

Searches for violation of Lorentz invariance with tt dilepton final state at CMS

LIV/NC workshop, Belgrade - 29/05/2023

Nicolas Chanon - IP2I Lyon, CNRS/IN2P3 (France)
On behalf of the CMS Collaboration

Searches for violation of Lorentz invariance with tt

CMS-PAS-TOP-22-007

Available on the CERN CDS information server

CMS PAS TOP-22-007

CMS Physics Analysis Summary

- Public since last week at LHCP conference
- Document:

http://cds.cern.ch/record/2859658?In=en

- Public page:

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/TOP-22-007/index.html

Contact: cms-pag-conveners-top@cern.ch

2023/05/23

Searches for violation of Lorentz invariance in $t\bar{t}$ production using dilepton events in proton-proton collisions at $\sqrt{s}=13\,\text{TeV}$

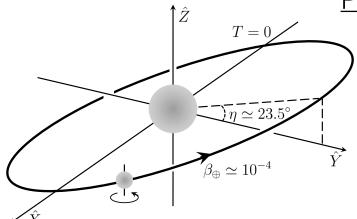
The CMS Collaboration

Abstract

Violation of Lorentz invariance is searched for using top quark pair (tt) production in proton-proton collisions at the LHC, at a center-of-mass energy of $\sqrt{s}=13\,\text{TeV}$. Events containing one electron and one muon collected with the CMS detector are analyzed in a data sample corresponding to an integrated luminosity of $77.4\,\text{fb}^{-1}$. A measurement of the differential normalized cross section for tt production as a function of sidereal time is performed. Potential violation of Lorentz invariance is introduced as an extension of the standard model (SM), with an effective field theory predicting the modulation of the tt cross section with sidereal time. Bounds on Lorentz-violating couplings are extracted, and found to be compatible with Lorentz invariance with an absolute precision of 0.1-0.8%. This search can also be interpreted as a precision test of special relativity with top quarks, improving precision by two orders of magnitude over a previous such measurement.

N. Chanon - Searches for violation of Lorentz invariance with ttbar at CMS - LIV/NC workshop, Belgrade - 2

tt cross section under Lorentz-violation


Lorentz transformation:

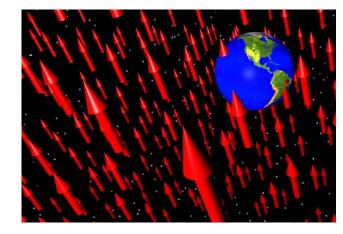
$$x^{\mu} \mapsto x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$$

- Rotations
- Lorentz boosts

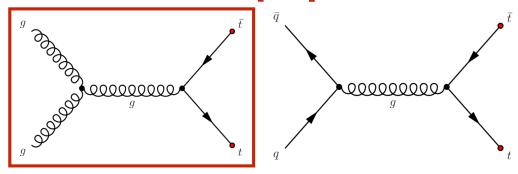
Lorentz-violating Standard Model Extension (SME):Motivated by String theory or Loop quantum gravity

- Add all Lorentz-violating operators to the SM Lagrangian
- Tested in many sectors, but only once with top quarks (D0, PRL 108 (2012) 261603)): precision O(10%)

$$L_{\rm SME} = \frac{1}{2} i \bar{\psi} (\gamma^{\nu} + c^{\mu\nu}) \gamma_{\mu} + d^{\mu\nu}) \gamma_{5} \gamma_{\mu}) \overleftrightarrow{\partial_{\nu}} \psi - m_{t} \bar{\psi} \psi_{s}$$

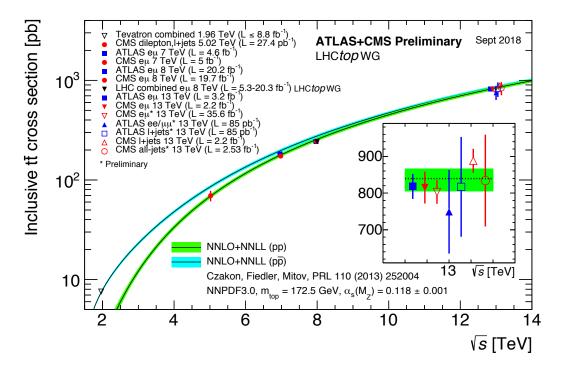

- SME coefficients: constant matrices (Lorentz-violating)
- Indicate preferential directions in spacetime

Report the measurement in the **Sun-centered frame**:


- CMS frame is rotating daily around the earth Z-axis, => modulation of the top-antitop cross section with

=> modulation of the top-antitop cross section with sidereal time

Rotation period of the earth lasts ~23h 56min 4s (UTC time ~UNIX time), or 24h, 86400 s (sidereal time)



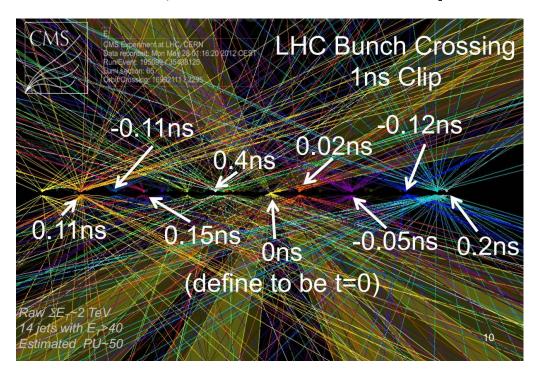
The LHC: a top quark factory

From Tevatron to LHC, x100 increase in cross section:

- Gluon fusion mechanism is now dominant,
- Higher gluon parton density function in the proton at the LHC
- Higher center-of-mass energy

