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Neutrinos from stored muons
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: 6D cooling demonstrator
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* Scientific objectives: * Precise neutrino flux:
1. %-level ((v N ) cross sections — Normalisation: < 1% _
* Multi differential / E, scan — Energy (and flavour) precise
2. BSM sea.rches * 7 ®u injection pass:
* E.g. steriles beyond FNAL SBN _ «plash” of muon neutrinos

3. Muon collider demonstrator



v,/V, interactions for oscillations

O.p requires v, and v, appearance
— Suppress v, and v, background in beams

Need v,/V, interaction data

At 15t order precision:
— v,—A + lepton universality constrains v,—A

Ocp requires requires 2nd order precision!
— Large data sets & better-understood fluxes

High-specification detector:
— Measure lepton & hadronic final state
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Statistics only
Improved syst. (n /M, xsec. error 2.7%)
« T2K 2018 syst. (n /N, Xsec. error 4.9%)

o 1 2 3 4 5 6 7 8 9 10
Hyper-K preliminary HK Years (2.7E21 POT 1:3 nf)

True normal ordering (known)
sin®(g,4) = 0.0218 sin’(q,,) = 0.528 |Dm3,| = 2.509E-3
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Lepton mass correction Hadronic/nuclear response
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Lepton observables

+* QED radiative corrections and lepton mass “nudge”
2 shifting internal ( o, ~3) phase space



Strategic mid-term goal

Innovative accelerator technology underpins the physics reach of high-energy and high-

intensity colliders... The technologies under consideration include high-field magnets,
high-temperature superconductors, plasma wakefield acceleration and other high- European Strategy for Particle Physics

gradient accelerating structures, bright muon beams, energy recovery linacs. The 2020 update
European particle physics community must intensify accelerator R&D and sustain it with

adequate resources. ...
High-priority future initiatives

To extract the most physics from DUNE and Hyper-Kamiokande, a complementary

rogramme of experimentation to determine neutrino cross-sections and fluxes is
required. Several experiments aimed at determining neutrino fluxes exist worldwide.
. The possible implementation and impact of a facility to measure neutrino cross-sections
Oppor tuni ty at the percent level should continue to be studied.

Exploit synergies with ENUBET: Other essential scientific
Articulate the need activities for particle physics

Common requirement:
Advanced neutrino detector

Fanal over next ~3 years, prepare for next ESPPU:

Neutrinos from Stored Muons (nuSTORM) - gy ¥Te \AToTe Mo loTol U4 1101 ol d g TRY =T g Lol N o LYK
Submitted to the Snowmass 2021 DPF Community Planning Exercise
— Cross sections, BSM, and MC demonstrator

* Prepare “pre-CDR” as input to the Strategy Update

arXiv:2203.07545



https://inspirehep.net/literature/2052496

CERN-PBC-REPORT-2019-003
DOI:10.17181/CERN.FQTB.O8QN
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e Extraction from SPS through existing tunnel
 Siting of storage ring:
— Allows measurements to be made ‘on or off axis’
— Preserves sterile-neutrino search option



NUuSTORM for vN scattering @ CERN — parameters

Table 1. Key parameters of the SPS beam required to serve nuSTORM.

Momentum 100 GeV/c
Beam Intensity per cycle 4¢ 1018
Cycle length 36s
Nominal proton beam power 156 kW
Maximum proton beam power 240 kW
Protons on target (PoT)/year 4¢ 10
Total PoT in 5 year’s data taking 20 10%
Nominal / short cycle time 6/3.6 s
Max. normalised horizontal emittance (1 ) 8 mm.mrad
Max. normalised vertical emittance (1 1) 5 mm.mrad
Number of extractions per cycle 2
Interval between extractions 50 ms
Duration per extraction 10.5 us
Number of bunches per extraction 2100
Bunch length (4 1) 2ns
Bunch spacing 5ns
CERN-PBC-REPORT-2019-003 Momentum spread (dp/p) 20 1074

DOI:10.17181/CERN.FQTB.O8QN



Accelerator

CERN-PBC-REPORT-2019-003
DOI:10.17181/CERN.FQTB.0O8QN
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Ximines et al

Conceptual layout G,
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The Facility is flexible enough to accommodate other
experiments.

= nuSTORM and potentially ENUBET could be branched from
the MUC Demonstrator Facility. ENUBET

= The same target complex would be used profiting from its ‘ 6D cooling
shielding and general target systems infrastructure, utilities, el nuSTORM
and accesses. : "

= The double deflection of the beamline could reduce
radiation streaming towards the nuSTORM ring.

= Synergies between experiments would reduce costs on both
sides.

