

MInternational UON Collider Collaboration

MuCol

Muon Collider Overview and Workshop Purpose

D. Schulte for the International Muon Collider Collaboration

ं

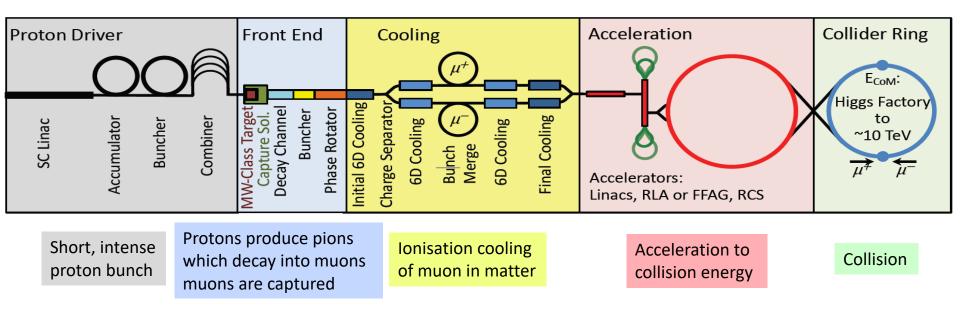
This project has received funding from the European Union's Research and Innovation programme under GA No 101094300.

Synergy workshop, Orsay, June 2023

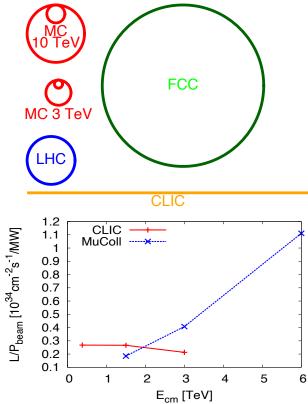
Goal of Synergy Workshop

- Feel that the muon collider has important synergy with other programmes, e.g.
 - Muon sources, neutrino physics, proton beams, targets, ...
- Would like to more concretely identify the synergy
- Then find a way to join forces where possible
 - Exchange of information, workshops, ...
 - Maybe try to find common activities or even funding
- Goal of the workshop is to explore the potential opportunities and to foster collaboration

Muon Collider Overview


bnal

der ion


Muon collider has been studied in the US ("MAP"), experiments have been performed in the UK ("MICE") and some alternatives have been considered at INFN ("LEMMA")

Renewed interest thanks to **technology and design advances** and new goal of **very high-energy, high-luminosity lepton collisions**

Would be easy if the muons did not decay Lifetime is $\tau = \gamma \times 2.2 \ \mu s$

Muon Collider Promises

US Snowmass Implementation Task Force: Th. Roser, R. Brinkmann, S. Cousineau, D. Denisov S. Gessner, S. Gourlay, Ph. Lebrun, M. Narain, K. Oide, T. Raubenheimer, J. Seeman, V. Collaboration Shiltsev, J. Straight, M. Turner, L. Wang et al.

	CME [TeV]	Lumi per IP [10 ³⁴ cm ⁻² s ⁻¹]	Years to physics	Cost range [B\$]	Power [MW]
FCC-ee	0.24	8.5	13-18	12-18	290
ILC	0.25	2.7	<12	7-12	140
CLIC	0.38	2.3	13-18	7-12	110
ILC	3	6.1	19-24	18-30	400
CLIC	3	5.9	19-24	18-30	550
MC	3	1.8	19-24	7-12	230
МС	10	20	>25	12-18	300
FCC-hh	100	30	>25	30-50	560
	_				

Judgement by ITF, take it *cum grano salis*

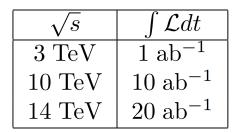
Goal and Accelerator R&D Roadmap

Muon collider is on European Accelerator R&D Roadmap

• Reviews in Europe and US found **no insurmountable obstacle**

Implementing workplan

- Goal: Project Evaluation Report and R&D Plan to next ESPPU/other processes
- 10+ TeV collider, potential 3 TeV initial stage
- CERN has budget in MTP, hosting a collaboration
- Design Study supported by EC, Switzerland, UK and partners contribute
- Strong interest in US community to join


Key work

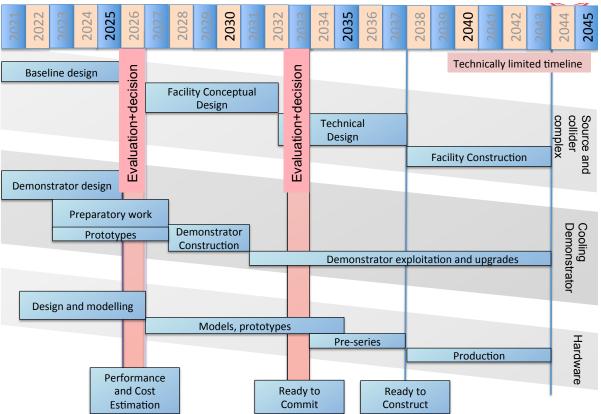
- Design of critical beam complex
- Address technologies
- Prepare demonstrator

http://arxiv.org/abs/2201

						7 .	
Label	Begin	End	Description	Aspirational		Minimal	
			-	[FTEy]	[kCHF]	[FTEy]	[kCHF]
MC.SITE	2021	2025	Site and layout	15.5	300	13.5	300
MC.NF	2022	2026	Neutrino flux miti-	22.5	250	0	0
			gation system				
MC.MDI	2021	2025	Machine-detector	15	0	15	0
			interface				
MC.ACC.CR	2022	2025	Collider ring	10	0	10	0
MC.ACC.HE	2022	2025	High-energy com-	11	0	7.5	0
			plex				
MC.ACC.MC	2021	2025	Muon cooling sys-	47	0	22	0
			tems				
MC.ACC.P	2022	2026	Proton complex	26	0	3.5	0
MC.ACC.COLL	2022	2025	Collective effects	18.2	0	18.2	0
			across complex				
MC.ACC.ALT	2022	2025	High-energy alter-	11.7	0	0	0
			natives				
MC.HFM.HE	2022	2025	High-field magnets	6.5	0	6.5	0
MC.HFM.SOL	2022	2026	High-field	76	2700	29	0
			solenoids				
MC.FR	2021	2026	Fast-ramping mag-	27.5	1020	22.5	520
			net system				
MC.RF.HE	2021	2026	High Energy com-	10.6	0	7.6	0
			plex RF				
MC.RF.MC	2022	2026	Muon cooling RF	13.6	0	7	0
MC.RF.TS	2024	2026	RF test stand + test	10	3300	0	0
			cavities				
MC.MOD	2022	2026	Muon cooling test	17.7	400	4.9	100
			module				
MC.DEM	2022	2026	Cooling demon-	34.1	1250	3.8	250
			strator design				
MC.TAR	2022	2026	Target system	60	1405	9	25
MC.INT	2022	2026	Coordination and	13	1250	13	1250
			integration				
			Sum	445.9	11875	193	2445

