

Beam dump experiment with the proton driver

Mauro Raggi, Sapienza Università di Roma e INFN Roma Muon Collider Synergies Workshop Jun 22 – 23, 2023

The dark sector paradigm

- Dark sector candidates can explain SM anomalies: (g-2)μ, ⁸Be, proton radius
- The mediator can have a small mass (MeV -100 MeV)
- Due to its small mass the mediator can be produced at low energy accelerators
- It can decay back to ordinary matter "visible" on not "invisible"

Dark sectors a possible solution

- Standard model only includes <20% of the matter in the universe</p>
 - We only know dark matter interacts gravitationally
- Many open questions
 - What is dark Matter made of?
 - How dark matter interact, if it does, with SM particles?
 - Does one or more new dark force exist?
 - How complex is the dark sector spectrum?

Different models and different portals

- A': new vector state mixing to SM photon .
 - Produced by dark proton strahlung
 - or decays of secondary mesons π^0, η, ρ
 - + free parameters are $m_{A^{,}}$ and ε
- S: new scalar state S mixing with SM Higgs
 - produced in FCNC B mesons decays (B->K^(*)S)
 - free parameters of are m_s and θ

Mauro Raggi, Sapienza

HNL: new heavy fermions interacting with the SM lepton doublets

- + Produced in semi-leptonic decays of charmed mesons or τ leptons
 - Decay to meson-lepton or meson-neutrino two-body final states
- \blacklozenge free parameters of the models are $m_N \; U_{e,\mu,\tau}$

ALP: a new pseudoscalar Axion Like Particle interacting with the SM field .

- Produced by primakoff interaction by photons from meson decays π^0, η, ρ
 - free parameters m_a coupling to photons($g_{a\gamma}$) electrons (g_{ae}) gluons (g_{aY})

Portal	FIPs
Vector	Dark photon, A'
Scalar	Dark Higgs/scalar, S
Fermion	Heavy neutral lepton (HNL), N
Pseudoscalar	Axion/axion-like particle (ALP), a

How to search for A' visible decays?

How to search for A' invisible decays?

The Muon Collider proton driver

- Beam Power: 2 MW
- Rep. rate: 10 Hz
- Beam spot size: ~ 5 mm (1σ)
- Bunch length: 2 ns = 0.6 m (rms)
- Beam Energy: 8 GeV
- Linac + 2 rings (initial design)
 Combine 4 bunches on target

H- source and accumulator and combiner complex1014-1015 protons in ns-long bunchS. Nagaitsev | 06/14/23

- Repetition rate very low: only 10 Hz
- Luminosity extremely high
 - Particle density protons on target (pot) ~10¹⁴/ns
 - Thin target experiments impossible

Mauro Raggi, Sapienza

- Energy Ok to obtain a reasonable mass production limit.
- Power very high for any small mass target.

Assuming in the following consideration that we are using the bunched beam at 10Hz.

Is there any option for a continuous beam?

Dark photon signature at the PD

- Production dominated by π⁰ and η decays to photons
 A' visible decays to lepton pairs (ee,μμ) or invisible to DM (χ,χ)
- A' strahlung from primary protons or electrons in the showers
 - A' visible decays to lepton pairs (ee, $\mu\mu$) or invisible to DM (χ,χ)

Option for a dark sector experiment

- Two main options are available
 - Thin active target experiments
 - Thick target experiments (DUMP)
- Thin targets with the proton driver
 - Too high density of protons/ns due to bunched structure
 - Productions rates per single proton non competitive with leptons (e,μ)
 - Too high Standard Model background
- Thick target experiments with the proton driver
 - Density of protons/ns not a issue (missing experiment impossible)
 - No Standard Model background (for thick enough dump)
 - Very high number of protons

which thick target experiment?

Active thick target: missing mass/momentum (NA64 of LDMX)

- Impossible due to too high number of protons/ns.
- Need to measure single particles momentum or energy
- Beam Dump experiments
 - Ok: nothing will survive the dump
 - Visible decays: search for di leptons after the dump (NA62 dump)
 - Invisible decays: search for DM scattering (MiniBoone dump)

what will potentially work at MuColl?

p dump experiment visible

(charm, NA62, U70)

 $N_{DS} \propto \epsilon^2 \sim 10^{18-20} \text{ POT } (\epsilon^2, M_{A'})$

p dump experiment invisible

 $N_{DS} \propto \epsilon^4 \sim 10^{20} \text{ POT } (M_{A'}, \alpha_D, \epsilon^2)$

Visible dump experiment concept

Key parameters for exclusion limit regions

• L_{shield} = Length of the shield, decay inside dump (dominate at high ε values)

- L_{decay} = Length of the decay region, decay outside(dominate at low ε values)
- **N**_p = number of protons on target (dominate at low ε values)
- **Beam Energy** = dominates in the mass region limit helps with lifetime for low ε

Visible p dump example: NA62-Hike

Invisible dump concept

- Key features for exclusion limit regions
 - Decay always prompt (α_D is order 1)
 - Need a lot of protons N_{χ} scale with ϵ^4 power
 - Need detector screening to reduce background
- Region on hundreds of MeV not very constrained yet.