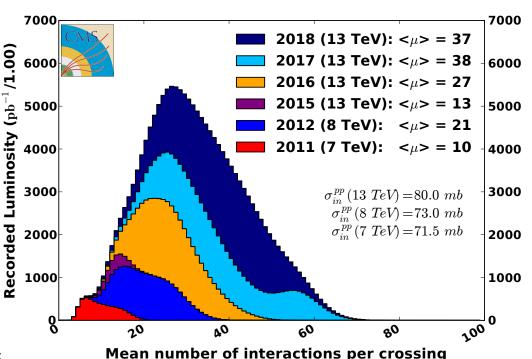
Integrated luminosity

- 5 fb⁻¹ at DØ analysis, 77 fb⁻¹ in this analysis

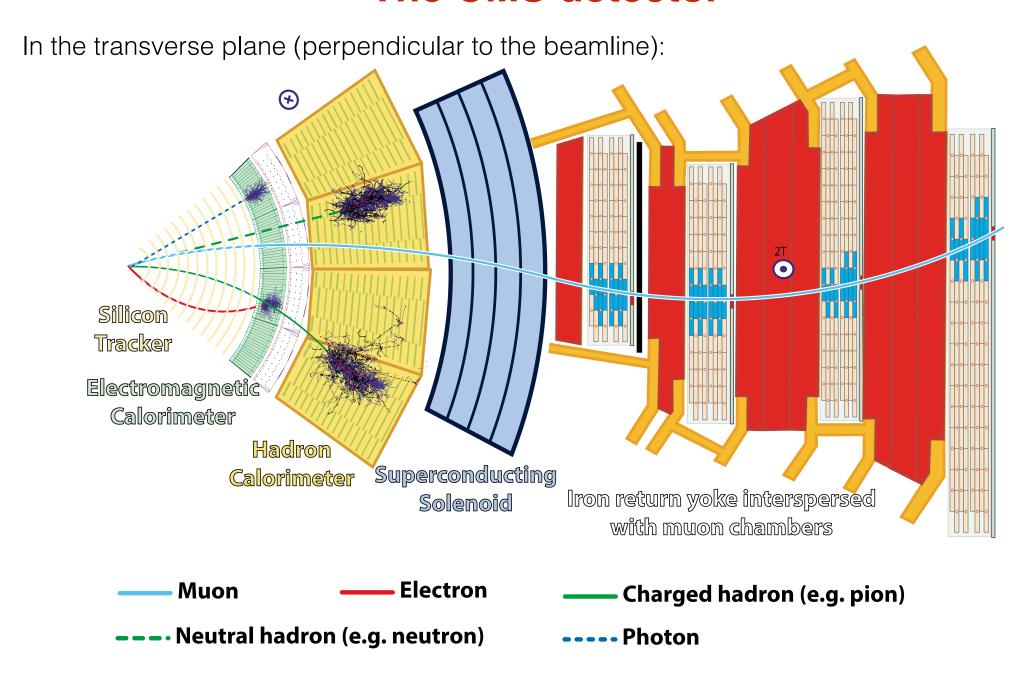


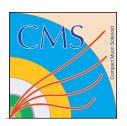
CMS Integrated Luminosity, pp, $\sqrt{s} = 13 \text{ TeV}$

N. Chanon - Collider tests of Lorentz Invariance - 4

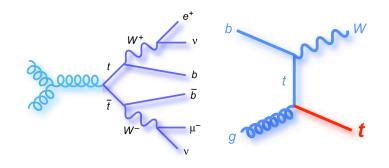

Challenge: pileup interactions

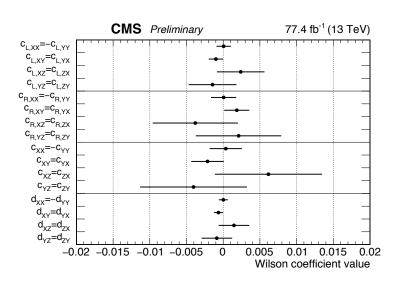
Higher instantaneous luminosity means higher number of (uninteresting, low momentum) additional collisions per bunch crossing

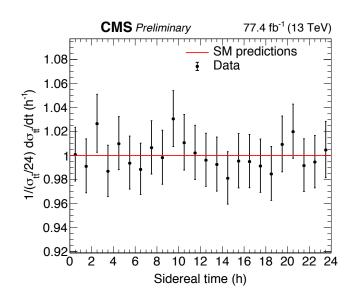



- In-time pileup: additional collisions in the same bunch crossing (1 bunch crossing every 25 ns)
- Out-of-time pileup: additional collisions in the previous or next bunch crossing

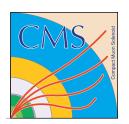
CMS Average Pileup


The CMS detector




Analysis strategy

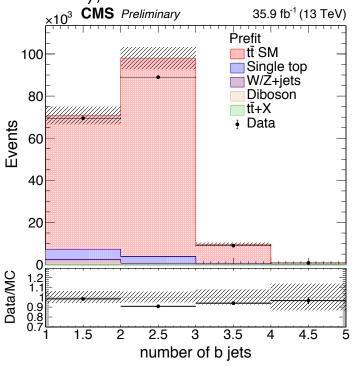
1) Discriminate between tt and SM backgrounds

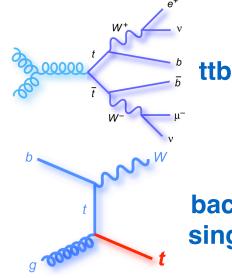

- 2) Evaluate relevant corrections and systematic uncertainties as a function of sidereal time
- **3)** Measure **normalized differential cross section** with sidereal time