Table 5.5: The resource requirements for the two scenarios. The personnel estimate is given in full-time equivalent years and the material in KCHF. It should be noted that the personnel contains a significant number of PhD students. Material budgets do not include budget for travel, personal IT equipment and similar costs. Colours are included for comparison with the resource profile Fig. 5.7.

Roadmap: Technically Limited Timeline


Muon collider important in the long term

MuCol

Fastest track option with important ramp-up of resources to see if muon collider could come directly after HL-LHC

 Compromises in performance, e.g. 3 TeV

Needs to be revised but do not have enough information at this point for final plan

To be reviewed considering progress, funding and decisions

D. Schulte

Initial Target Parameters

ion

Target integrated luminosities

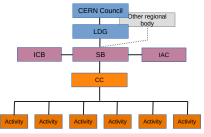
MuCol

\sqrt{s}	$\int \mathcal{L} dt$
3 TeV	$1 {\rm ~ab^{-1}}$
$10 { m TeV}$	$10 {\rm ~ab^{-1}}$
14 TeV	20 ab^{-1}

Note: currently focus on 10 TeV, also explore 3 TeV

- Tentative parameters based on MAP study, might add margins
- Achieve goal in 5 years
- FCC-hh to operate for 25 years
- Aim to have two detectors

Parameter	Unit	3 TeV	10 TeV	14 TeV	CLIC at 3 TeV
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40	2 (6)
Ν	10 ¹²	2.2	1.8	1.8	
f _r	Hz	5	5	5	
P _{beam}	MW	5.3	14.4	20	28
С	km	4.5	10	14	
	т	7	10.5	10.5	
ε	MeV m	7.5	7.5	7.5	
σ_{E} / E	%	0.1	0.1	0.1	
σ	mm	5	1.5	1.07	
β	mm	5	1.5	1.07	
3	μm	25	25	25	
σ _{x,γ}	μm	3.0	0.9	0.63	

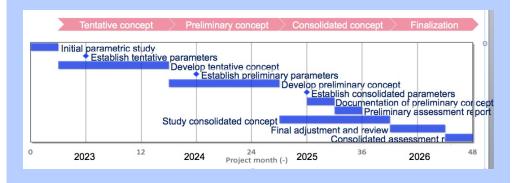

D. Schulte

Muon Collider Community

Formed **collaboration** hosted by CERN to implement R&D Roadmap for CERN Council

MuCol

60+ partners, 40+ already signed MoC


Plan to participate to HORIZON-INFRA-2024-TECH

Goal: prepare experimental programme, e.g. **demonstrator, prototypes, ...**

TIARA wants magnet proposal

EU Design Study approved

(EU+Switzerland+UK and partners)

US Snowmass has strong support

- to contribute to R&D
- as a collider in the US

Lia Merminga appointed team to prepare P5 ask

Some first contacts with others

D. Schulte

MoC and Design Study Partners

U.

ES

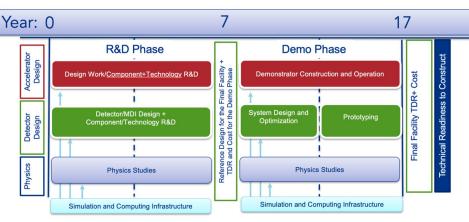
F

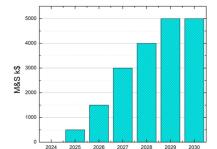
IEIO	CERN
FR	CEA-IRFU
	CNRS-LNCMI
DE	DESY
	Technical University of Darmstadt
	University of Rostock
	КІТ
IT	INFN
	INFN, Univ., Polit. Torino
	INFN, Univ. Milano
	INFN, Univ. Padova
	INFN, Univ. Pavia
	INFN, Univ. Bologna
	INFN Trieste
	INFN, Univ. Bari
	INFN, Univ. Roma 1
	ENEA
Mal	Univ. of Malta

BE

Louvain

UK	RAL
	UK Research and Innovation
	University of Lancaster
	University of Southampton
	University of Strathclyde
	University of Sussex
	Imperial College London
	Royal Holloway
	University of Huddersfield
	University of Oxford
	University of Warwick
	University of Durham
SE	ESS
	University of Uppsala
PT	LIP
NL	University of Twente
FI	Tampere University
LAT	Riga Technical Univers.


S	Iowa State University
	Wisconsin-Madison
	Pittsburg University
	Old Dominion
	BNL
nina	Sun Yat-sen University
	IHEP
	Peking University
ST	Tartu University
U	НЕРНҮ
	TU Wien
5	I3M
	CIEMAT
	ICMAB
Н	PSI
	University of Geneva
	EPFL



KEU
Yonsei University
СНЕР
INFN Frascati
INFN, Univ. Ferrara
INFN, Univ. Roma 3
INFN Legnaro
INFN, Univ. Milano Bicocca
INFN Genova
INFN Laboratori del Sud
INFN Napoli
FNAL
LBL
JLAB
Chicago
Tenessee

US P5 Ask

: FTE and M&S profiles for accelerator R&D corresponding to the first phase of the . We assume here that funding can start in 2024. The M&S is in FY23 dollars and n is not included in these estimates.