Invisible p dump example: Miniboone

8 GeV proton beam

Production dominated by π^0 decays

- 4 m stainless still dump
- ~ 500 m long decay region

detection through scattering on nuclei Università di Roma

Near future competitors

Experiment	lab	beam	particle yield/L	technique	portals	timescale
current						
ATLAS [1382]	CERN	pp, 13-14 TeV	up to 3 ab^{-1}	visible, invis.	(1,2,3,4)	2042
Belle II [1219]	KEK	e^+e^- , 11 GeV	up to 50 ab^{-1}	visible, invis.	(1,2,3,4)	2035
CMS [1383]	CERN	<i>pp</i> , 13-14 TeV	up to 3 ab^{-1}	visible, invis.	(1,2,3,4)	2042
Dark(Spin)Quest [1256]	FNAL	p, 120 GeV	$10^{18} \to 10^{20}$	visible	(1,2,3,4)	2024
FASER [1052]	CERN	<i>pp</i> , 14 TeV	$150 {\rm ~fb^{-1}}$	visible	(1,2,3,4)	2025
LHCb [1384]	LHC	<i>pp</i> , 13-14 TeV	up to 300 fb ⁻¹	visible	(1,2,3,4)	2042
MicroBooNE [1385]	FNAL	p, 120 GeV (NuMi)	$\sim 7 \times 10^{20} \ {\rm pot}$	visible	(2,4)	2015-2021
NA62 [1174]	CERN	$K^+, 75 \text{ GeV}$	a few 10^{13} K decays	visible, invis.	(1,2,3,4)	2025
NA62-dump [1386]	CERN	<i>p</i> , 400 GeV	$\sim 10^{18}~{\rm pot}$	visible	(1,2,3,4)	2025
NA64 _e [1387]	CERN	e^{-}/e^{+} , 100 GeV	up to $1\cdot~10^{13}~e^-/e^+$	E, visible	(1,3)	< 2032
PADME [1300]	LNF	$e^+, 550 { m MeV}$	$5\cdot 10^{12} e^+$ ot	missing mass	(1)	< 2023
T2K-ND280 [1388]	JPARC	<i>p</i> , 30 GeV	10^{21} pot	visible	(4)	running
proposed						
BDX [1389]	JLAB	e^- , 11 GeV	$\sim 10^{22}$ eot/year	recoil e	(1,3)	2024-2025
CODEX-b [1030]	CERN	<i>pp</i> , 14 TeV	$300 {\rm fb}^{-1}$	visible	(1,2,3,4)	2042
Dark MESA [1390]	Mainz	e^- , 155 MeV	$150 \ \mu A$	visible	(1)	< 2030
FASER2 [1068]	CERN	<i>pp</i> , 14 TeV	3 ab ⁻¹	visible	(1,2,3,4)	2042
FLaRE [1068]	CERN	<i>pp</i> , 14 TeV	3 ab ⁻¹	visible, recoil	(1)	2042
FORMOSA [1068]	CERN	<i>pp</i> , 14 TeV	3 ab^{-1}	visible	(1)	2042
Gamma Factory [1391]	CERN	photons	up to $10^{25} \ \gamma$ /year	visible	(1,3)	2035-2038?
HIKE-dump [1392, 1191]	CERN	$p,400~{\rm GeV}$	$5 \cdot 10^{19}$ pot	visible	(1,2,3,4)	<2038
HIKE-K ⁺ [1392, 1191]	CERN	$K^+, 75 \text{ GeV}$	10^{14} K decays	visible, inv.	(1,2,3,4)	<2038
HIKE-K _L [1392, 1191]	CERN	$K_L, 40 \; { m GeV}$	10^{14} K decays	visible, inv.	(1,2,3,4)	<2042
LBND (DUNE) [1393]	FNAL	<i>p</i> , 120 GeV	$\sim 10^{21}~{ m pot}$	recoil e, N	(1,2,3,4)	< 2040
LDMX [1271]	SLAC	e^- , 4,8 GeV	$2\cdot 10^{16}$ eot	ø, visible	(1)	< 2030
M ³ [1394]	FNAL	μ , 15 GeV	$10^{10} (10^{13})$ mot	ø	(1)	proposed
MATHUSLA [1395]	CERN	<i>pp</i> , 14 TeV	3 ab ⁻¹	visible	(1,2,3,4)	2042
milliQan [1070]	CERN	<i>pp</i> , 14 TeV	$0.3-3 \text{ ab}^{-1}$	visible	(1)	< 2032
MoeDAL/MAPP [1396]	CERN	<i>pp</i> , 14 TeV	$30 {\rm fb}^{-1}$	visible	(4)	< 2032
Mu3e [1397]	PSI	29 MeV	$10^8 \rightarrow 10^{10} \mu\text{/s}$	visible	(1)	< 2038?
NA64 _µ [1398]	CERN	μ , 160 GeV	up to $2\times 10^{13}~{\rm mot}$	ø	(1)	< 2032
PIONEER [1399]	PSI	55-70 MeV, π^+	$0.3 \cdot 10^6 \pi/s$	visible	(4)	phase I approved
SBND [1400]	FNAL	<i>p</i> , 8 GeV	$6\cdot 10^{20}$ pot	recoil Ar	(1)	< 2030
SHADOWS [1401]	CERN	$p,400~{\rm GeV}$	$5\cdot 10^{19}$ pot	visible	(2,3,4)	<2038
SHiP [1402]	CERN	$p,400~{\rm GeV}$	$2\cdot 10^{20}$ pot	visible, recoil	(1,2,3,4)	<2038

Feebly-Interacting Particles: FIPs 2022 Workshop Report

Potential for scalars and Neutrino

ALPs γ coupling

 $g_{a\gamma} \; [{\rm GeV}^{-1}]$

Conclusions

- Muon collider proton driver can provide a huge amount of p/year
 Lumi Proton driver = 1E15 p/s x 1E7 s/y x 10 Hz = 1x10²³ pot/y
 - This ~100 times higher of anything I heard about
- The beam bunching scheme limits the experimental strategies
 - Only passive beam dump experiments are feasible.
- Different portal interactions can be explored
- Both visible and invisible DS candidate decays are accessible
 - Main potential competitors are the neutrino facility (Dune)
 - Opportunities in all the different scenario are available.