4) Extract Lorentz-violating SME coefficients

N. Chanon - Searches for violation of Lorentz invariance with ttbar at CMS - LIV/NC workshop, Belgrade - 7

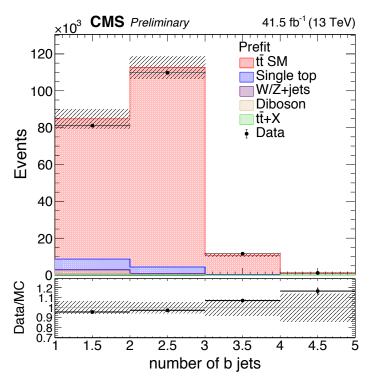
Employing tt dilepton final state


Selection:


- Dilepton final state: eµ (dilepton + single lepton triggers)
- Leading lepton p_T>25 GeV, subheading p_T>20 GeV
- ≥ 2 jets with p_T>30 GeV and |η| < 2.4
- Among which ≥ 1 b jet (deepCSV tagger)

Discriminant observable: number of b jets (good

separation between ttbar and tW),


Process	2016	2017
t t SM	167641	195871
$t\bar{t}+X$	456	544
Single top	8375	9888
Dibosons	692	651
W/Z+jets	2084	2321
Total background	11607	13404
Total MC	179247	209277
Data	168282	203584

ttbar signal

main background: single top tW

Corrections with sidereal time

Integrated luminosity:

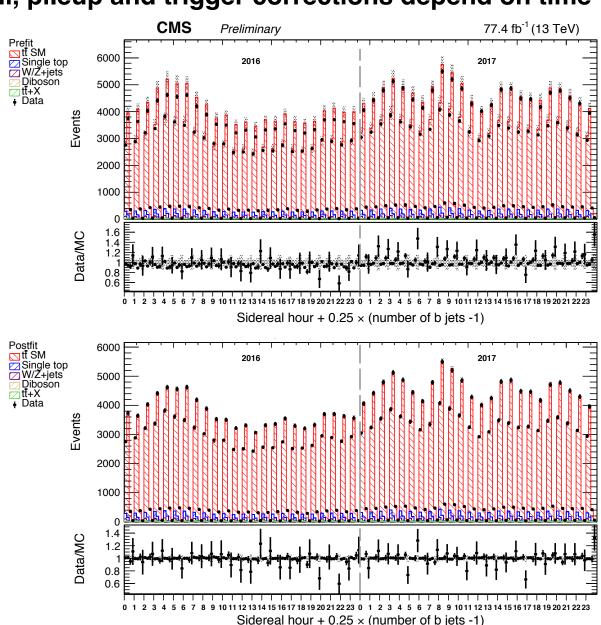
- Integrated luminosity can vary up to 20% per sidereal time bin
- Scale simulation yield for each sidereal time bin
- **Re-estimate luminosity uncertainties** as a function of time: cross-detector stability, luminometer linearity response

Pileup distribution:

- Nominal **pileup profile + associated uncertainty** (from the cross section for minimum bias events) does not cover for the pileup profile in time bins
- For each sidereal time bin: reweight pileup distribution and assign corresponding uncertainty

Data/simulation differences in dilepton trigger efficiencies:

- Estimated using p_T^{mis} trigger in events with ≥1 b jet
- **Uncertainties** estimated from partitions of the data: uncertainty arising from the number of jets, and run era dependency




Fitting the normalized differential XS

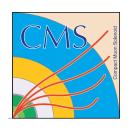
Reminder: Integrated lumi, pileup and trigger corrections depend on time

Fit method

- Profile likelihood method using "LHC test-statistic"
- Fit of 24 parameters of interest (POIs): 23 fractions + the average signal strength
- Reconstructed and particle-level sidereal time are identical: diagonal response matrix
- Under the SM hypothesis, same expected prediction in each bin
- The normalised differential cross section reduces to:
 - $\sigma_i/\sigma_{avg} = \mu_i/\mu_{avg}$ (which are the POIs)

Uncertainties and their correlation

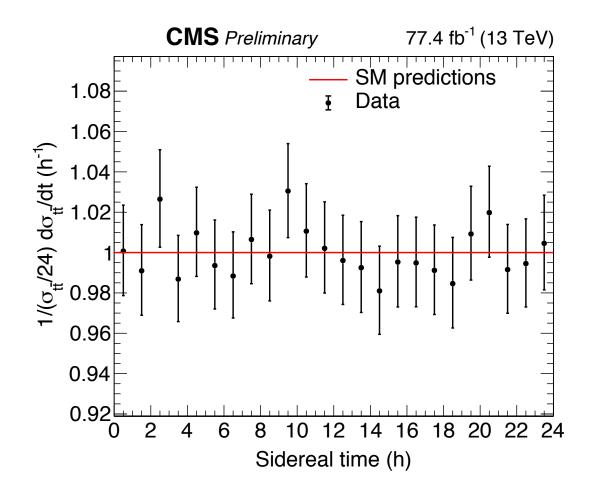
Re-estimated as a function of sidereal time: correlated in sidereal time


Experimental syst. for which dependency in sidereal time is unknown: uncorrelated in sidereal time

SM theory and background normalisation uncertainties: uniform (and correlated) in sidereal time