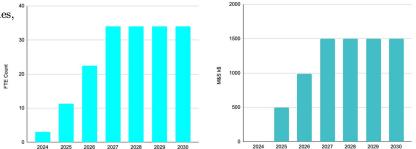
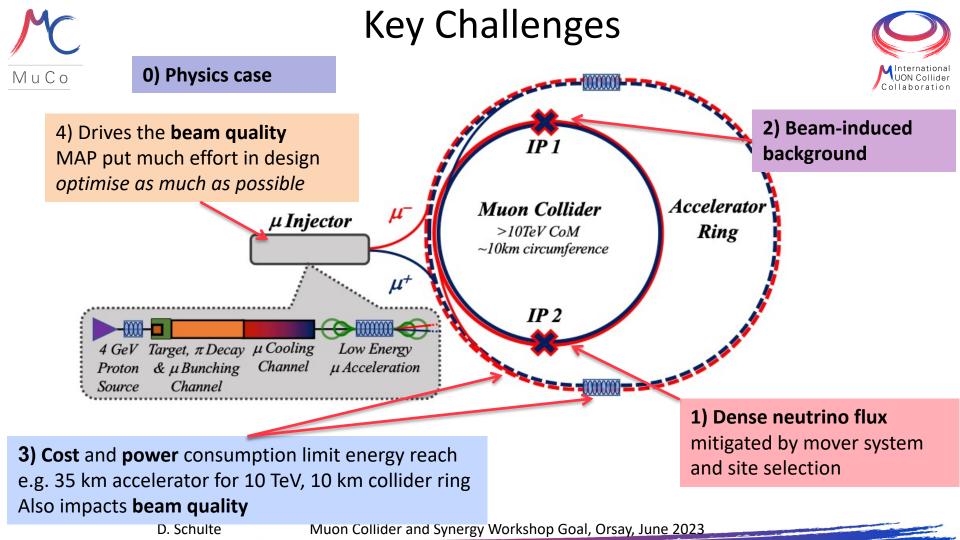
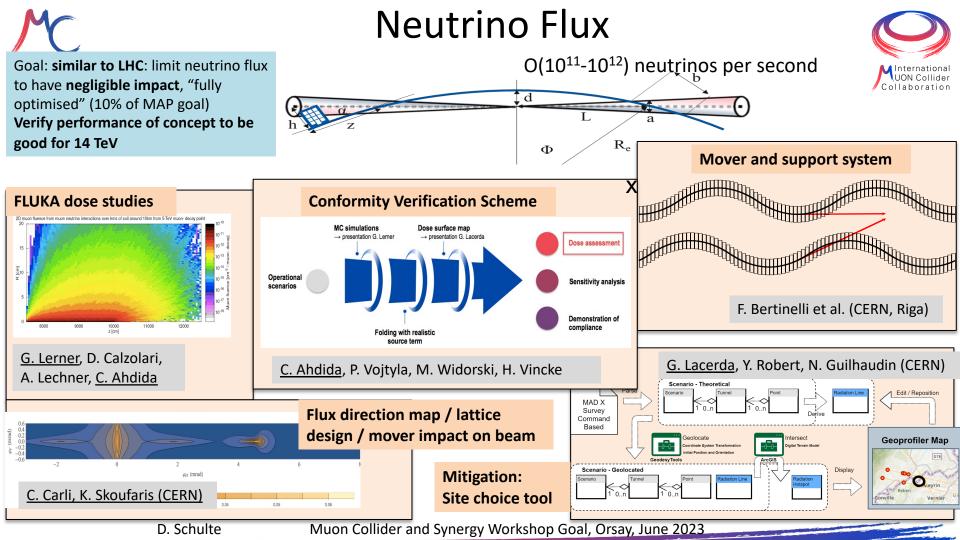


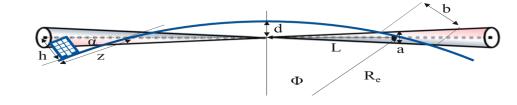
Figure 3: FTE and M&S profiles for detector R&D corresponding to the first phase of the program. We assume here that funding can start in 2024. The M&S is in FY23 dollars and escalation is not included in these estimates.


Figure 1: A sketch of the proposed muon collider R&D timeline, along with high-level activities, milestones, and deliverables.


S. Jindariani, D. Stratakis, Sridhara Dasu et al.Goal is to contribute as much as EuropeStart of construction a bit later than in RoadmapWill try to harmonise/define scenarios once US joins

Total resources would approach Roadmap

- Some increase in Europe and Asia assumed
- 1-2 years delay
- But profile is different


D. Schulte

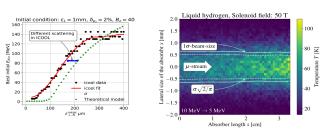

Neutrino Flux

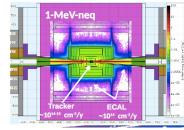
O(10¹¹-10¹²) neutrinos per second Plan to either dilute or likely aquire the land around this spot

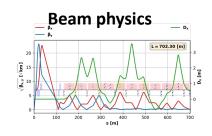
Important to know if this is helpful becsause depends on the lattice design

D. Schulte[!]

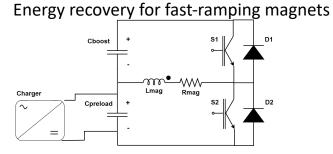
MuCol

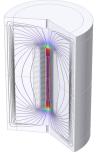

Muon Collider R&D Examples

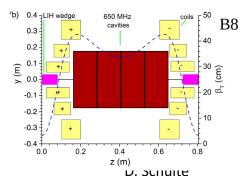



MuCol Detector studies

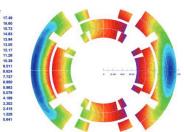
- 10 TeV design
- Beam-induced background Promising but more work required


Muon ionisation cooling

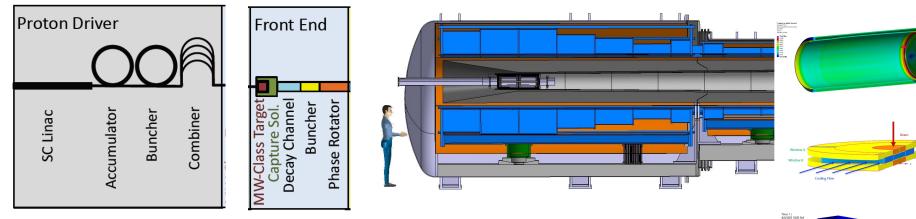



Efficent power converters

High-field HTS solenoids

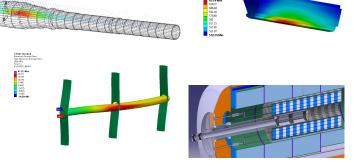

40 T HTS solenoid

Cooling Cell Design RF in magnetic field


High-field dipoles (HTS or Nb₃Sn)

