

Velo aperture

B. Lindström, R. Bruce, M. Giovannozzi, S. Redaelli

Acknowledgents: V. Coco, R. de Maria, I. Efthymiopoulos, S. Fartoukh, T. Persson, J. Sestak

10th March 2023 – Machine Protection Panel

LHCb VELO aperture bulging

- From LMC #450, VELO bulging reduces closed aperture at top energy from 3.5 mm to 2.9 mm
- During YETS, further deformation reducing aperture from 49 mm to 38.5 mm in open position
- Compatible with injection beams?
- Compatible with collision and VdM optics/scans?
- Studied available aperture at the VELO with 2023 optics:
 - injection 10m β^* in LHCb
 - collision $2m \beta^*$ in LHCb
 - VdM 24m β^* in LHCb

courtesy of V. Coco

Input tolerances for aperture calculations

- Circular aperture inlayed conservative yet robust
- VELO longitudinal extent: ± 800 mm from IP8
- mechanical tolerance: 5.5 mm / 50 μm
- spectrometer on
- injection optics (10 m β^*)
 - orbit error: 2 mm
 - separation: -3.5 mm y
 - beta beating: 15 %
- collision optics (2 m β^*):
 - orbit + alignment error: 2 mm (open) / 300 µm (closed)
 - up to $\pm 3 \sigma$ (~93 µm) single beam displacement in vertical plane
- VdM optics (24 m β*):
 - orbit + alignment error: 2 mm (open) / 300 µm (closed)
 - up to ± 4.5 σ (~480 μm) single beam displacement in H/V
 - beta beating: 10 %

courtesy of V. Coco

n.b. reference emittance is 3.5 µmrad

*R. Bruce et.al., Updated parameters for HL-LHC aperture calculations for proton beams, https://cds.cern.ch/record/2274330?ln=en

B. Lindström | Aperture Calculation for LHCb VELO Bulging

*R. Bruce et.al., Updated parameters for HL-LHC aperture calculations for proton beams, https://cds.cern.ch/record/2274330?ln=en

B. Lindström | Aperture Calculation for LHCb VELO Bulging

*R. Bruce et.al., Updated parameters for HL-LHC aperture calculations for proton beams, https://cds.cern.ch/record/2274330?ln=en

CERN

10 March 2023

B. Lindström | Aperture Calculation for LHCb VELO Bulging

*R. Bruce et.al., Updated parameters for HL-LHC aperture calculations for proton beams, https://cds.cern.ch/record/2274330?ln=en

10 March 2023

B. Lindström | Aperture Calculation for LHCb VELO Bulging

10 March 2023

B. Lindström | Aperture Calculation for LHCb VELO Bulging

*R. Bruce et.al., Updated parameters for HL-LHC aperture calculations

- Aperture margin is large due to small beam size
- Fully open, deformed, VELO ok
 - Aperture > 300 σ
- Deformed VELO can be centered around the beam and closed to an effective opening of 3.5 mm
- Minimum opening to be defined after VELO shape measurements and a definitive decision on xing angle

*R. Bruce et.al., Updated parameters for HL-LHC aperture calculations for proton beams, https://cds.cern.ch/record/2274330?In=en

- Aperture calculated for three scenarios:
 - No beam displacement
 - $\pm 3.1 \sigma$ for the Van der Meer scan
 - $\pm 4.5 \sigma$ for the length scale calibration scan

- Deformed VELO can be centered around the beam and closed to an effective opening of 3.5 mm
 - Aperture for open, deformed, VELO > 90 σ
 - Minimum opening to be defined after VELO shape measurements and a definitive decision on xing angle / VdM scan ranges

Conclusions

- Aperture deformation was simulated no measurement available at the moment.
- In aperture calculations, VELO was open to 28.15 / 25.85 mm, opening to 29.8 / 29.8 mm provides further margin
- 1st phase: Assessment of the injection feasibility:
 - Aperture is compatible with this
- 2nd phase: Assessment of the operations feasibility with VELO fully open:
 - Aperture is compatible with this, even with VdM scans up to 4.5 σ (> 90 σ aperture)
- 3rd phase: Assessment of the operations feasibility with VELO moving:
 - Aperture is compatible with this
 - VELO should be centered around beam and can be closed to a min gap
 - Aperture measurements will provide important input for defining this range

more details: LNO-NDC section meeting https://indico.cern.ch/event/1254790/

