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Motivation

Physics between LHC and Planck scale — problem of modern
theoretical physics

QFT can describe phenomena on small distances

GR can describe phenomena on large distances

Merging of GR and QFT — Quantum gravity goal of modern
theoretical physics

Detection of the elementary particles can help better understanding
of structure of space-time. Possible solutions

e String theory e Quantum loop gravity

e Noncommutative geometry o ...



Noncommutative geometry

Heisenberg: First idea of NC space (to remove UV divergences)
Sneyder: First model NC space

Renormalization theory has given good results in removing UV
divergences

GR is nonrenormalizable: measuring of small distances leads to use
large amount of energy, which forms of event horizon and leads to
uncertenity of meassuring coordinates



NC geometry

NC spaces:
» String in non-zero Kalb-Ramond field B
» Particle in the strong magnetic field B
» Contraction of spaces with quantum group symmetries
NC geometry:
» Local coordinates x* are changed by hermitian operators x*,
with [&H, X¥] = i6*
> For § = const = ASRFARY > L|om|
» Concept of point does not make sense = We will describe NC
space with NC algebra of functions (line in theorems of

Gelfand and Naimark)

Approaches to NC geometry x-product, NC spectral triple, NC
vierbein formalism, matrix models,. . .



*-product
> (A) = (Ax): F(RE(R) = F(x) x g(x) # g(x) * f(x)

» The most common x-product is Moyal-Weyl product [Szabo
01, 06]

(% 8)() = expliTs 0 L) (1)8(2) e o=
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= F()8(x) + 50" 0,1 ()8 (x)

» MW gives the following commutation relations between
coordinates and does not change propagators in quantum
theories

[xH % xV] = xH % x¥ — x¥ x xt ="

» Important NC space is k-Minkovski [Lukierski et al '91,'92;

Dimitrijevi¢, Jonke '11]

[x0 * x'] = jax’,
and all others are zero. This type of noncommutativity can
modify propagators.



NC gauge theories
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Freedom of choosing representations does not affect the matter
sector of the action and the fermion-gauge boson interactions
remain the same in both versions of the NCSM.



NC gauge theories
Let's consider Lie algebra valued gauge fields A, = A7 T°.

1 1 . a
(At Al = S{AL T AT TO + STAL T ADT? TP

Comutator between two gauge fields does not close in the Lie
algebra
Two possibilities to solve this problem:

» U(N) symmetry in fundamental representation

» Going to the enveloping algebra [Jurco et al. 2000]
Fields became NC with infinite degrees of freedom:
Ay= AT+ JA{Ta TPy 4. ..
To avoid theories with infinity many degrees of freedom, we use SW
map.
Idea of the Seiberg-Witten map: NC gauge transformations are
induced by the commutative gauge transformations, §, — d%. Then

a=a(mA), A=A A) b=d(e,A)



SW map

There are two ways how to expand:
> In number of fields (f-exact SW map) [Trampetic et al. '15]
> In numner thel degree of NC parameter 6

Examples of solutions of SW map up to first order to NC parameter:
b = 6 30 AGG+ L07IAL A
A, = AN+%0PC’{apAM+ Fops As}
This gives new interactions (vertices) and also can modify already
existing vertices in a given theory. For MW NC space, propagators

are unchanged.
Example of SW expanded (up to first order in §) Yang-Mils action:

S= —% / d*x(F™ Fpu — eﬂydabC(F;VFgaFW 4F2 F2 FP))



NC Standard model - #-expanded

Using the enveloping algebra approach and the SW map, NCSM
was constructed in [Wess et al. '02, '03]

Feynmann rules in [Trampetic et al. '05, '06]

Various processes in [Duplancic '03, Latas '07, Ohl '06, '07]
Gauge fields are enveloped algebra valued. That is the reason why
Tr[F,., F*] depends on all unitary irreducible representation of
generators. There are two ways to proceed:

1) If we choose only fundamental representations of SU(2), and
SU(3)¢ and ordinary SW map we get Minimal NCSM (mNCSM).
There are some new interactions!



mNCSM, examples
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mNCSM, examples

We have also vertices with NC corrections to the existing SM form

¢ f
>lAAAN\/\Zp(k)
f
ie O T S
sin 29;{:‘ {(,f,u 2 K gﬂujppi”) (C"-f CAJ F}‘j)

i [# ¥
= 50w my [‘Pf.. (cvif — caps) — Pl (cvip + cay ff‘ﬁ)} } :



nmNCSM, examples

If we sum over other representations, we have all mNCSM
interactions but we get some new interactions like ZAA

L 1’1'0(]{.'3)
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Also EW and Strong sectors are coupled.



nmNCSM, examples

Based on this Feynman rules:
» Z — v+ decay width calculation [Latas et al. '07]
» Hadronic and Partonic cross-section [Ohl et al. '06, '07]
» et + e — Z+ v cross-section [Ohl et al. '06, '07]



f-exact expansion

v
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We can also use f-exact SW map. It gives possibilities for
ffFVYVV ... interactions because expansion was based on field

number. [Trampetic et al. 2019, 2023]
Some results:

» Top pair differential cross section e™ + e~ — t + ¢ |
Selvaganapathy et al. '19]

» QED, Light to light v + v — v+« [Trampetic et al. '19]
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