Proton Complex and Target

2 MW proton beam 5 GeV 5 Hz from the combiner


Will explore parameters to optimise proton compolex and target

Will explore higher power

D. Schulte

Graphite target baseline with tungsten shield for surrounding solenoid

Good progress on 20 T HTS solenoid design, stress in target, vessel, shielding, more to be done for the window

CDR Phase, R&D and Demonstrator Facility

Baseline design

Demonstrator desig

Preparat

Design and mode

Prote

formance nd Cost

Solenoid Absorber

Facility Conceptual Design

Demonstrator

Models, prototypes

3000

2500

2000

12000

Constructio

echnical Design

Pre-series

Downstream

Movabl

13000

14000

15000

16000

z [mm]

17000

Instrumentation

Ready to

Commi

Technically limited timeline

ling

Hardware

NUSTORM set to 6 Gelle

MISTORM set to 1 GeVIC

18000

Facility Construction

Productio

emonstrator exploitation and upgrades

Ready to

Construct

Element positions are indicative

MuCol

- Broad R&D programme can be distributed world-wide
- Models and prototypes
 - Magnets, Target, RF systems, Absorbers, ...
- **CDR** development
- Integrated tests, also with beam

Integrated cooling demonstrator is a key facility

look for an existing proton beam with significant power

Different sites are being considered

- CERN, FNAL, ESS are being discussed
- J-PARC also interesting as option
- FNAL is considering this in the ACE

Could be used to house physics facility

Are trying to explore what are good options

Muon Collider and Synergy Workshop Goal, Orsay, June 2023

Opstream instrumentation

High-intensity high-energy pion source

and Matching

Collimation and

phase rotation

Target

1-6 GeV/c

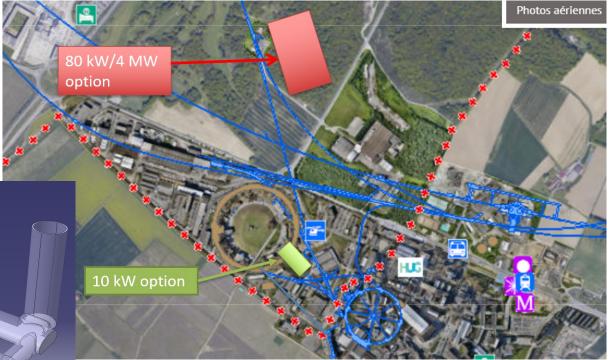
19000

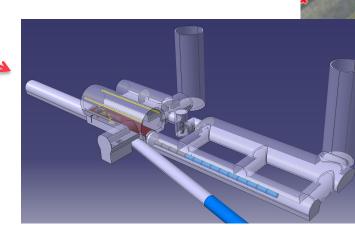
2000

beam

20 The Holes

Example CERN Locations


nTOF-like beam from PS:

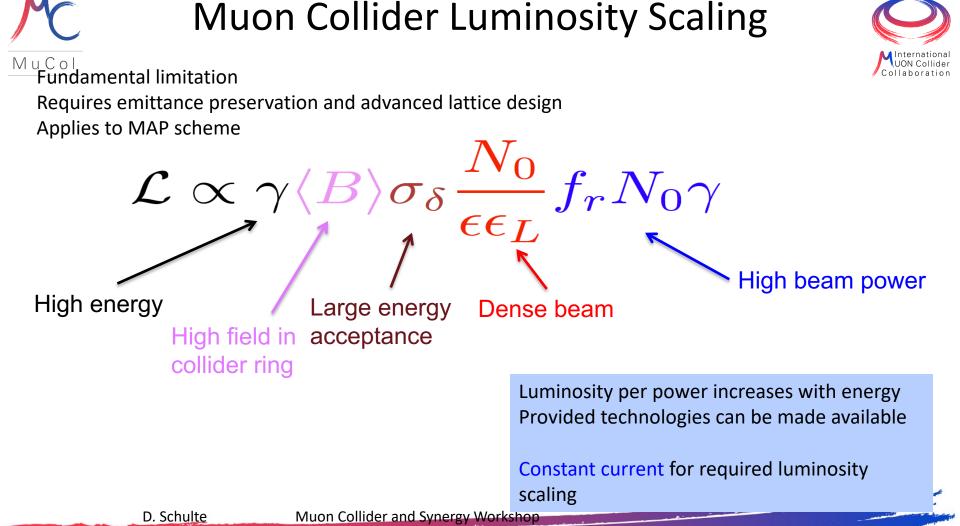

- 1 pulse of 10¹³ p at 20 GeV per 1.2 s
- i.e. 27 kW, maybe O(100kW) possible

If SPL were, installed could use its beam, e.g. 5 GeV, 4 MW

D. Schulte

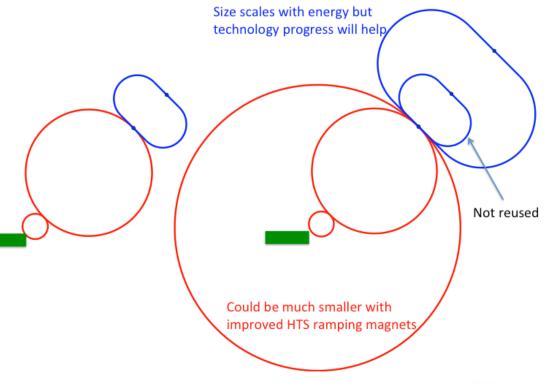
Can branch muons to physics facility

Conclusion


- Muon collider unique opportunity for high-energy, high-luminosity lepton collider
- Currently working toward 10+ TeV, potential 3 TeV intermediate stage explored
- Collaboration exists, expected to increase
- Develop and R&D programme including demonstrator
- Feel that there is important synergy with other facilities

http://muoncollider.web.cern.ch To join contact muon.collider.secretariat@cern.ch

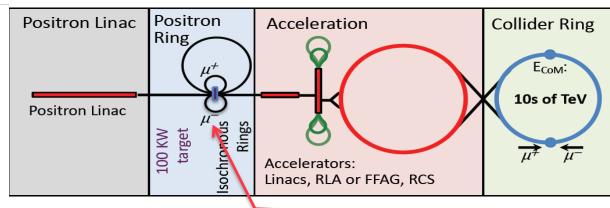
Reserve


Staging

MuCol Ideally would like full energy right away, but staging could lead to faster implementation

- Substantially less cost for a first stage
- Can make technical compromises
 - e.g. 8 T NbTi magnets would increase collider ring from 4.5 to 6 km and reduce luminosity by 25%
- Timeline might be more consistent with human lifespan
- Upgrade adds one more accelerator and new collider ring
- only first collider ring is not being reused

D. Schulte



Alternatives: The LEMMA Scheme

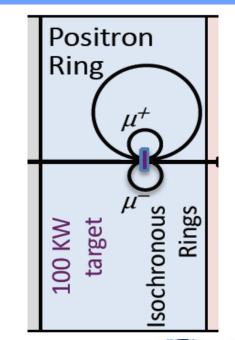
MuCol LEMMA scheme (INFN) P. Raimondi et al.

