Models with non-commutative space-time geometry

Probing space-time properties (LIV/NC) at HEP experiments

Nikola Konjik

University of Belgrade, Faculty of Physics

29 May 2023

Content

Motivation

Noncommutative geometry General SW expanded theories

NC Standard model θ -expanded

 θ -exact

Motivation

Physics between LHC and Planck scale \rightarrow problem of modern theoretical physics

QFT can describe phenomena on small distances

GR can describe phenomena on large distances

Merging of GR and QFT \rightarrow Quantum gravity goal of modern theoretical physics

Detection of the elementary particles can help better understanding of structure of space-time. Possible solutions

- String theory
 Quantum loop gravity
- Noncommutative geometry

Noncommutative geometry

Heisenberg: First idea of NC space (to remove UV divergences)

Sneyder: First model NC space

Renormalization theory has given good results in removing UV divergences

GR is nonrenormalizable: measuring of small distances leads to use large amount of energy, which forms of event horizon and leads to uncertenity of measuring coordinates

NC geometry

NC spaces:

- String in non-zero Kalb-Ramond field B
- Particle in the strong magnetic field B
- Contraction of spaces with quantum group symmetries

NC geometry:

- Local coordinates x^{μ} are changed by hermitian operators $\hat{x^{\mu}}$, with $[\hat{x}^{\mu}, \hat{x}^{\nu}] = i\theta^{\mu\nu}$
- For $\theta = const \Rightarrow \Delta \hat{x}^{\mu} \Delta \hat{x}^{\nu} \geq \frac{1}{2} |\theta^{\mu\nu}|$
- Concept of point does not make sense ⇒ We will describe NC space with NC algebra of functions (line in theorems of Gelfand and Naimark)

Approaches to NC geometry *-product, NC spectral triple, NC vierbein formalism, matrix models,...

*-product

- $(\hat{\mathcal{A}}, \cdot) \to (\mathcal{A}, \star); \quad \hat{f}(\hat{x})\hat{g}(\hat{x}) = f(x) \star g(x) \neq g(x) \star f(x)$
- ► The most common *-product is Moyal-Weyl product [Szabo 01, 06]

$$(f \star g)(x) = \exp(i\frac{\theta^{\mu\nu}}{2}\frac{\partial}{\partial y^{\mu}}\frac{\partial}{\partial z^{\nu}})f(y)g(z)|_{y,z\to x} =$$
$$= f(x)g(x) + \frac{i}{2}\theta^{\mu\nu}\partial_{\mu}f(x)\partial_{\nu}g(x)$$

 MW gives the following commutation relations between coordinates and does not change propagators in quantum theories

$$[x^{\mu}, x^{\nu}] = x^{\mu} \star x^{\nu} - x^{\nu} \star x^{\mu} = i\theta^{\mu\nu}$$

Important NC space is κ-Minkovski [Lukierski et al '91,'92;
 Dimitrijević, Jonke '11]

$$[x^0 \stackrel{\star}{,} x^i] = iax^i,$$

and all others are zero. This type of noncommutativity can modify propagators.

NC gauge theories

$$f \cdot g \qquad \rightarrow \qquad f \star g = f \cdot g + \frac{i}{2} \theta^{\alpha \beta} (\partial_{\alpha} f) (\partial_{\beta} g)$$

$$-\frac{1}{8} \theta^{\alpha \beta} \theta^{\kappa \lambda} (\partial_{\alpha} \partial_{\kappa} f) (\partial_{\beta} \partial_{\lambda} g) + \dots$$

$$\alpha, \Phi, A_{\mu}, F_{\mu \nu} \qquad \rightarrow \qquad \qquad \hat{\alpha}, \hat{\Phi}, \hat{A}_{\mu},$$

$$\hat{F}_{\mu \nu} = \partial_{\mu} \hat{A}_{\nu} - \partial_{\nu} \hat{A}_{\mu} - i[\hat{A}_{\mu} \, ; \hat{A}_{\nu}]$$

$$\delta_{\alpha} \Psi = i \alpha \Psi \qquad \rightarrow \qquad \qquad \delta_{\alpha}^{\star} \hat{\Psi} = i \hat{\alpha} \star \hat{\Psi}$$

