

1

R&D on HTS conductors, cables and coils at UTwente

Anna Kario, Arend Nijhuis, Marc Dhalle, Simon Otten, Thomas Nes, Sander Wessel and Herman ten Kate

Understanding transverse stress of Rutherford BSCCO-2212 cables

LBNL+NHFML: T. Shen, U. Trociewitz, D. Davis, E. Bosque

The ReBCO as elemental material for future accelerator type magnets

Novel impregnation approach for ReBCO cables

UTwente: T. Boelens, S. Wessel

• Understanding mechanical behavior of ReBCO tapes and cables

UTwente: S. Otten, M. Dhalle, S. Wessel

• ReBCO coils in background magnetic field

UTwente+CERN: T. H. Nes, J. M. Boerma, F.O. Pincot, J. Liberadzka-Porret, G. de Rijk, H. H. J. ten Kate

Rutherford BSCCO-2212 cable samples

Cable No.	Specifications	Wires
LBNL2002	17-strand subscale magnet cable, nominal 7.8 mm x 1.4 mm	PMM190118, 55x18, 0.8mm, Engi-mat LXB156
LBNL1088	17-strand subscale magnet cable, nominal 7.8 mm x 1.4 mm	PMM170123, 55x18, 0.8 mm, nGimat LXB52
LBNL1068	17-strand subscale magnet cable, nominal 7.8 mm x 1.4 mm	PMM101111, 37 x 18, 0.8 mm, Nexans batch #77 powder
LBNL1109	17-strand subscale magnet and CCT magnet cable, nominal 7.8 mm x 1.4 mm	Non-twisted PMM180207_4, 5, 6 ,7, 55x18, 0.8mm, Engi-mat powder LXB103

Reaction holder for BSCCO-2212 Rutherford cable

UNIVERSITY OF TWENTE.

Closed BSCCO-2212 wires before heat treatment

Reaction: E. Bosque @FSU

BSCCO-2212 Rutherford cable after heat treatment and transverse stress

UNIVERSITY OF TWENTE.

5

Delamination mitigation by impregnation method choice

UNIVERSITY OF TWENTE.

Understanding mechanical behavior of ReBCO tapes

- C. Zhou et al., IEEE Transactions on Applied Superconductivity, Vol. 26, No. 4, June 2016
- Importance of study ReBCO tapes mechanical properties, together with simulations, for understanding limits for future high current cables and further high field magnets

Impregnated *Re*BCO Roebel cable withstand stresses up to 400 MPa

- Importance of study ReBCO cables in transverse stress to understand the limits for future high field magnets
- Relevance of electromagnetic and thermal cycling effect on critical current of ReBCO cables

UNIVERSITY OF TWENTE.

Small *Re*BCO coils and measurements in background magnetic field

- Motivation:
 - Gain winding experience with *Re*BCO
 - Determine time constants to extrapolate to larger coil designs
 - Study dynamic behavior of such coils in comparison with a model
- Lessons learned from small coils applied to larger coils (for example Cloverleaf)

Small *Re*BCO coils and measurements at 77K and self-field

UNIVERSITY OF TWENTE

Soldered single tape

- Coil critical current = 38 ± 16 A
- Quench current > 400 A

Soldered double tape

- Coil critical current = 163 ± 6 A
- Quench current > 240 A

Small *Re*BCO coils and measurements at 77K and self-field

Dry-wound single tape

- Coil critical current = 95 ± 3 A
- Quench current = $116 \pm 3 A$

Dry-wound double tape

Coil critical current = 180 ± 3 A

• Quench current = $194 \pm 3 A$

Non-insulated coil small demonstrator at background field

- Understanding of behavior of small ReBCO demonstrator
- Modelling using full characteristic of used ReBCO material
- Measurements standalone and in background magnetic field

Cloverleaf-racetrack *Re*BCO accelerator type magnet

- Prototype which serves as first step towards 20 T accelerator dipoles
- Cloverleaf shape is solution to hard-way bend problem
- 12 mm double ReBCO tape used as conductor
- Full HTS magnet with 8 turns

Liquid nitrogen measurements

- measurement of the critical current
- linear and stair ramp
- multiple thermal cycles
- instrumentation: hall probes, extensometer, thermometers, voltage taps

UNIVERSITY OF TWENTE.

The ReBCO as elemental material for future accelerator type magnets

- Impregnation/delamination
- Mechanical behavior
- Wires & Cables

Summary

Small demonstrators

Plans

- Mitigation of delamination, novel impregnation materials
- Smart testing, design of problem-oriented experiments supported by simulations, for example ReBCO pancake joints and leads
- Understanding electromechanical limitations of wires, cables and coils using modeling and experimental