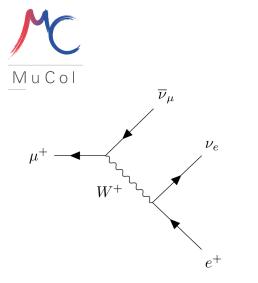
45 GeV positrons to produce muon pairs Accumulate muons from several passages

$$e^+e^- \to \mu^+\mu^-$$

Excellent idea, but nature is cruel

Detailed estimates of fundamental limits show that we require a very large positron bunch charge to reach the same luminosity as the proton-based scheme


 \Rightarrow Need same game changing invention


D. Schulte

Muon Collider and Synergy Workshop Goal, Orsay, June 2023

Note: New proposal by C. Curatolo and L. Serafini needs to be looked at

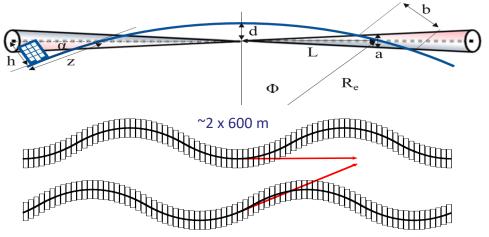
Uses Bethe-Heitler production with electrons

Muon Decay

About 1/3 of energy in electrons and positrons:

Experiments needs to be protected from **background** by masks

- simulations of 1.5, 3 and 10 TeV
- optimisation of masks and lattice design started
- first results look encouraging
- will be discussed at ICHEP

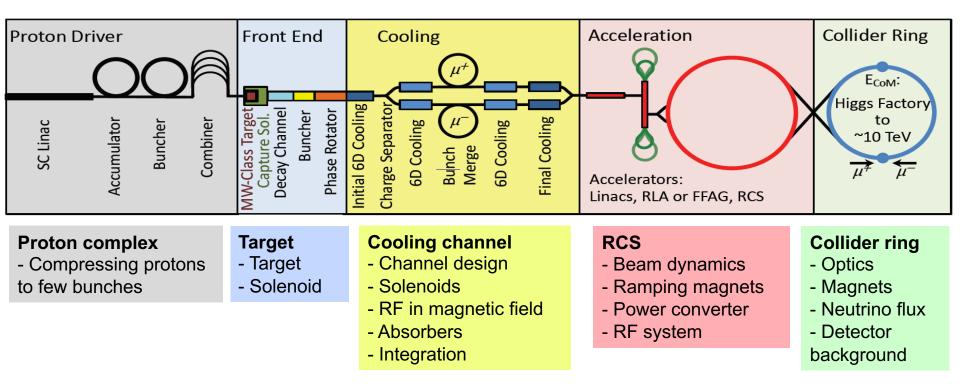

Collider ring magnets need to be shielded from losses Losses elsewhere will also need to be considered but are less severe

C Carli et al.

D. Lucchesi, A. Lechner,

Neutrino flux to have negligible impact on environment

- want to be negligible (same level as LHC)
- opening cone decreases, cross section and shower energy increase with energy
- Above about 3 TeV need to make beam point in different vertical directions
- Mechanical system with 15cm stroke, 1% vertical bending
- Length of pattern to be optimised for minimal impact on beam



D. Schulte

Roadmap

Mn.aspirational scenario can make informed decisions:

Three main deliverables are foreseen:

- a Project Evaluation Report for the next ESPPU will contain an assessment of whether the 10 TeV muon collider is a promising option and identify the required compromises to realise a 3 TeV option by 2045. In particular the questions below would be addressed.
 - What is a realistic luminosity target?
 - What are the background conditions in the detector?
 - Can one consider implementing such a collider at CERN or other sites, and can it have one or two detectors?
 - What are the key performance specifications of the components and what is the maturity of the technologies?
 - What are the cost drivers and what is the cost scale of such a collider?
 - What are the power drivers and what is the power consumption scale of the collider?
 - What are the key risks of the project?
- an **R&D Plan** that describes an R&D path towards the collider;
- an **Interim Report** by the end of 2023 that documents progress and allows the wider community to update their view of the concept and to give feedback to the collaboration.

R&D Plan

The R&D plan will describe the R&D path toward the collider, in particular during the CDR phase, and will comprise the elements below.

- An integrated concept of a muon cooling cell that will allow construction and testing of this key novel component.
- A concept of the facility to provide the muon beam to test the cells.
- An evaluation of whether this facility can be installed at CERN or another site.
- A description of other R&D efforts required during the CDR phase including other demonstrators.

This R&D plan will allow the community to understand the technically limited timeline for the muoncollider development after the next ESPPU.

Minimal Scenario

MuCWill allow partially informed decisions

- No conceptual design of neutrino flux and alignment system
- No alternative superconducting fast-ramping magnet system
- Several collider systems would (almost) not be covered, in particular
 - the linacs
 - the target complex
 - the proton complex
 - engineering considerations of the muon cooling cells
 - alternative designs for the final cooling system, acceleration, collider ring
- No RF test stand would be constructed for the muon cooling accelerating cavities
- No conceptual design of a muon cooling cell for the test programme
- No conceptual design of a muon cooling demonstrator facility
- No concept of RF power sources
- No tests/models to develop solenoid technology.