MC stat.: correlated in sidereal time

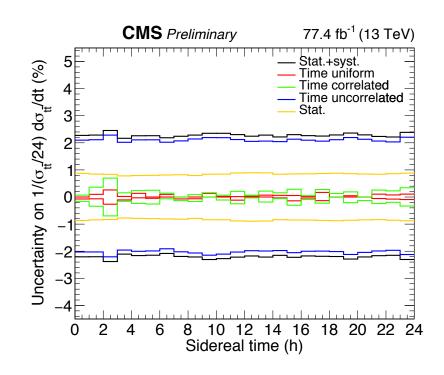
Systematic uncertainty source	Correlation 2016–2017	Correlation time bins	Magnitude
Flat luminosity, year-to-year correlated part	100%	100%	0.6% (2016), 0.9% (2017)
Flat luminosity, year-to-year uncorrelated part	0%	100%	0.9% (2016), 1.4% (2017)
Time-dependent luminosity stability	0%	100%	0.2% (2016), 0.4% (2017)
Time-dependent luminosity linearity	0%	100%	0.2% (2016), 0.4% (2017)
Time-dependent pileup reweighting	100%	100%	0.3–5%
Time-dependent trigger efficiency, syst. component	0%	100%	0.5–1%
Time-dependent trigger efficiency, stat. component	0%	0%	0.5%
L1 ECAL prefiring	100%	0%	0.5%
Electron reconstruction	100%	0%	0.4%
Electron identification	100%	0%	1.2–2.2%
Muon identification, syst. component	100%	0%	0.3%
Muon identification, stat. component	0%	0%	0.5%
Muon isolation, syst. component	100%	0%	<0.1%
Muon isolation, stat. component	0%	0%	0.2%
Phase-space extrapolation of lepton isolation	100%	100%	0.5–1%
Jet energy scale, year-to-year correlated part	100%	0%	0.8%
Jet energy scale, year-to-year uncorrelated part	0%	0%	1.4%
Parton flavor impact on jet energy scale	100%	100%	1.1%
b tagging	0%	0%	2–4%
Matrix element scale	100%	100%	0.3-6%
PDF+ $\alpha_{\rm S}$	100%	100%	0.1 – 0.4%
Initial- & final-state radiation scale	100%	100%	1–5%
Top quark p_{T}	100%	100%	0.5–2.5%
Matrix element-parton shower matching	100%	100%	0.7%
Underlying event tune	100%	100%	0.2%
Color reconnection	100%	100%	0.3%
Top quark mass	100%	100%	0.5–3%
Single top quark cross section	100%	100%	30%
$t\bar{t}+X$ cross section	100%	100%	20%
Diboson cross section	100%	100%	30%
W/Z+jets cross section	100%	100%	30%
tt cross section *	100%	100%	4%
Single top quark time modulation *	100%	100%	2%
MC statistical uncertainty	0%	100%	0.1–1%


N. Chanon - Searches for violation of Lorentz invariance with ttbar at CMS - LIV/NC workshop, Belgrade - 11

Normalized differential XS: result

Direct fit of normalised differential ttbar cross section

- Uncertainty is around 2.2% in each time bin
- Statistical uncertainty accounts for ~0.9%
- Goodness-of-fit (saturated model): 0.92



Uncertainty breakdown

Uncertainty breakdown bin by bin: in each sidereal time bin, freeze groups of uncertainties in the fit and calculate the resulting uncertainty by subtracting to the total in quadrature.

Treatment of the systematics with sidereal time:

- Uncertainty in pileup, luminosity stability and linearity, trigger: evaluated as a function of sidereal time, treated as correlated:
 - subdominant
- Other experimental systematics treated as uncorrelated, to let the fit find their impact on each time bin in data: dominant
- SM theory, background norm, other luminosity uncertainties treated as **uniform**: **cancel** almost completely in the ratio

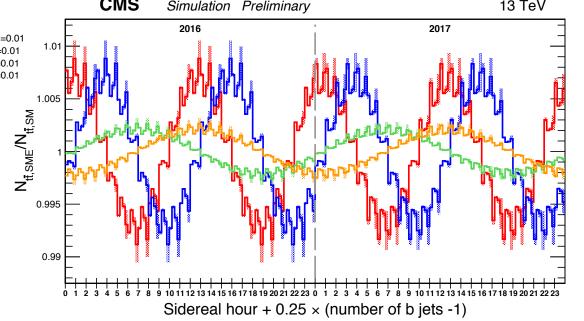
- Cancellation of uncertainties is imperfect because of remaining correlations

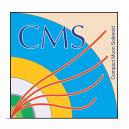
SME signal model

SME signal model (evaluated at LO):

- Not sensitive to Z and T direction.
- Use similar benchmarks as Tevatron
- 4 directions tested: XX, XY, XZ, YZ
- 4 families of coefficients: c, d, c_L, c_R

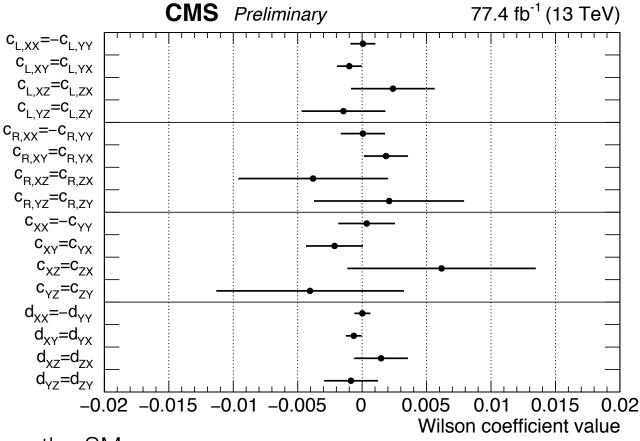
$$c_{\mu\nu} = \frac{1}{2}[(c_L)_{\mu\nu} + (c_R)_{\mu\nu}], \quad d_{\mu\nu} = \frac{1}{2}[(c_L)_{\mu\nu} - (c_R)_{\mu\nu}]$$