$$\delta_{\alpha} \Phi = i[\alpha, \Phi] \qquad \rightarrow \qquad \delta_{\alpha}^{\star} \hat{\Phi} = i[\hat{\alpha} \, ; \hat{\Phi}]$$

$$\delta_{\alpha} A_{\mu} = \partial_{\mu} \epsilon + i[\alpha, A_{\mu}] \qquad \rightarrow \qquad \delta_{\alpha}^{\star} \hat{A}_{\mu} = \partial_{\mu} \hat{\alpha} + i[\hat{\alpha} \, ; \hat{A}_{\mu}]$$

$$\delta_{\alpha} F_{\mu \nu} = i[\alpha, F_{\mu \nu}] \qquad \rightarrow \qquad \delta_{\alpha}^{\star} \hat{F}_{\mu \nu} = i[\hat{\alpha} \, ; \hat{F}_{\mu \nu}]$$

Freedom of choosing representations does not affect the matter sector of the action and the fermion-gauge boson interactions remain the same in both versions of the NCSM.

NC gauge theories

Let's consider Lie algebra valued gauge fields $A_{\mu}=A_{\mu}^{a}T^{a}$.

$$[A_{\mu}\stackrel{\star}{,}A_{\nu}] = \frac{1}{2} \{A_{\mu}^{a}\stackrel{\star}{,}A_{\nu}^{b}\}[T^{a},T^{b}] + \frac{1}{2} [A_{\mu}^{a}\stackrel{\star}{,}A_{\nu}^{b}]\{T^{a},T^{b}\}$$

Comutator between two gauge fields does not close in the Lie algebra

Two possibilities to solve this problem:

- ightharpoonup U(N) symmetry in fundamental representation
- ► Going to the enveloping algebra [Jurco et al. 2000]

Fields became NC with infinite degrees of freedom:

$$A_{\mu} = A_{\mu}^{a} T^{a} + \frac{1}{2} A_{\mu}^{ab} \{ T^{a}, T^{b} \} + \dots$$

To avoid theories with infinity many degrees of freedom, we use SW map.

Idea of the Seiberg-Witten map: NC gauge transformations are induced by the commutative gauge transformations, $\delta_{\alpha} \to \delta_{\alpha}^{\star}$. Then

$$\hat{\alpha} = \hat{\alpha}(\alpha, A_{\mu}), \quad \hat{A}_{\mu} = \hat{A}_{\mu}(A_{\mu}) \quad \hat{\phi} = \hat{\phi}(\phi, A_{\mu})$$

SW map

There are two ways how to expand:

- ▶ In number of fields (θ -exact SW map) [Trampetic et al. '15]
- ▶ In numner the1 degree of NC parameter θ

Examples of solutions of SW map up to first order to NC parameter:

$$\hat{\phi} = \phi - \frac{1}{2}\theta^{\rho\sigma}A_{\rho}\partial_{\sigma}\phi + \frac{i}{8}\theta^{\rho\sigma}[A_{\rho}, A_{\sigma}]\phi,$$

$$\hat{A}_{\mu} = A_{\mu} + \frac{1}{4}\theta^{\rho\sigma}\{\partial_{\rho}A_{\mu} + F_{\alpha\mu}, A_{\sigma}\}.$$

This gives new interactions (vertices) and also can modify already existing vertices in a given theory. For MW NC space, propagators are unchanged.

Example of SW expanded (up to first order in θ) Yang-Mils action:

$$S=-rac{1}{4}\int d^4x (F^{\mu
u}F_{\mu
u}-rac{1}{4} heta^{\mu
u}d^{abc}(F^a_{\mu
u}F^b_{
ho\sigma}F^{
ho\sigma c}-4F^a_{\mu
ho}F^b_{
u\sigma}F^{
ho\sigma c}))$$

NC Standard model - θ -expanded

Using the enveloping algebra approach and the SW map, NCSM was constructed in [Wess et al. '02, '03] Feynmann rules in [Trampetic et al. '05, '06] Various processes in [Duplancic '03, Latas '07, Ohl '06, '07] Gauge fields are enveloped algebra valued. That is the reason why $Tr[F_{\mu\nu}F^{\mu\nu}]$ depends on all unitary irreducible representation of generators. There are two ways to proceed:

1) If we choose only fundamental representations of $SU(2)_L$ and $SU(3)_C$ and ordinary SW map we get Minimal NCSM (mNCSM). There are some new interactions!

mNCSM, examples

$$\begin{array}{ll}
\bullet & Z_{\rho}(k_{3}) \\
 & Z_{\nu_{l_{2}}} & Z_{\nu}(k_{2}) \\
 & Z_{\nu_{l_{2}}} & Z_{\nu_{l_{2}}}(k_{1}) & \frac{e M_{Z}^{2}}{2 \sin 2\theta_{W}} \left[\theta^{\mu\nu} (k_{1} - k_{2})^{\rho} + \theta^{\nu\rho} (k_{2} - k_{3})^{\mu} + \theta^{\rho\mu} (k_{3} - k_{1})^{\nu} \\
 & -2g^{\mu\nu} (\theta k_{3})^{\rho} - 2g^{\nu\rho} (\theta k_{1})^{\mu} - 2g^{\rho\mu} (\theta k_{2})^{\nu} \right].
\end{array} \tag{81}$$

from Higs sector

mNCSM, examples

We have also vertices with NC corrections to the existing SM form

$$\begin{array}{c}
 f \\
 Z_{\mu}(k)
\end{array}$$

$$\begin{split} &\frac{i\,e}{\sin2\theta_W} \left\{ \left(\gamma_\mu - \; \frac{i}{2}\,k^\nu\theta_{\mu\nu\rho}\,p_{\scriptscriptstyle \rm in}^\rho\right) (c_{V,f} - c_{A,f}\,\gamma_5) \right. \\ &\left. - \frac{i}{2}\theta_{\mu\nu}\,m_f \Big[p_{\scriptscriptstyle \rm in}^\nu \left(c_{V,f} - c_{A,f}\,\gamma_5\right) - p_{\scriptscriptstyle \rm out}^\nu \left(c_{V,f} + c_{A,f}\,\gamma_5\right) \, \Big] \right\} \,, \end{split} \label{eq:theta_spectrum}$$

nmNCSM, examples

If we sum over other representations, we have all mNCSM interactions but we get some new interactions like ZAA

•
$$A_{\rho}(k_3)$$

$$Z_{\nu}(k_2) -2e \sin 2\theta_W K_{Z\gamma\gamma} \Theta_3((\mu, k_1), (\nu, k_2), (\rho, k_3)),$$

$$A_{\mu}(k_1)$$

Also EW and Strong sectors are coupled.

nmNCSM, examples

Based on this Feynman rules:

- $Z \rightarrow \gamma + \gamma$ decay width calculation [Latas et al. '07]
- ► Hadronic and Partonic cross-section [Ohl et al. '06, '07]
- $e^+ + e^- \rightarrow Z + \gamma$ cross-section [Ohl et al. '06, '07]

θ -exact expansion

$$\begin{split} \widehat{\Psi}_L &= \Psi_L - \frac{\Theta^{\mu\nu}}{2} \left(g \, A^a_\mu T^a + Y_L \, g_Y B_\mu \right) \bullet \partial_\nu \Psi_L - \Theta^{\mu\nu} \, \kappa \, g_Y \, B_\mu \circledast \partial_\nu \Psi_L + \mathcal{O}(V^2) \Psi_L \\ \widehat{l}_R &= l_R - \frac{\Theta^{\mu\nu}}{2} (Y_R \, g_Y B_\mu) \bullet \partial_\nu l_R - \Theta^{\mu\nu} \, \kappa \, g_Y \, B_\mu \circledast \partial_\nu l_R + \mathcal{O}(V^2) l_R \\ \widehat{\nu}_R &= \nu_R - \Theta^{\mu\nu} \, \kappa \, g_Y \, B_\mu \circledast \partial_\nu \nu_R + \mathcal{O}(V^2) \nu_R \end{split}$$

We can also use θ -exact SW map. It gives possibilities for fVVV... interactions because expansion was based on field number. [Trampetic et al. 2019, 2023] Some results:

- ▶ Top pair differential cross section $e^+ + e^- \rightarrow t + \overline{t}$ [Selvaganapathy et al. '19]
- ▶ QED, Light to light $\gamma + \gamma \rightarrow \gamma + \gamma$ [Trampetic et al. '19]