Key Technologies

-1- 1-

- Superconducting solenoids for target and cooling profit from developments for society
 - target solenoid comparable to ITER central solenoid fusion
 - 6D cooling solenoids similar and wind power generators, motors
 - final cooling solenoids synergetic with high-field research, NMR
- Collider ring magnets
 - profit from developments for other colliders FCC-hh, stress-managed magnets
- Fast-ramping normal-conducting magnet system
 - HTS alternative, power converter

RF systems

• superconducting RF, normal-conducting RF, efficient klystrons

Target, cooling absorbers, windows, shielding

Neutrino mitigation mover system, cooling cell integration, ...

Detector

D. Schulte

Muon Collider and Synergy Workshop

Key Technologies, cont.

- Normal-conducting cooling cavities in magnetic field
 - profit from CLIC work
- Superconducting accelerator RF
 - profit from ILC, ...
- Efficient power sources
 - profit from CLIC work
- Beam-matter interaction
- Proton target
- Cooling absorbers
- Shielding (accelerator and detector)

Mechanical system

- Neutrino flux mitigation system
- Muon cooling cell integration

-r :

Collaboration Vision

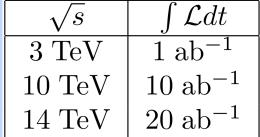
MIMCC is an **international** collaboration and aims to

- Enlarge the collaboration
 - Physics interest in all regions, strong US contribution to the muon collider physics and detector, interest in Japan
 - First US university have joined collaboration, try to see how to move forward, also with labs
- Combine the R&D efforts for the design and its technologies
 - Critical contributions in all relevant fields in the US
- Consider several sites for the collider
 - CERN would be one, FNAL and others should also be considered
 - A proposal with alternative sites is stronger for a single site
- Consider several sites for the demonstrators
 - E.g. Muon production and cooling demonstrator at CERN, FNAL, ESS, JPARC
 - e.g. RCS at ESRF or elsewhere
 - Target tests

D. Schulte

...

Muon Collider and Synergy Workshop


-1- :-

Initial Target Parameters

MuCol

Note: currently focus on 10 TeV, also explore 3 TeV

- Tentative parameters based on MAP study, might add margins
- Achieve goal in 5 years
- FCC-hh to operate for 25 years
- Aim to have two detectors

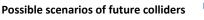
Parameter	Unit	3 TeV	10 TeV	14 TeV	CLIC at 3 TeV
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40	2 (6)
Ν	10 ¹²	2.2	1.8	1.8	
f _r	Hz	5	5	5	
P _{beam}	MW	5.3	14.4	20	28
С	km	4.5	10	14	
	т	7	10.5	10.5	
ε	MeV m	7.5	7.5	7.5	
σ _E / Ε	%	0.1	0.1	0.1	
σ _z	mm	5	1.5	1.07	
β	mm	5	1.5	1.07	
3	μm	25	25	25	
σ _{x,y}	μm	3.0	0.9	0.63	
Pbeam C εL σE / E σZ β ε	WW km T MeV m % mm μm μm	 5.3 4.5 7 7.5 0.1 5 5 25 3.0 	14.41010.57.50.11.5250.9	20 14 10.5 7.5 0.1 1.07 1.07 25	28

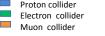
D. Schulte

US Snowmass

Strong interest in the US community

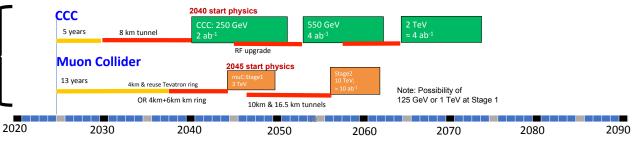
- seen as an energy frontier machine
- decoupled from LC


US community wants funding for **R&D**


Goal: match European effort

Community interested in the US to host a muon collider

USA



Original from ESG by UB Updated July 25, 2022 by MN

JON Collider

Proposals emerging from this Snowmass for a US based collider

• Timelines technologically limited

- Uncertainties to be sorted out
 - Find a contact lab(s)
 - Successful R&D and feasibility demonstration for CCC and Muon Collider
 - Evaluate CCC progress in the international context, and consider proposing an ILC/CCC [ie CCC used as an upgrade of ILC] or a CCC only option in the US.
 - International Cost Sharing

Consider proposing hosting ILC in the US.

Meenakshi Narain: Energy Frontier / Large Experiments, Snowmass Community Summer Study July 17-26, 2022

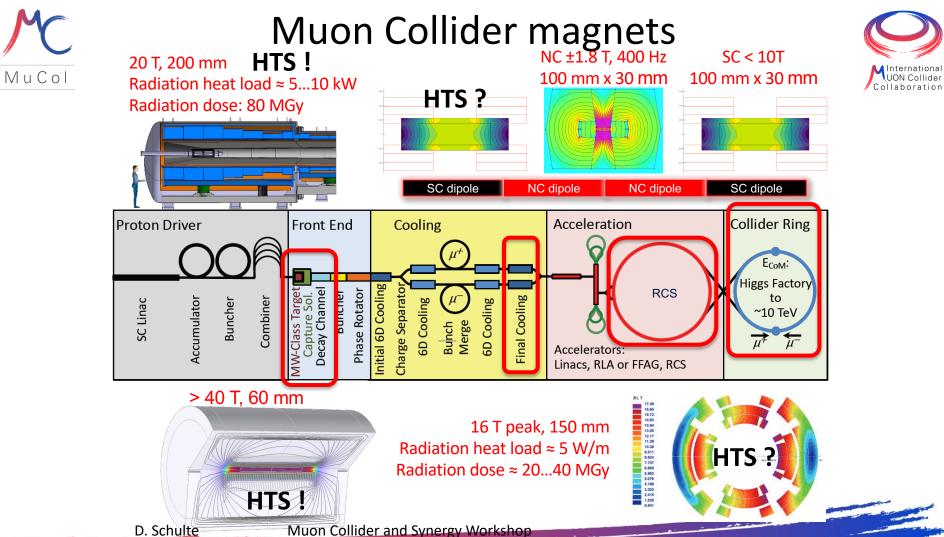
US Snowmass, cont.