= |sthe 26 GeV/c beam from the PS appropriate for these two

iments? oy
@T T gaaetS———e=




End-to-end simulation for (re)optimisation

* “nuSIM” under development to: P. Kyberd et al

— Simulate facility “from target to detector”:
* Pragmatic approach:
— Fast simulation, parametric approach
— Full tracking using G4 based code; “BDSIM” T. Alves, M. Pfaff

nuSTORM Preliminary (2206v2)

P, (GeV/ec) + 10%; Stored P, (GeV/c) + 16%
1.0,0.57
20;1.16

% 3.0;1.79

% 40246

% 5.0;3.12

$ 7.0;4.60

* Neutrino energy scan: Y
—“Pion flash” in first pass

—Subsequently neutrinos from muon
decay

* Spectrum determined by accelerator tune




6D cooling demonstrator
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Storage ring

Only particles which decay in the production straight give a significant
signal in the detector.

to t

nuSTORM simulation

to, first pions leave the target.

t, first neutrinos from pion decay
reach detector

t, last neutrinos from pion decay
reach detector

t; first neutrinos from muon decay
reach detector

1”2 t3

Muon signal

Pion Flash

Muon background

- 4

Time

. Pion Flash ... v, produced by the pions in the production straight

. Muon Signal ... v,and ve produced by muons captured in the ring.

. Muon background ... v,and ve produced by muons which decay before they are captured. Background to flash signal

Paul Kyberd 3

IOP meeting. 6th April 2023



Finally a plot of the neutrino energy spectrum for those neutrinos
which pass through the detector is stored in a separate file.

v, Energy at the detector front face
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Normalised to protons on target.
Errors are statistical from the simulation.
Working to produce higher statistics runs
Paul Kyberd

nuSIM Results

v, Energy at the detector front face
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NuSTORM specification: energy range

Guidance from:

§1.4

— Models: 312
* Region of overlap E )
0.5—8 GeV o

— DUNE/Hyper-K far detector %04
spectra: fo.

* 0.3—6 GeV "o

Cross sections depend on:
— Q%*and W:
* Assume (or specify) a detector
capable of:

— Measuring exclusive final states
— Reconstructing Q2 and W

* 2E,<6GeV

Reconstructed Energy (GeV) Reconstructed Energ\ E ‘(G eV)

So, stored muon tunable in energy

range: 1< EM <6 GeV

13



T Alves M-PEF AUSTORM@CERN: flux estimation

nuSTORM, arXiv:2203.07545
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0.57

1.16
—1.80
—2.46
—3.12
—4.60
—6.00

nuSTORM Preliminary 7

* Oscillation-relevant energy regime

— Hyper-K: 0.6 GeV
—DUNE. :2.4GeV

* Set by stored-muon momentum

@, (E,) (area normalised)

' Area normalised

. . . .
nuSTORM Preliminary
v, flux (2206v2)

p, (GeVic) + 16% ]
0.57

1.16

—1.80

—2.46

—3.12

—4.60

—6.00

Unique opportunity:

— Ev-scan measurements

Accelerator "tune" gives fine control

— E.g. optimise flux shape (or spread) by
adjusting the ring acceptance

14



NuSTORM@CERN: working towards a detector concept

DUNE, instruments 5, 31 (2021)

* nuSIM ready to allow
performance evaluation:
— Require “highly capable” detector:
e Scattered lepton
* Inclusive and exclusive final states

* Initial study use DUNE ND-GAr:

— TPC reference design
e 10-bar argon-based gas TPC
e Large gas volume
* Surrounded by calorimeter

— 41t acceptance, very low threshold
— B-field provides sign selection
— e/ id; final state reconstruction



https://inspirehep.net/literature/1854065

NuSTORM@CERN: E -scan measurements

X. Lu

Quasi-elastic
cross section
function of da;

Transverse boosting angle

Low da.;: impact of nuclear effects low:
“Nuclear model calibration”

High da,;: energy-dependent nuclear effects:
— Constrain nuclear models of, e.g. 2p2h, pion absorption, ...



https://inspirehep.net/literature/1410087

NuSTORM@CERN: E_-scan measurements

. . ds/dda (cm®/degree/nucleon) T. Alves
Quasi-elastic

_ = _ : = M. Pfaff
Differential = X. Lu
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Cross-section estimation using (preliminary) nuSTORM flux
Energy evolution “tunable” to optimise sensitivity of measurement

Start of study of energy dependence of various exclusive measurements:

— To provide precise constraints on nuclear effects and their evolution .