SME weight:
$$w = \frac{|\mathcal{M}_{SME}|^2}{|\mathcal{M}_{SM}|^2}$$


$$w(t) = 1 + f(t)$$

$$f(t) = (c_{L,\mu\nu} + c_{R,\mu\nu}) R^{\mu}_{\alpha}(t) R^{\nu}_{\beta}(t) \left(\frac{\delta P}{P}\right)^{\alpha\beta} + c_{L,\mu\nu} R^{\mu}_{\alpha}(t) R^{\nu}_{\beta}(t) \left(\frac{\delta F}{F} + \frac{\delta \bar{F}}{\bar{F}}\right)^{\alpha\beta}$$

$$\text{CMS} \quad \text{Simulation Preliminary} \qquad \qquad \text{13 TeV}$$


- Use Madgraph LO + Pythia+ full detector simulation
- Apply selection at reco level
- Computation of the time modulation using exact LO kinematics [Berger, Kostelecký, Liu, Phys. Rev. D 93, 036005 (2016)]
- Time modulation calculated in bins of sidereal time and number of b jets

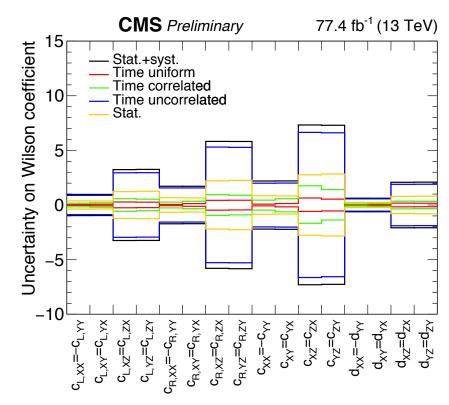
Bounds on the SME coefficients

- Fit of each coefficients individually while coefficients corresponding to the three other directions in a family (cL, cR, c, d) are left floating in the fit
- Goodness-of-fit p-value is 0.98
 - cL, cR coefficients: Improved precision by a factor ~20-50 relative to D0
 - c coefficients: measured for the first time
 - d coefficients: Improved
 precision by a factor up to
 100 relative to D0

- No significant deviation from the SM
- Special relativity tested at the 0.1-0.8% level with top quarks at the LHC

Comparison with SM expectations

- Alternative fit: Fit of each Wilson individually, others set to SM
- Correlation between coefficients of different directions is 0-4%


Wilson	SM expected	Data	SM expected	Data
coefficient	Others fixed to SM	Others fixed to SM	Others floating	Others floating
Coefficient	(10^{-3} units)	(10^{-3} units)	(10^{-3} units)	(10^{-3} units)
$c_{L,XX} = -c_{L,YY}$	[-0.97; 0.97]	[-0.91; 1.03]	[-0.97; 0.97]	[-0.91; 1.03]
$c_{L,XY} = c_{L,YX}$	[-0.97; 0.97]	[-1.94; -0.01]	[-0.97; 0.97]	[-1.96; -0.03]
$c_{L,XZ} = c_{L,ZX}$	[-3.25; 3.25]	[-0.91; 5.58]	[-3.25; 3.25]	[-0.86; 5.63]
$c_{L,YZ} = c_{L,ZY}$	[-3.26; 3.26]	[-4.66; 1.83]	[-3.27; 3.27]	[-4.7; 1.81]
$c_{R,XX} = -c_{R,YY}$	[-1.71; 1.71]	[-1.65; 1.79]	[-1.71; 1.71]	[-1.66; 1.77]
$c_{R,XY} = c_{R,YX}$	[-1.72; 1.72]	[0.11; 3.53]	[-1.72; 1.72]	[0.14; 3.56]
$c_{R,XZ} = c_{R,ZX}$	[-5.81; 5.82]	[-9.52; 2.1]	[-5.82; 5.82]	[-9.61; 2.01]
$c_{R,YZ} = c_{R,ZY}$	[-5.84; 5.84]	[-3.79; 7.86]	[-5.84; 5.84]	[-3.74; 7.91]
$c_{XX} = -c_{YY}$	[-2.19; 2.19]	[-1.78; 2.62]	[-2.19; 2.19]	[-1.85; 2.55]
$c_{XY} = c_{YX}$	[-2.19; 2.19]	[-4.27; 0.15]	[-2.19; 2.19]	[-4.36; 0.07]
$c_{XZ} = c_{ZX}$	[-7.25; 7.25]	[-1.35; 13.27]	[-7.26; 7.25]	[-1.15; 13.48]
$c_{YZ} = c_{ZY}$	[-7.29; 7.29]	[-11.16; 3.35]	[-7.29; 7.29]	[-11.31; 3.24]
$d_{XX} = -d_{YY}$	[-0.62; 0.62]	[-0.6; 0.64]	[-0.62; 0.62]	[-0.6; 0.64]
$d_{XY} = d_{YX}$	[-0.62; 0.62]	[-1.25; -0.02]	[-0.62; 0.62]	[-1.27; -0.03]
$d_{XZ} = d_{ZX}$	[-2.09; 2.09]	[-0.65; 3.52]	[-2.09; 2.09]	[-0.62; 3.55]
$d_{YZ} = d_{ZY}$	[-2.1; 2.1]	[-2.93; 1.24]	[-2.1; 2.1]	[-2.95; 1.23]