Snowmass 20

Implementation Task Force

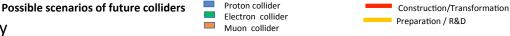
Muon Collider is a viable option for the HEP future

They made cost and power estimate for muon collider take it *cum grano salis*


Place MC in same risk tier as FCC-hh

		CME (TeV)	Lumi per IP (10^34)	Years, pre- project R&D	Years to 1 st Physics	Cost Range (2021 B\$)	Electric Power (MW)
06030 F	CCee-0.24	0.24	8.5	0-2	13-18	12-18	290
A	LC-0.25	0.25	2.7	0-2	<12	7-12	140
et al,	CLIC-0.38	0.38	2.3	0-2	13-18	7-12	110
H.Roser,	IELEN-0.25	0.25	1.4	5-10	13-18	7-12	110
- Keport	CC-0.25	0.25	1.3	3-5	13-18	7-12	150
	CERC(ERL)	0.24	78	5-10	19-24	12-30	90
C	CLIC-3	3	5.9	3-5	19-24	18-30	~550
п	LC-3	3	6.1	5-10	19-24	18-30	~400
N	4C-3	3	2.3	>10	19-24	7-12	~230
N	IC-10-IMCC	10-14	20	>10	>25	12-18	O(300) ;
F	CChh-100	100	30	>10	>25	30-50	~560
al <mark>C</mark>	Collider-in-Sea	500	50	>1Ů	>25	>80	»1000

D. Schulte


Thomas Roser et

Muon Comuci and Synergy Workshop Ovar, Orsay, June 2023

Muon Collider and Synergy Workshop

US Snowmass

Original from ESG by UB Updated July 25, 2022 by MN

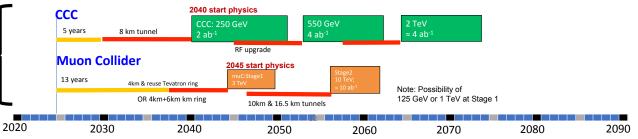
JON Collider

Strong interest in the US community in muon collider

- seen as an energy frontier machine
- decoupled from LC

MuCol

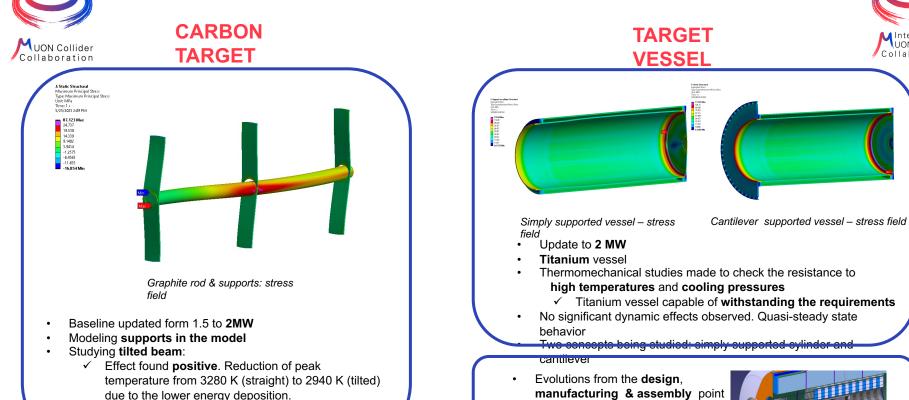
- US community wants funding for **R&D**
- Goal: match European effort


Community interested in the US to host a muon collider

D. Schulte

USA

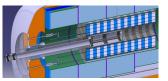
Proposals emerging from this Snowmass for a US based collider


• Timelines technologically limited

- Uncertainties to be sorted out
 - Find a contact lab(s)
 - Successful R&D and feasibility demonstration for CCC and Muon Collider
 - Evaluate CCC progress in the international context, and consider proposing an ILC/CCC [ie CCC used as an upgrade of ILC] or a CCC only option in the US.
 - International Cost Sharing

Consider proposing hosting ILC in the US.

Meenakshi Narain: Energy Frontier / Large Experiments, Snowmass Community Summer Study July 17-26, 2022



✓ Mechanical stresses: stress wave expected to be "small" but dynamic analysis is ongoing

D Schulte

of view of every component Also progress on **integration** with the **solenoid cryostat**

UON Collider

Collaboration

Coordination Committee Members

Physics	Andrea Wulzer
Detector and MDI	Donatella Lucchesi
Protons	Natalia Milas
Muon production and cooling	Chris Rogers
Muon acceleration	Antoine Chance
Collider	Christian Carli
i	1
Magnets	Luca Bottura
RF	Alexej Grudiev, Claude Marchand
Beam-matter int.	Anton Lechner

Collective effects	Elias Metral
Cooling cell design	Lucio Rossi
Demonstrator	Roberto Losito

US (detector)	Sergo Jindariani
US (accelerator)	Mark Palmer
Asia (China)	Jingyu Tang
Asia (Japan)	tbd

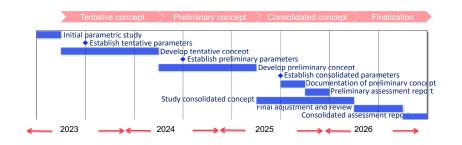
A strengthening on the physics and detector side is planned

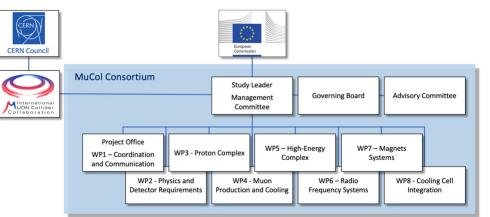
- mi

D. Schulte

target systems

EU Design Study


Has been approved summer 2022


Very helpful to kick-start collaboration

Reapproved early 2023

 It appears that there has been some issue with the refereeing of several projects, probably not directly with the muon collider

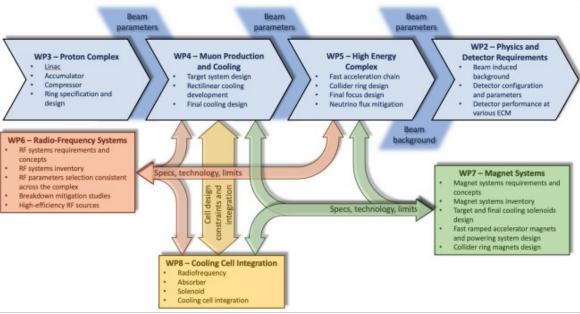
Brings 3 MEUR from the European Commission, the UK and Switzerland and about 4 MEUR from the partners Basically nothing for CERN