Exploring the Physics Opportunities of nuSTORM

Thursday 6 Apr 2023, 08:00 — 18:00 Europe/London
@ IoP Building, London

Description More information can be found at the main I0P website: https:/liop.eventsair.com/nus2023/

Join on Zoom here: https://cern.zoom.us/j/69597357629?pwd=dCtYMXZNeTM3RTJIYVBsWVNKQmMNtQT09

Recordings: part 1 MhEAW=16, part 2 S33$$fP5 (auto-delete in 15 days, i.e. on ~ 21 April)

18



Studies with the nuSIM simulations

The DUNE-PRISM Near Detector. Cai et. al. “Specifically, the
relationship between the energy of the decay parent particle and
the final state neutrino energy changes as a function of
observation angle away from the parent boost direction, this can

Is the PRISM technique (DUNE) applicable to nuSTORM.? be seen in Figure la. The NOvA and T2K long-baseline
oscillation experiments already use this feature—often called
In particular can we create a synthetic beam with a narrower the off axis effect —to achieve a more narrowly peaked neutrino
effective energy range energy spectrum than can be achieved by a purely on-axis
’ experiment.”
Enumu Enumu
Enumu Enumu
E/Intries 14118ii 400 Entries 15718
ean B

Mean 1.221
Std Dev_ 0.5629
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Pion Flash Spectra

Paul Kyberd 16 IOP meeting. 6th April 2023
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Synthetic Beam
vSTORM

Pion flash neutrinos - bin by bin subtraction
. with the 5 GeV spectra normalised by the ratio
nuEnergyHist1 . X
Enties 12894 of the number of entries - and by the ratio of the
o, et spectrum end points. Offset of 100 so negative
values visible

Energy of neutrinos

350

300

250

200

150

100

50

0.5 1 1.5 2 25 3 3.5 4

o

Only two datasets are required

A Gaussian fit to estimate the peak and width
2.38 +/- 0.28

Paul Kyberd 17 IOP meeting. 6th April 2023



R. Kamath nUSTORM-PRISM

* Just starting, so indicative study:

— Take 6 data sets that are available

Heatmap of Neutrino Energy spectrum and Muon Momentum

—— Weighted Sum

5.0 True

4.5

—— Weighted Sum
True

60 stored muon energies: /4— Weighted sum
Created using (spline) interpolation for now 2 e



C. Thorpe

Case study: strangeness production

* Improve nuclear, final-state interaction models:
— Presently, data is “sparce”

* Use nuSTORM flux to look at event rates:
— NuWro used to simulate scattering
— Assume energy threshold of 0.3 GeV, typical of LAr

—E,=2GeV —E, =3GeV —E, =4GeV —E,=2GeV —E,=3GeV —E,=4GeV —E,=2GeV —E,=3GeV —E, =4GeV
—E,=5GeV —E,=6GeV —E,=7GeV —E,=5GeV —E,=6GeV —E,=7GeV —E,=5GeV —E,=6GeV —E,=7GeV

Inclusive K* from Ar
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V-F. Perez-Gonzalez BSM Opportunities (“beyond steriles”)
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Different flavours!
Exploring the Physics Opp. of NuStorm — April 6th, 2023 Yuber F. Perez-G. - IPPP, Durham University

% Unique combination of flavours should help in constraining the g:¢, g SM couplings

¢ There is a vast landscape of BSM models trying to explain different phenomena, like
the short baseline anomalies.

< Large flux, low backgrounds and low systematics make nuSTORM the best place to
constrain many possible BSM models.




Exploring the Physics Opportunities of nuSTORM

Thursday 6 Apr 2023, 08:00 — 18:00 Europe/London
@ IoP Building, London

Description More information can be found at the main I0P website: https:/liop.eventsair.com/nus2023/

Join on Zoom here:

Recordings: MhE*W=16, S338SfP5 (auto-delete in 15 days, i.e. on ~ 21 April)

v Review landscape were nuSTORM will contribute
v/ Seek to identify key topics and directions
v Plot a course towards follow-up workshop:

— Inaround 9 to 12 months

— Which quantifies cross section, BSM, ... opportunities
* |deally:

— “Proceedings” of follow-up workshop:
* Document science case for nuSTORM in peer-reviewed publication
* Provide evidence to support submission to ESPPU27

pr
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Imperial College s et et Gt
C 1 L) ISIS

< l m pe r ' a I COI Ie g e & Science & Technology Facilities Council

ISIS
Overview of nuSTORM

= M Target and horn simulations

J. Pasternak,

on behalf of nUSTORM study team Pion Energy Spectrum from Fluka Simulation

600000 -

500000 -

Horn geometry (TupriO05, IPAC’14)

The hom revolution

a4
81

400000 +

Recruitment:
5 Even shorter (1.6 m) +

Even lower current (219 kA) +
Even narrower outer conductor !