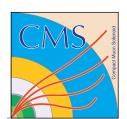
Uncertainty breakdown

Similar conclusions as in the differential fit

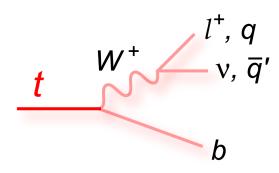
- Largest uncertainty is the time-uncorraleted component: most exp.
 syst. have an individual uncertainty per sidereal time bin
- **Statistical uncertainty** is about 1/3 of total stat+syst uncertainty
- Time-correlated uncertainties follow. It includes an uncertainty on single top process in the SME.
- Usual **time-uniform systematics** have small impact

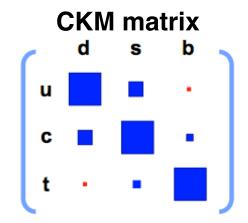
Conclusions and perspectives

Summary:

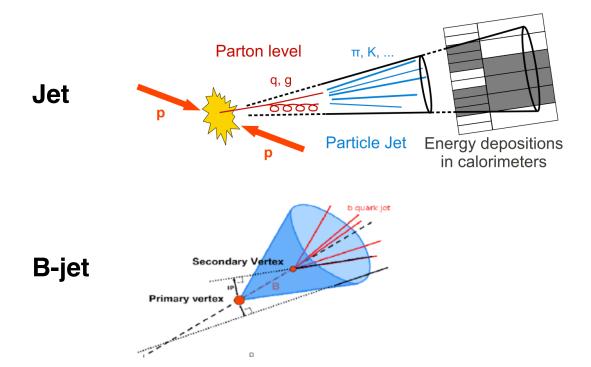

- Performed the first search for violation of Lorentz invariance with ttbar at the LHC, within the context of the SME
- Measured differential normalised cross section with sidereal time
- Measured SME coefficients in XX, XY, XZ, YZ directions for cL, cR, c, d families
- Special relativity tested at the 0.1-0.8% level with top quarks at the LHC

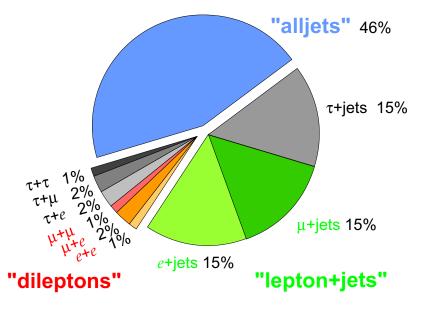
Perspectives:


- Another factor of 5-10 improvement expected at the HL-LHC or a factor 100 at the FCC-hh [Carle, Chanon, Perriès, Eur.Phys.J.C 80 (2020) 2, 128],


Thanks for your attention

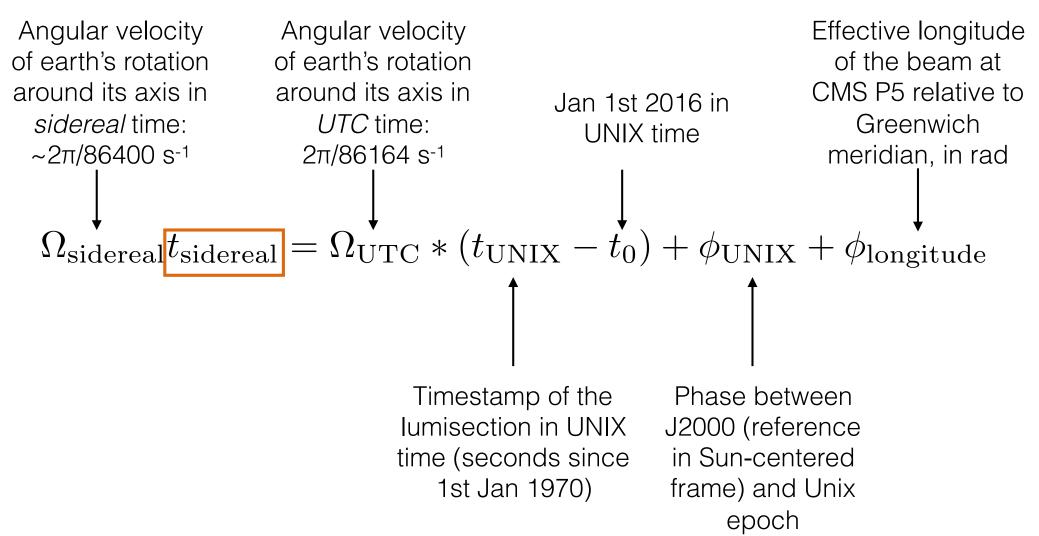
Back-up slides


Top quark decay



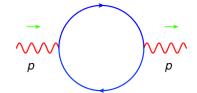
Top quark decay

- The top quark undergoes electroweak decay to Wb before hadronizing
- W decays via W→Iv or W→qq', leading to to b + leptons or jets signatures

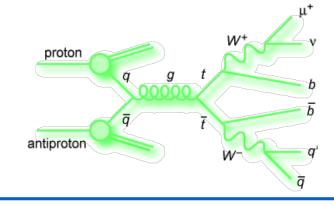

Top Pair Branching Fractions

Translating UNIX to sidereal time

UTC time (~UNIX time): rotation period of the earth lasts ~23h 56min 4s (UTC) **Sidereal time:** rotation period of the earth is defined as 24h, 86400 s (sidereal)

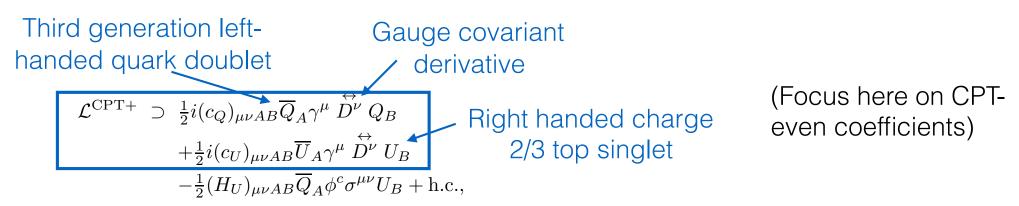

Top quark: existing bounds

Rev.Mod.Phys. 83: 11 (2011)


