

Introduction to the activities of the WP2.3 at UNIGE

Other HTS conductors Focus on REBCO coated conductors

Carmine SENATORE, Marco BONURA, Tommaso BAGNI, Damien ZURMUEHLE

Department of Quantum Matter Physics, University of Geneva, Switzerland Department of Nuclear and Particle Physics, University of Geneva, Switzerland

Critical current tests up to 2 kA Magnetic fields up to 19 T/21 T and temperatures up to 50 K in a 50 mm VTI

60

Possible to test long samples (> 120 mm) at various angles: θ = 0°, 5°, 7.5°, 10°, 15° and 90°

Barth, Bonura, and CS, IEEE Trans. Appl. Supercond., 28 (2018) 9500206 DOI: <u>10.1109/TASC.2018.2794199</u>

	Width	REBCO Type	REBCO Thickness	Deposition Method	Pinning Type	Substrate	Cu Stabilizer
F Fujikura	4 mm	EuBCO	2.5 μm	IBAD/PLD	BHO columns (artificial)	50 μm/Hastelloy	2 x 40 μm electroplated 2 x 20 μm electroplated
SuperOx	4 mm	YBCO -	3.1 μm	– IBAD/PLD	Y ₂ O ₃ particles _ (native)	100 μm/Hastelloy	2 x 20 μm electroplated
			2.7 μm			40 μm/Hastelloy	2 x 5 μm electroplated
	3 mm	EuBCO	3 μm	IBAD/PLD	BHO columns (artificial)	30 μm/Hastelloy	2 x 10 μm electroplated
					Gd ₂ O ₃ particles (native)	100 μm/Hastelloy	2 x 20 μm electroplated
THEVA	4 mm	m GdBCO	3 µm	ISD/EB-PVD	Gd ₂ O ₃ particles (native) BHO particles (artificial)	40 μm/Hastelloy	2 x 10 μm PVD-plated

Fujikura tapes courtesy of <u>S. Richardson</u> and <u>M. Daibo</u>, SuperOx tapes courtesy of <u>A. Molodyk</u>, 上海超导 tapes courtesy of <u>Y. Zhao</u> and <u>B. Song</u>, THEVA tapes courtesy of <u>M. Bauer</u> and <u>M. Bendele</u>

	Width	REBCO Type	REBCO Thickness	Deposition Method	Pinning Type	Substrate	Cu Stabilizer	
🗲 Fujikura	4 mm	EuBCO	2.5 μm	IBAD/PLD	BHO columns (artificial)	50 μm/Hastelloy	2 x 40 μm electroplated 2 x 20 μm	
							electroplated	
SuperOx	4	YBCO -	3.1 μm	IBAD/PLD	Y ₂ O ₃ particles _ (native)	100 μm/Hastelloy	2 x 20 μm electroplated	
	4 mm		2.7 μm			40 μm/Hastelloy	2 x 5 μm electroplated	
上海超导 SHANGHAI SUPERCONDUCTOR	[*] 3 mm	EuBCO	3 µm	IBAD/PLD	BHO columns (artificial)	30 µm/Hastelloy	2 x 10 μm electroplated	
THEVA		4 mm GdBCO	3 μm	ISD/EB-PVD	Gd ₂ O ₃ particles (native)	100 μm/Hastelloy	2 x 20 μm electroplated	
	4 mm				Gd ₂ O ₃ particles (native) BHO particles (artificial)	40 μm/Hastelloy	2 x 10 μm PVD-plated	
Fujikura tapes courtesy of <u>S. Richardson</u> and <u>M. Daibo</u> , SuperOx tapes courtesy of <u>A. Molodyk</u> , 《 上海超导tapes courtesy of Y. Zhao and B. Song, THEV A tapes courtesy of M. Bauer and M. Bendele								

