Muon Collider Synergies (Orsay, France)

Ideas for High-Energy Neutrino Experiments

alfonsogarciasoto@fas.harvard.edu

- What will we know about neutrinos in 2045?
- What else can we learn with a powerful neutrino beam -> specifications?

Neutrino oscillations

- Current challenges:
 - CP violation and mass ordering.
- Will they be an interesting topic in 2045?
 - DUNE, HyperK, JUNO, KM3NeT, IC-Upgrade should be there -> precession physics.

Muon collider

- Intense beam of neutrinos:
 - Known composition: v_{μ} and \bar{v}_{e} .
 - Energies expanding from GeV to TeV.
 - Can we change polarity (i.e. direct μ^+ instead of μ^- decays)?

Where can Muon Collider make in impact?

- E<10 GeV
 - Already explored with current and next generation of experiments.
- 10 GeV<E<100 GeV
 - Atmospheric neutrinos -> Large uncertainties in flux and poor resolutions!
 NuTEV/NOMAD -> Focus on no-oscillation regime.
- E>100 GeV
 - Atmospheric neutrinos -> Large uncertainties in flux and poor resolutions!
 - FPF -> Uncertainties in flux!

Alfonso Garcia

Neutrino cross sections

- Follow FPF strategy -> Detector close to the collider.
 - High statistics.
 - Control flux.
 - Precise measurement of neutrino cross section.

Neutrino cross sections

• Multi target experiment (a la MINERvA)?

- Might allow us to study nuclear effects.
- EMC, shadowing, etc.
- We need H/He target!
- Dimuons -> strange composition of proton

Neutrino cross sections

Meson resonance from antineutrino-electron scattering

- O(100) interactions in FPF experiments.
- Background from DIS and through-going muons.
- LArTPCs and emulsion detector are the most promising technologies.

Test EW

• NuTeV "anomaly":

- Pure beam of muon (anti)neutrinos
 (<2% wrong sign+flavor).
- Paschos-Wolfenstein (PW) relation:

$$R = \frac{\sigma_{NC}^{\nu A} - \sigma_{NC}^{\bar{\nu} A}}{\sigma_{CC}^{\nu A} - \sigma_{CC}^{\bar{\nu} A}} \approx 1/2 - \sin^2 \theta_W$$

- 3 sigma tension with SM
- Overall consensus nucleon charge symmetry violating effects, strange sea quarks, and nuclear corrections.

Test EW

• NuSonG: arXiv:0907.4864

- Looking also at electron scattering from pure v_{μ} and \bar{v}_{μ} beams.
- IMD and low-nu used to constrain the flux.

- NuSOnG:
 - arXiv:0907.4864
 - Four calorimeters+muon spectrometer separated by 15m.
 - Each calorimeter has 500 layers of glass and active detectors.
- Why glass?
 - Long radiation length -> PID
 - Short detector -> calibration
 - Isoscalar.

Neutrino mode

- ν_{μ} CC quasi elastic scatters 507k
- ν_{μ} NC elastic scatters 178k
- $\nu_{\mu} \text{ CC } \pi^+$ 1016k
- $\nu_{\mu} \text{ CC } \pi^0$ 302k
- $\nu_{\mu} \text{ NC } \pi^0$ 272k
- $\nu_{\mu} \text{ NC } \pi^{\pm}$ 226k
- ν_{μ} CC and NC Resonance multi pion 1379k
- 202M ν_{μ} CC Deep Inelastic Scattering
- 63M ν_{μ} NC Deep Inelastic Scattering
- 24k ν_{μ} neutrino – electron NC elastic scatters
- ν_{μ} neutrino electron CC quasielastic scatters(*IMD*) 235k

Antineutrino mode

- 548k $\bar{\nu}_{\mu}$ CC quasi – elastic scatters
- 195k $\bar{\nu}_{\mu}$ NC – elastic scatters
- 1103k $\bar{\nu}_{\mu} \text{ CC } \pi^+$
- $\bar{\nu}_{\mu} \text{ CC } \pi^0$ 321k
- $\bar{\nu}_{\mu} \text{ NC } \pi^0$ 297k
- $\bar{\nu}_{\mu} \text{ NC } \pi^{\pm}$ 246k
- $\bar{\nu}_{\mu}$ CC and NC Resonance multi pion 1516k
- 102M $\bar{\nu}_{\mu}$ CC Deep Inelastic Scattering
- 36M $\bar{\nu}_{\mu}$ NC Deep Inelastic Scattering
- $\bar{\nu}_{\mu}$ neutrino electron NC elastic scatters 21k
- 0k $\bar{\nu}_{\mu}$ neutrino – electron CC quasielastic scatters (IMD)

- Earth as baseline (L~12000km).
 - Large v_{τ} appearance at 20-100 GeV.

1.0

• Enough energy to interact via charged current.

- Factor ~0.4(0.75) with respect to v_{μ} at 20(100) GeV.

- Identify tau neutrino interactions
 - Event by event -> Reconstruct secondary vertex with <1cm from the interaction point.
 - Distribution -> Hadron kinematics

• What can we study?

- v_{μ} disappearance.
- Interesting portal to BSM.

- What can we study?
 - v_{τ} vs \bar{v}_{τ} appearance.
 - Interesting portal to BSM.

Conclusion

- Neutrino beam from muon collider:
 - Expand along a wide energy range.
 - Very good understanding of flavor composition.
 - Instense!
- Which areas can benefit from it?
 - Neutrino cross sections -> nuclear effects, secondary interactions.
 - EW measurements.
 - Tau appearance.
- Concentrating on tomorrow's physics, not today's.
 - Technological challenges for engineers -> let them stew on it

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101025085.