Table D36, Quark sector, d > 4

Combination	Result	System	Ref.	
$ c_t $	$< 1.6 \times 10^{-7}$	Astrophysics	[50]*	
$(c_Q)_{XX33}$	$-0.12 \pm 0.11 \pm 0.02$	$t\bar{t}$ production	[256]	
$(c_Q)_{YY33}$	$0.12 \pm 0.11 \pm 0.02$	"	[256]	
$(c_Q)_{XY33}$	$-0.04 \pm 0.11 \pm 0.01$	"	[256]	
$(c_Q)_{XZ33}$	$0.15 \pm 0.08 \pm 0.02$	"	[256]	
$(c_Q)_{YZ33}$	$-0.03 \pm 0.08 \pm 0.01$	"	[256]	
$(c_U)_{XX33}$	$0.1 \pm 0.09 \pm 0.02$	"	[256]	
$(c_U)_{YY33}$	$-0.1 \pm 0.09 \pm 0.02$	"	[256]	
$(c_U)_{XY33}$	$0.04 \pm 0.09 \pm 0.01$	"	[256]	
$(c_U)_{XZ33}$	$-0.14 \pm 0.07 \pm 0.02$	"	[256]	
$(c_U)_{YZ33}$	$0.01 \pm 0.07 \pm < 0.01$	"	[256]	1
d_{XX}	$-0.11 \pm 0.1 \pm 0.02$	"	[256]	
d_{YY}	$0.11 \pm 0.1 \pm 0.02$	"	[256]	
d_{XY}	$-0.04 \pm 0.1 \pm 0.01$	"	[256]	
d_{XZ}	$0.14 \pm 0.07 \pm 0.02$	"	[256]	
d_{YZ}	$-0.02 \pm 0.07 \pm < 0.01$	"	[256]	

Indirect bound (*Phys. Rev. D 97*, 125016(2018)): from top-quark loop correction to photon propagator, using astrophysics photons


Direct bounds (*PRL108:261603*, 2012): measurement of top pair production at DØ (Tevatron)

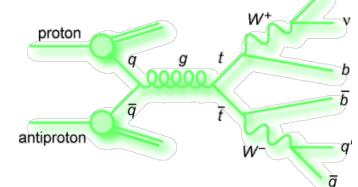
Top quark sector in the SME

Berger, Kostelecký, Liu, Phys. Rev. D 93, 036005 (2016)

LIV lagrangian related to top quark:

- SME coefficients **c**_{μν} are **violating particle Lorentz invariance**
- $c_{\mu\nu}$ trace is Lorentz-invariant, and its antisymmetric part can be absorbed elsewhere in the Lagrangian: consider $c_{\mu\nu}$ as symmetric and traceless

Define:
$$c_{\mu\nu} = \frac{1}{2}[(c_L)_{\mu\nu} + (c_R)_{\mu\nu}], \quad d_{\mu\nu} = \frac{1}{2}[(c_L)_{\mu\nu} - (c_R)_{\mu\nu}]$$


Top pair production in the SME

Berger, Kostelecký, Liu, Phys. Rev. D 93, 036005 (2016)

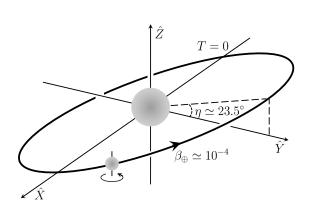
Top quark (~173 GeV) **decays** at almost 100% to **Wb**.

Assume **narrow-width** approximation for top quarks:

$$|\mathcal{M}|_{\mathrm{SME}}^{2} \neq PF\bar{F} + (\delta P)F\bar{F} + P(\delta F)\bar{F} + PF(\delta \bar{F})$$

SME weight: $w = \frac{|\mathcal{M}_{SME}|^2}{|\mathcal{M}_{SM}|^2}$

$$w(t) = 1 + f(t)$$


$$f(t) = ((c_L)_{\mu\nu} + (c_R)_{\mu\nu})R^{\mu}_{\alpha}(t)R^{\nu}_{\beta}(t)\left(\frac{\delta_p P}{P} + \frac{\delta_v P}{P}\right)^{\alpha\beta}$$