	Width	REBCO Type	REBCO Thickness	Deposition Method	Pinning Type	Substrate	Cu Stabilizer	
🗲 Fujikura	4 mm	EuBCO	2.5 μm	IBAD/PLD	BHO columns (artificial)	50 μm/Hastelloy	2 x 40 μm electroplated 2 x 20 μm electroplated	
SuperOx	4 mm	YBCO -	3.1 μm		Y ₂ O ₃ particles _ (native)	100 μm/Hastelloy	2 x 20 μm electroplated	
			2.7 μm			40 μm/Hastelloy	2 x 5 μm electroplated	
上海超导™ SHANGHAI SUPERCONDUCTOR	3 mm	EuBCO	3 µm		BHO columns (artificial)	30 µm/Hastelloy	2 x 10 μm electroplated	
THEVA	4 mm	GdBCO	3 μm	ISD/EB-PVD	Gd ₂ O ₃ particles (native)	100 μm/Hastelloy	2 x 20 μm electroplated	
					Gd ₂ O ₃ particles (native) BHO particles (artificial)	40 μm/Hastelloy	2 x 10 μm PVD-plated	
Fujikura tapes courtesy of S. Richardson and M. Daibo, SuperOx tapes courtesy of A. Molodyk,								

✓ 上海超导 tapes courtesy of Y. Zhao and B. Song, THEVA tapes courtesy of M. Bauer and M. Bendele

	Width	REBCO Type	REBCO Thickness	Deposition Method	Pinning Type	Substrate	Cu Stabilizer	
🗲 Fujikura	4 mm	EuBCO	2.5 μm	IBAD/PLD	BHO columns (artificial)	50 μm/Hastelloy	2 x 40 μm electroplated 2 x 20 μm electroplated	
SuperOx	1 100 100	YBCO -	3.1 μm	– IBAD/PLD	Y ₂ O ₃ particles (native)	100 μm/Hastelloy	2 x 20 μm electroplated	
	4 mm		2.7 μm			40 μm/Hastelloy	2 x 5 μm electroplated	
上海超导 TM SHANGHAI SUPERCONDUCTOR	3 mm	EuBCO	3 µm	IBAD/PLD	BHO columns (artificial)	30 μm/Hastelloy	2 x 10 μm electroplated	
					Gd ₂ O ₃ particles (native)	100 μm/Hastelloy	2 x 20 μm electroplated	
THEVA	4 mm	GdBCO	3 μm	ISD/EB-PVD	Gd ₂ O ₃ particles (native) BHO particles (artificial)	40 μm/Hastelloy	2 x 10 μm PVD-plated	
Fujikura tapes courtesy of S. Richardson and M. Daibo, SuperOx tapes courtesy of A. Molodyk,								

✓ 上海超导 tapes courtesy of Y. Zhao and B. Song, THEVA tapes courtesy of M. Bauer and M. Bendele

	Width	REBCO Type	REBCO Thickness	Deposition Method	Pinning Type	Substrate	Cu Stabilizer	
🌈 Fujikura	4 mm	EuBCO	2.5 μm	IBAD/PLD	BHO columns (artificial)	50 μm/Hastelloy	2 x 40 μm electroplated 2 x 20 μm electroplated	
SuperOx	4 100 100	YBCO -	3.1 μm	– IBAD/PLD	Y ₂ O ₃ particles _ (native)	100 μm/Hastelloy	2 x 20 μm electroplated	
	4 mm		2.7 μm			40 μm/Hastelloy	2 x 5 μm electroplated	
上海超导	[™] 3 mm	EuBCO	3 µm	IBAD/PLD	BHO columns (artificial)	<mark>30 μm/Hastelloy</mark>	2 x 10 μm electroplated	
					Gd ₂ O ₃ particles (native)	100 μm/Hastelloy	2 x 20 μm electroplated	
THEVA	4 mm	GdBCO	3 μm	ISD/EB-PVD	Gd ₂ O ₃ particles (native) BHO particles (artificial)	40 μm/Hastelloy	2 x 10 μm PVD-plated	
Fujikura tapes courtesy of <u>S. Richardson</u> and <u>M. Daibo</u> , SuperOx tapes courtesy of <u>A. Molodyk</u> ,								

✓ 上海超导 tapes courtesy of Y. Zhao and B. Song, THEVA tapes courtesy of M. Bauer and M. Bendele

Comparison of the performance

Non-copper critical current density

Comparison of the performance: I_c / width

 $B \perp ab plane$

Comparison of the performance: non-Cu J_c

Examples of the angular dependence of I_c Two tapes from THEVA

Some experiments conceived to feed magnet technology (..and other new will come in the near future)

