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Description of the results: T1-D2

* Mechanical desigh completed

* 3D printed mock-up fabricated, assembly
sequence validated

 All parts in production
* 3D printed 316L parts delivered




Description of the results: T1-D3

 Collapsible mandrel design, fabricated & validated
* Tooling ready for winding

e First & last turn soldered
for mech. support




Description of the results: T1-D4

e Kapton disks with cut-outs for edge joints as tooling

* Inner edge joints often with
voids, difficult to fill reliably
with solder

* Double pancakes could be
an alternative to eliminate
inner joints




Inner layer jump

Outer and inner coil
insulation with no joint



Description of the results: T1-D5
* Tooling to assemble multiple (double) pancakes into
solenoid field booster

e Al tube as inductive shield
and mech. support

o e |1




Coil Layout
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26 T hts coil , Copper busbars clamped with
Indium compression joints test at CERN Nov 2019




HTS Quench

HTS quench in simple
coil, we see the
evolution of field,
temperature, current
density, voltage

maps, during quench. T -~ w0 @MW 10002
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upper pancake.
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Maximum magnetic flux density
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Fig. 1. Overview of the coil-layout of the short demonstrator magnet. The
magnet consists of two poles, with each a cloverleaf coil and a racetrack coil.
The colors on the coil indicate the magnetic flux density present on the conductor
surface for a current of 2 kA. In this case, the maximum field is reached at the
inside of the coil-end of the racetrack and has a magnitude of 12.2 T.

—— : : L
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TABLE |
MAGNET PARAMETERS

Parameter Value Parameter Value
Center field 94T Length cable/tape  143/286 m
per cloverleaf
Maximum field on 122T Length cable/tape  80/160 m
conductor per racetrack
Current 2000 A Total tape length 894 m
Tape thick- 0.1/12 Number of cable 82
ness/width mm turns cloverleaf
Number of tapes in 2 Number of cable 183
cable turns racetrack

[9]. This can lead to better current sharing between the tapes in
the case of a quench, which can improve the stability of the coils.
There is no insulation in-between the tapes.

On the inside and outside surfaces of the ReBCO coil wind-
ings, 2 mm thick copper tape windings are present. These layers
serve as a stabilizer as well as current entry and exits point along
the first and the last turn of the coil windings. In Table I, the most
relevant coil parameters are listed.

B. Coil-End Design

The top and bottom coils of the cloverleaf-racetrack magnet
are simple racetrack coils and the center coils are in clover-
leaf configuration (see Fig. 1). The cloverleaf coils allow the
conductor to go over the particle beam pipe. The cloverleaf
configuration was first proposed by Gupta et al. in 2003 as
a design for high field accelerator magnets using “React &
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needed to prevent conductor movement. The casing is made out
Pole assembl

Cryostat mount Magnet assembly
Shell

Voltage trace

-Cap
Bridge support
Current leads e
Cloverleaf coil el > Copper rings ~ 495 mm
U-insulation — ,
Casing

s 7 — Copper rings
Racetrack coil ——_ 2P 180 mm

Cap 1 /

Current leads

450 mm

Fig. 4 Overview of the magnet assembly. On the left the individual components of a magnet pole are shown. On the right the magnet assembly and a cross-
section along the mid-plane of the magnet are shown.
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Induction of high currents
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V-l measurements in coil 2.3

The degradation is visible from VI 2 to
VI 3 (after the many extractions in
Fresca2) and from VI 4 to VI 5 (after
the magnetic measurements to 2 kA in
Fresca, 4 kA in Feather).

Also, initial degradation from the
standalone test to the first VI
performed in this test campaign is
visible
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