Kick-off meeting in March 2023: https://indico.cern.ch/event/1219912

Many thanks to all that contributed

https://mucol.web.cern.ch

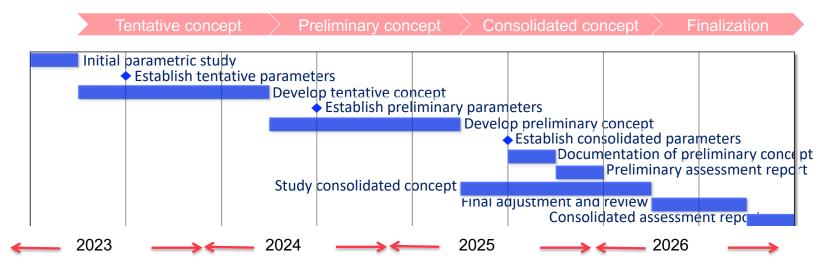
Sat celeriter fieri quidquid fiat satis bene



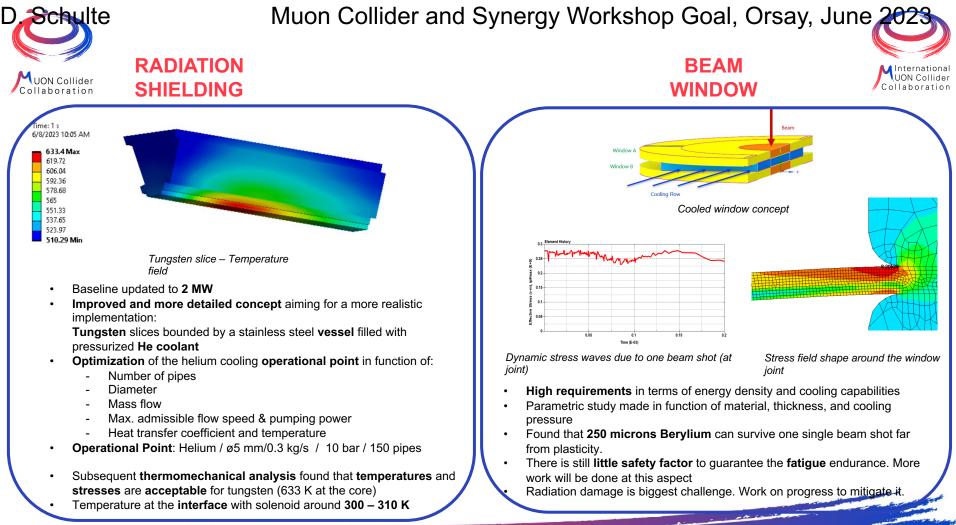
EU Design Study Work Programme

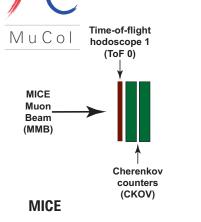
Workpackage leaders: WP 1: R. Losito (CERN) WP 2: D. Lucchesi (INFN, Padua) WP 3: N. Milas (ESS) WP 4: Ch. Rogers (RAL) WP 5: A. Choince (CEA) WP 6: C. Marchand (CEA) WP 7: L. Bottura (CERN) WP 8: L. Rossi (U. Milano)

Study Leader: D. Schulte (CERN) Deputy Study Leader: Ch. Rogers (RAL) Technical Coordinator: R. Losito (CERN) Gender Advisor: E.J. Bahng (ISU) Publications: E. Metral



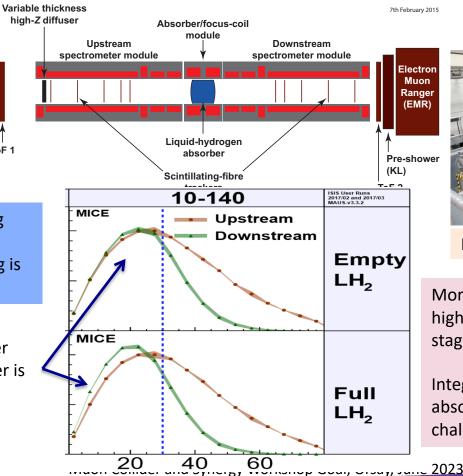
Includes an important part of the work directly and much indirectly


MuCol Timeline


Finish February 2027 Preliminary report by early 2026, in case EU strategy takes place in 2026 Iterating on parameters ad design each year

More detail in Roberto's presentation

- +---


MICE: Cooling Demonstration

Principle of ionisation cooling has been demonstrated Use of data for benchmarking is still ongoing

ToF 1

More particles at smaller amplitude after absorber is put in place

UON Collider

Collaboration

More complete experiment with higher statistics, more than one stage required

Integration of magnets, RF, absorbers, vacuum is engineering challenge

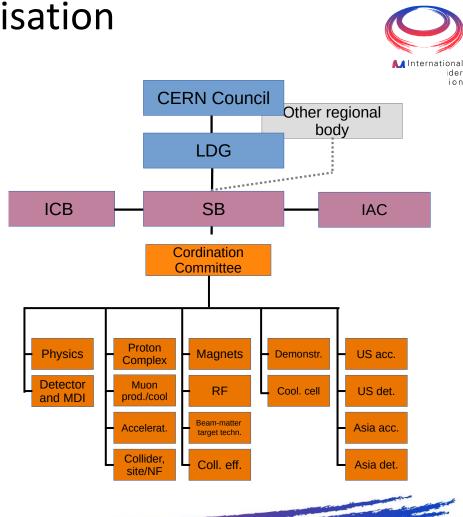
D. Schulte

Nature vol. 578, p. 53-59 (2020)

Organisation

- Collaboration Board (ICB)
- Elected chair: Nadia Pastrone

Steering Board (ISB)


- Chair Steinar Stapnes
- CERN members: Mike Lamont, Gianluigi Arduini ٠
- ICB members: Dave Newbold (STFC), Mats Lindroos (ESS), ٠ Pierre Vedrine (CEA), N. Pastrone (INFN)
- Study members: SL and deputies
- Will add US but wait for US decision on members

Advisory Committee

To be defined, discussion in SB

Coordination committee (CC)

- Study Leader: Daniel Schulte
- Deputies: Andrea Wulzer, Donatella Lucchesi, Chris Rogers

ider ion

D. Schulte