Contact Resistance Between REBCO Tapes

Pressure Dependence in the Cases of No-Insulation, Metal Co-Winding and Metal-Insulation

Bonura, Barth, Joudrier, Ferradas Troitino, Fête, and CS, IEEE Trans. Appl. Supercond., 29 (2019) 6600305 DOI: 10.1109/TASC.2019.2893564

Metal-Insulator-Transition materials as a Smart Insulation Contact Resistance Between REBCO Tapes

1000/TEMPERATURE IN DEGREES KELVIN

DOI: 10.1109/TASC.2023.3251291

Bibliography as a summary

Critical surface

C. Senatore, C. Barth, M. Bonura, M. Kulich, and G. Mondonico Field and temperature scaling of the critical current density in commercial REBCO coated conductors Supercond. Sci. Technol. 29 (2016) 014002 http://dx.doi.org/10.1088/0953-2048/29/1/014002

Electromechanical properties

C. Barth, G. Mondonico, and C. Senatore

Electro-mechanical properties of REBCO coated conductors from various industrial manufacturers at 77 K, self-field and 4.2 K, 19 T

Supercond. Sci. Technol. 28 (2015) 045011

http://dx.doi.org/10.1088/0953-2048/28/4/045011

Thermophysical properties

M. Bonura, and C. Senatore

High-field thermal transport properties of REBCO coated conductors

Supercond. Sci. Technol. 28 (2015) 025001

http://dx.doi.org/10.1088/0953-2048/28/2/025001

M. Bonura, and C. Senatore

Transverse thermal conductivity of REBCO coated conductors **IEEE Trans. Appl. Supercond. 25 (2015) 6601304**

https://doi.org/10.1109/TASC.2014.2367163

Normal Zone Propagation Velocity

M. Bonura, and C. Senatore

An equation for the quench propagation velocity valid for high field magnet use of REBCO coated conductors **Appl. Phys. Lett., 108 (2016) 242602** <u>http://dx.doi.org/10.1063/1.4954165</u>

M. Bonura, and C. Senatore

Temperature and Field Dependence of the Quench Propagation Velocity in Industrial REBCO Coated Conductors **IEEE Trans. Appl. Supercond., 27 (2017) 6600705** https://doi.org/10.1109/TASC.2016.2632298

Contact resistance

M. Bonura, C. Barth, A. Joudrier, J. Ferradas Troitino , A. Fête, and C. Senatore

Systematic Study of the Contact Resistance Between REBCO Tapes: Pressure Dependence in the Case of No-Insulation, Metal Co-Winding and Metal-Insulation

IEEE Trans. Appl. Supercond., 29 (2019) 6600305

https://doi.org/10.1109/TASC.2019.2893564

M. Bonura, G. Bovone, P. Cayado, and C. Senatore

Contact Resistance Between REBCO Coated Conductors in the Presence of a V₂O₃ Inter-Layer

IEEE Trans. Appl. Supercond., 33 (2023) 8800106

https://doi.org/10.1109/TASC.2023.3251291

Critical current probe

C. Barth, M. Bonura, and C. Senatore

High Current Probe for I_c(B,T) Measurements With ±0.01 K Precision: HTS Current Leads and Active Temperature Stabilization System

IEEE Trans. Appl. Supercond., 28 (2018) 9500206

https://doi.org/10.1109/TASC.2018.2794199

Heating induced degradation

M. Bonura, P. Cayado, K. Konstantopoulou, M. Alessandrini, and C. Senatore

Heating-Induced Performance Degradation of REBa₂Cu₃O_{7-x} Coated Conductors: An Oxygen Out-Diffusion Scenario with Two Activation Energies

ACS Appl. Electron. Mater., 4 (2022) 1318–1326

https://doi.org/10.1021/acsaelm.2c00065

HTS for accelerator magnets

L. Rossi, and C. Senatore *HTS Accelerator Magnet and Conductor Development in Europe* Instruments, 5 (2021) 8 <u>https://doi.org/10.3390/instruments5010008</u>

Technology

Thank you for the attention !

Carmine SENATORE carmine.senatore@unige.ch http://supra.unige.ch