Hope in post 200000 -
“next week”

100000 +

0
Total Energy [GeV] 80|
* Target simulated in FLUKA (J. Back) "
* Parameters of the target adopted from the
FNAL study
* Inconel target, 46cm in length 20/
* Horn geometry and current adopted from | , —

500 1000 1500 2000 2500 3000

the FNAL study (A. Liu) 2 o)

of




Im peria I COI Iege & icieSnci &S‘rechnulngy Facilities Council

 ondon Pion beam line simulation in BDSIM ‘=&

T. Alves

Quadrupole

S

Injection Septum

. Bending
Collimators Dipole

Drift Section

iy et =l e

Demonstrator
development

N = 1.0E+04 L14
N = 1.0E+04
N = 1.0E+04

Betatron functions and
dispersion for pion beam
from the horn until the
injection point in the
NUSTORM ring calculated
by tracking in BDSIM

S/m




Imperial College () i con
( p lon 9 BDSIM study extended till the = SIS

T. Alves end of the production straight

Pt ——

¥ B N=1.0E+04
T B, N=1.0E+04

Demonstrator
development

| W

O .
T T T T T
0 50 100 150 200 250
S/m

Betatron functions of pions from the horn until the end of the production straight in
the nuSTORM ring calculated by tracking in BDSIM




Im erial COlle e Science & Technology Facilities Council
i Q isis

Acceptance cut at the end of the quad
straight

Ap_p-po
xz A Po Po
X 4 )861 (P_x)z <E( |_P| ) Pp=3.8 GeV/c.(mu.or? ce.ntral momentum
}82 x r,. Po for 5 GeV/c pions injection)
§£=19.98m (periodic beta of the quad
straight)
elml 5 ooz
\ \‘\ Momentum acceptance at which septum starts to limit the
0.0000 \ "~ acceptance of the beam in the ring ~8.41%.
\\ It is estimated by: 15%-Sqrt[0.001*8.03]/1.36,
0L OomE L A simum DA of 8.03mis 3 at the septum, 1.36m is D at the septum
- the ring Imm
0.0004
Maximum momentum
0.0002 ////facceptance of the ring 15% (16% used in the calculations)

0.05 0.1 0.15 0.2
| Momentum spread |




Imperial College

PS/SPS feeding comparison

o

Science & Technology Facilities Council

ISIS

T. Alves
Proton Energy | " Central | p*™ Central ) Undecayed 7 at Total 1+
Starting 7" Accepted p™
on target Momentum | Momentum end of decay straight | produced
100GeV 5GeV /e 3.8GeV /e 986, 303 221,718 192,932 19.074
100GeV 7.2GeV/c 5.42GeV /¢ 834, 311 255, 522 156, 019 24,694
100GeV 2.64GeV /e | 2.0064GeV /¢ 746,499 65, 540 90, 593 2,187
26GeV 5GeV/e 3.8GeV /e 230,775 53,484 47,438 4,650

* Simulation performed using FLUKA and BDSIM assuming 107 POT
* Horn current scaled with momentum
* PS would give 4.14 times less accepted muons for the same POT

Initial finding based of 5 GeV/c muon beam storage efficiency suggests that
equivalent to SPS scheme PS-based target station would require ~165 kW
* Looks difficult, but the final word is for the PS experts.

* Low pion momentum setting (2.64 GeV/c) requires further investigation due to
high losses in the pion beam line (work in progress)
* Results will be used for the neutrino flux normalisation




Conclusions

NuSTORM will be a unique facility:

— %-level electron and muon neutrino cross-sections
* Neutrino energy scan; spectrum at each point precisely known

— Exquisitely sensitive BSM & sterile neutrino searches
— Serve as muon accelerator test bed

Feasibility of executing nuSTORM at CERN:
— Established through Physics Beyond Colliders study

NuSTORM: a step towards the muon collider:
— Proof-of-principle of high brightness stored muons beams

5-year goal: prepare robust case and “pre-CDR” for nuSTORM

31



Historical interlude

Status Report of a High Luminosity Muon Collider and Future Research and
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e Science case remains fantastic
 Technological R&D still ground-breaking
* Risks to programme remain too

 Demonstrator is critical to the programme:
— 6D cooling and world-leading particle physics

Drives the beam quality

quite detailed MAP design

still challenging design with

challenging components .
optimise as much as possible

» - Al  Muon Collid, Accelerator 7
\\, M Injector ’:100';'eVoCo]t'! il ; ENUBET —— —

~10km circumference 6D COOling
test facility nuSTORM

4 GeV Target, nDecay pCooling  Low Energy
i Proton & uBunching Channel  uAcceleration
% Source  Channel

Cost and power consumption drivers, limit energy reach
e.g. 30 km accelerator for 10/14 TeV, 10/14 km collider ring
Also impacts beam quality

Drives neutrino radiation and beam induced background

International
UON Collider
Collaboration
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