edmonds talk at CLFV 2023

**Fermilab** 

# Mu2e and COMET $\mu^{-}A(Z,N) \rightarrow \mathrm{e}^{-}A(Z,N)$



COMET

See J. Tang's talk at CFLV 2023

#### More generations of these searches are under development

- Mu2e-II at Fermilab
- PRISM/PRIME at J-PARC
- AMF at Fermilab (all channels!)
- MACE at CSNS



# Mu2e-II in the 2030s

• Mu2e-II would be a "minimal" evolution of Mu2e with targeted upgrades to achieve an additional factor of 10 improvement in sensitivity



**Fermilab** 

See S. Müller's talk at CLFV 2023

100kW PIP-II beam power

#### Mu2e-II in the 2030s

• The key enabling technology is PIP-II





## Mu2e-II in the 2030s

- The key enabling technology is PIP-II
  - It's being built for LBNF/DUNE, but 99% of its capacity will be un-utilized!





## AMF in the 2040s: an advanced muon facility for Fermilab beyond Mu2e-II

- Utilize the available proton beam enabled by PIP-II that will be unused by LBNF/DUNE – up to 1MW
- Provide a flexible facility for future experiments after the current muon program has run its course
- Build on synergies with the dark matter and muon collider communities
  - Workshop on a Future Muon Program at Fermilab May 2023, Caltech



# **AMF enabling technologies**

- PIP-II
  - Proton source
- Proton compressor ring
  - Convert CW beam to intense proton pulses
- Production solenoid and target systems
  - House production target
- Muon transport
  - Eliminate LOS from target to experiments
  - Match beam dynamics solenoid ↔ FFA
- FFA ring
  - Phase rotation → monochromator
- Induction linac
  - Reduce bunch energy to minimize target thickness





# The key enabling technology for AMF is the PRISM FFA

- Phase Rotated Intense Source of Muons
  - High intensity, short duration proton pulses produce muons with short time duration, but large momentum spread
  - Inject muons into FFA
  - Phase rotation reduces momentum spread
  - Monochromatic muon bunches
  - Eliminate pion contamination
  - Extract beam to experiments







# Chief AMF technical challenges – with Muon Collider synergies!

#### Compressor ring

- Kicker rates and rise/fall times limit beam power
- $100Hz \rightarrow 1kHz?$
- Target and PS
  - Concepts for 100kW targets exist
    - Mu2e-II
  - Compact MW scale targets are a true R&D effort!
- High field, radiation resistant solenoids



#### **Chief AMF technical challenges**

LBNF Target core 16mm x 1.5m x 25kW Mu2e Target Core 6.3mm x 220mm x 250kW





### **Chief AMF technical challenges**

A 6-cell large-acceptance FFA ring has been demonstrated at Osaka •

The First PRISM-FFAG Magnet





## **AMF** enables a suite of experiments

- The primary motivation for AMF is CLFV physics:
  - Muon decay experiments
    - mu→3e, mu→e gamma
    - Factor 100 improvement over MEG-II
  - Muon conversion experiments
    - Factor 100-1000 improvement over Mu2e
    - High-Z targets (very short bunches)
- But there are other possibilities with an intense source!
  - Muonium physics
  - Muon MDM/EDM source
  - MuSR (industrial users?)
  - Pions/Kaons
- AMF could potentially feed multiple experiments simultaneously!

## **Muonium physics**

- Mu is the simplest atomic species:  $\mu$  +e- atom
  - Purely leptonic hydrogen species!
- Rich structure and phenomenology
  - Readily formed
  - Spectrum understood
  - Forms molecules!
  - Decays with free muon lifetime





#### Muonium – antimuonium oscillation

- A double CLFV process!  $\mu + e \rightarrow \mu e +$
- Current limits from MACS at PSI is 8.3 x10<sup>-11</sup> (90%)
- The key insight: muon daughters have Michel spectrum (fast!) while the atomic electron has spectrum given by binding energy (slow!)
- There is the MACE proposal for CSNS, a proposal connected to the Muon g-2 project at J-PARC, and there are people interested in bringing this measurement to Fermilab.



#### Muonium production needs a new approach

- Stop (nearly!) a positive muon beam in a target in vacuum; some of the muonium will be ejected into the vacuum space
- J-PARC g-2 plans to utilize laser ablated silica aerogel
  - This yields of order 1% muonium in vacuum, with thermal momentum distribution
  - Thermal Mu requires cooling for beam formation
- PSI and Fermilab muonium experiments plan to use layers of superfluid helium on target surfaces
  - "Hydrogen" is immiscible in superfluid helium → stopped Mu ejected from the surface with a very narrow momentum spread (chemical potential)
  - Naturally cooled and emitted at 6,300 m/s normal to surface
  - A superfluid layer can also be used as a slow Mu mirror



#### In summary...

- There is a very bright future for CLFV physics, with lots of experiments in operation, under construction, or in development, across the globe.
- The observation of CLFV signals will be an unambiguous proof of new physics, and measurements in all of these channels will be required to elucidate the underlying physical theory.
- There are numerous synergies between these developing experiments, dark matter searches, and muon collider R&D that should be encouraged and exploited for all our benefit.