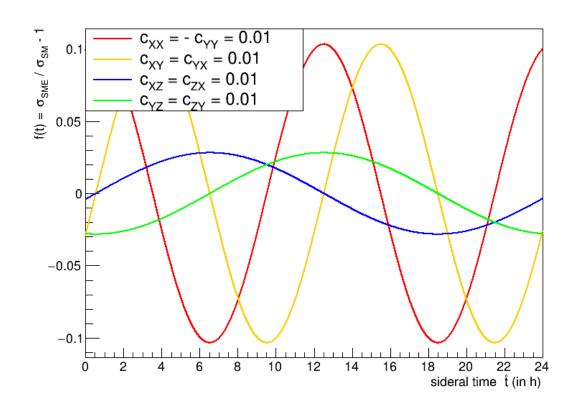
LIV change in top

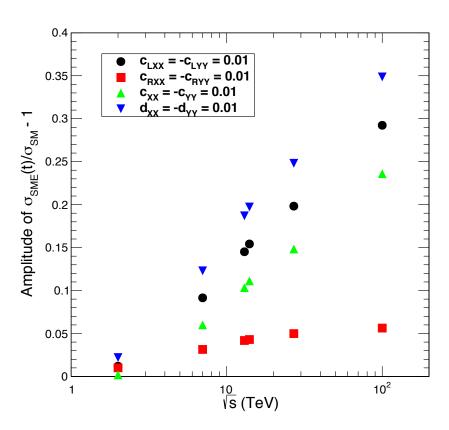
quark propagator

LIV change in top production via top-gluon vertex

SME coefficients

Rotation matrices to relate sun-centered frame and laboratory frame


LIV change in top and antitop decay width


Induces a modulation of the top-antitop cross section with sidereal time

Higher center-of-mass energies

Carle, Chanon, Perriès, Eur.Phys.J.C 80 (2020) 2, 128

- Compare f(t) in p-p collisions at several center-of-mass energy (assuming CMS reference frame), and for several benchmark coefficients
- The amplitude of f(t) increases with the energy (comes mostly from the matrix element)

Expected sensitivity at the LHC and future colliders

Carle, Chanon, Perriès, Eur.Phys.J.C 80 (2020) 2, 128

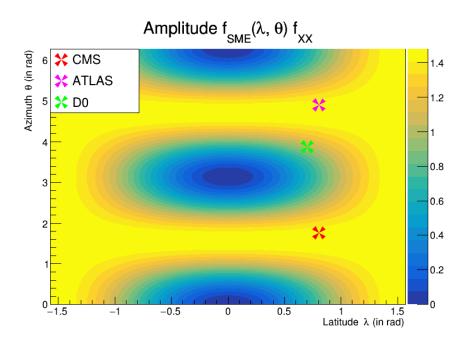
Benchmarks:

- **D0:** Recomputed expected sensitivity for 5.3 fb-1 of p-pbar collisions at 1.96 TeV
- **LHC Run 2**: Expected sensitivity for 150 fb-1 of p-p collisions at 13 TeV
- **HL-LHC:** 3 ab-1 of p-p collisions at 14 TeV (expected to start data taking in 2027)
- **HE-LHC:** 15 ab-1 of p-p collisions at 27 TeV (option for after HL-LHC, replacing LHC magnets in the same tunnel)
- **FCC-hh:** 15 ab-1 of p-p collisions at 100 TeV (option for after HL-LHC, new magnets and new 100km tunnel)

Expected precision on the top-quark SME coefficients:

	DØ	LHC (Run 2)	HL-LHC	HE-LHC	FCC
$\Delta c_{LXX}, \Delta c_{LXY}$	1×10^{-1}	7×10^{-4}	2×10^{-4}	2×10^{-5}	5×10^{-6}
$\Delta c_{LXZ}, \Delta c_{LYZ}$	8×10^{-2}	3×10^{-3}	5×10^{-4}	9×10^{-5}	2×10^{-5}
$\Delta c_{RXX}, \Delta c_{RXY}$	9×10^{-2}	3×10^{-3}	5×10^{-4}	8×10^{-5}	5×10^{-5}
$\Delta c_{RXZ}, \Delta c_{RYZ}$	7×10^{-2}	1×10^{-2}	2×10^{-3}	4×10^{-4}	8×10^{-5}
$\Delta c_{XX}, \Delta c_{XY}$	7×10^{-1}	1×10^{-3}	2×10^{-4}	3×10^{-5}	9×10^{-6}
$\Delta c_{XZ}, \Delta c_{YZ}$	6×10^{-1}	4×10^{-3}	7×10^{-4}	1×10^{-4}	3×10^{-5}
$\Delta d_{XX}, \Delta d_{XY}$	1×10^{-1}	6×10^{-4}	1×10^{-4}	2×10^{-5}	8×10^{-6}
$\Delta d_{XZ},\Delta d_{YZ}$	7×10^{-2}	2×10^{-3}	4×10^{-4}	8×10^{-5}	2×10^{-5}

LHC Run 2: Expect 2-3 orders of magnitude improvement wrt D0 (depending on the coeff.)


FCC: Expect 2 more orders of magnitude improvement relative to LHC Run 2

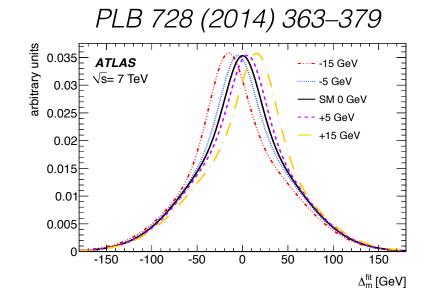
Which collider / experiment?

Carle, Chanon, Perriès, arXiv:1909.01990

Comparison LHC / Tevatron (assuming same center-of-mass energy):

- D0 less sensitive than ATLAS/CMS to cXX or cXY scenario
- D0 more sensitive than ATLAS/CMS to cXZ or cYZ scenario

Equivalent sensitivity at ATLAS or CMS (opposite azimuth in the LHC ring)


A note on top/antitop mass difference

Top/Antitop mass difference

- Particle/antiparticle mass difference is not allowed to elementary particles within local quantum field theories, such as the SME
- Can be allowed in non-local theories with CPT breaking

Experimental method

- Kinematic fit used to reconstruct the top mass in lepton+jets or dilepton decay channels
- Can measure top / antitop mass in separated dataset and combine statistically
- Or can measure simultaneously top and antitop masses

CMS 8 TeV (*PLB 770 (2017) 50–71*):

$$\Delta m_{\rm t} = -0.15 \pm 0.19 ({\rm stat}) \pm 0.09 ({\rm syst}) \,{\rm GeV}$$

- Compatible with the SM
- This measurement has not been interpreted in the context of a given BSM model